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Abstract

The paper assesses the financial cost of federal farm programs in mitigating income losses due

to drier conditions expected from climate change. Our study encompasses agricultural-producing

counties within the conterminous United States during the census years from 2002 to 2017. We

quantify historical drought patterns and their projected trends for the near (2020-2049) and more

distant (2030-2059) future, using climate reanalysis data and 20 downscaled global circulation model

products from the Coupled Model Intercomparison Project 5. We estimate the relationship between

federal agricultural payments and climate change by analyzing how farm income losses due to drier

conditions affect the magnitude and distribution of these payments under the RCP 8.5 scenario.

We predict that, under unmitigated climate change, payments from federal farm program should

significantly increase to maintain their income–stabilization capacity, with a greater likelihood of

much larger financial costs when accounting for statistical and climate uncertainties.
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1. Introduction

Among the potential realizations of climate change, droughts are expected to present a growing

threat to American agriculture in the coming decades, as their frequency and severity across the

United States are projected to increase with climate change (Ahmadalipour et al., 2017; Wuebbles

et al., 2017; Pörtner et al., 2022). While many economic studies have examined the impact of

future droughts on crop yields and farm incomes (Deschênes and Greenstone, 2007; Schlenker and

Roberts, 2009; Tack et al., 2015; Burke and Emerick, 2016; Rodziewicz and Dice, 2020), less consid-

eration has been given to their financial implications on payments from federal farm programs. Yet,

these subsidy programs are still primary mechanisms that protect farmers’ incomes from changes in

weather, market prices, and other factors that can affect agricultural production and profitability.

Therefore, it is likely that drier conditions expected from climate change will have a significant

effect on the costs of these farm programs, particularly if their existing structure is maintained.

In this paper, we estimate the capacity of federal payment programs to smooth farm income in

the face of drier conditions across the Conterminous United States (CONUS) and major commod-

ity crops and use these estimates to predict the financial cost of stabilizing farm income under

climate change. We specifically focus on the near (2020–2049) and more distant (2030–2059) fu-

ture climate projections made under the Representative Concentration Pathway 8.5 (RCP 8.5), the

highest emissions pathway used in Intergovernmental Panel on Climate Change (IPCC) scenarios.1

We select this future warming scenario, as it is in close agreement with historical total cumulative

CO2 emissions, and is also the best match out to mid-century under current and stated policies

with still highly plausible levels of CO2 emissions in 2100 (Reidmiller et al., 2018; Schwalm et al.,

2020).

Our analysis proceeds in three parts. First, we assemble a panel dataset from the United States

Department of Agriculture (USDA) covering agricultural–producing counties over the CONUS from

the census years 2002 to 2017. We calculate farm income by taking the difference between total agri-

cultural sales receipts (excluding federal payments) and total production costs at the county level.

We only consider income support payments from federal programs that are designed to provide pay-

ments to farmers when they face unfavorable production or market conditions. We combine these

data with measures of water availability during the crop growing season based on the Standardized

Precipitation Evapotranspiration Index (SPEI). We then conduct parametric and non–parametric

estimations to determine the capacity of income support payments to smooth income losses caused

by drought conditions across the CONUS and major commodity crops. Because our main hypoth-

esized channel linking droughts to payments from federal farm programs operates through losses

1This scenario corresponds to a temperature increase of about 4.3°C by 2100, compared to pre–industrial tem-
peratures.
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in agricultural incomes, we employ an instrumental variables method, which allows us to account

for endogeneity bias and to estimate an accurate income–stabilizing rate. Our findings show that

income support payments partly offset income losses due to drought events during the observed

period (2002–2017), with a heterogeneous degree among crop categories. These results are robust

to an alternative drought index, a set of controls, and a placebo test. Additionally, the bootstrap

results indicate that our mean estimates provide an unbiased benchmark for assessing the potential

impacts of climate change. Finally, armed with this empirical evidence, we perform a counterfactual

empirical exercise to project the financial costs of stabilizing farm incomes for the CONUS and ma-

jor commodity crops under expected climate change. We calculate these costs at the county–level

by combining our mean estimates with projected shifts in the future drought distribution for each

county based on 20 global circulation models (GCMs) and a multi–model ensemble average. This

allows us to predict both the cost impact of climate change and its associated uncertainty and to

characterize the inter-county variation of such impact. We find that long–run trends in climate

would have a significant effect on income support payments. Our point estimates combined with

climate projections from a multi-model ensemble average suggest that income support payments

could reach an average of $US 116 (in 2011 prices) per operation with drought conditions projected

for the period 2030–2059, compared to $US 55 (in 2011 prices) per operation over the studied

period (2002–2017). When accounting for statistical and climate model uncertainties, this increase

would be even higher, bringing income support payments to an average of around $US 130 (in

2011 prices) per operation. Despite an expected decrease in their contribution to the total cost,

agricultural areas producing corn and soybeans should still account for over 46% of total income

support payments. These findings must best be interpreted as providing a plausible benchmark on

what the mid-term cost of stabilizing farm incomes under unmitigated climate change could be,

given current US agricultural policy and farmers’ strategies.2

Our paper is related to two strands of literature. The first one seeks to evaluate drought-induced

costs under global warming by quantifying their financial implications on federal government sup-

ports for agriculture. The second strand of literature aims to assess the impact of climate change

on agricultural outcomes by adopting a panel data method (see Blanc and Schlenker (2017) for

an overview). We adopt a similar approach, acknowledging with this literature that the panel ap-

proach with fixed effects controls for unobservable time–invariant factors across regions and better

addresses the omitted variable problem compared to other approaches (Deschênes and Greenstone,

2007).

2The empirical evidence on adaptation in US agriculture is mixed. Butler and Huybers (2013) demonstrated
maize being locally adapted to hot temperatures in US counties, while Roberts and Schlenker (2011) found that corn
and soybean yields had become more sensitive to extreme heat. Keane and Neal (2020) found significant adaptation
occurring across hot/cool counties and over time from 1950 to 1989. However, Burke and Emerick (2016) found
limited evidence for adaptation when exploiting large variations in recent temperature and precipitation trends.
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Our work expands on these studies in two primary ways. First, by focusing on agricultural subsidies

to farmers in response to adverse conditions, we complement studies that have typically examined

the climate change effects on subsidized insurance provided by the Federal Crop Insurance Program

(Crane-Droesch et al., 2019). Even though agricultural risk management has become more impor-

tant over time within the Farm bill, income support payments to farmers in response to adverse

production or market conditions remain a core component of US agricultural policy. Therefore,

the risk of larger drought-related income losses due to climate change raises the critical questions

of how much income support payments should be increased to maintain their income-stabilization

capacity and how this financial cost could be mitigated, given that the additional funds needed

to maintain this objective under global warming could significantly burden public finances in the

coming decades.

Second, we account for the uncertainties associated with the assessment of climate change effects.

We utilize high temporal and spatial resolution data on projected precipitation, temperature, soil

moisture, or evapotranspiration from existing downscaled daily climate projections covering the

CONUS to more accurately characterize future drought conditions and how the cost of mitigating

drought-induced farm income losses varies with local climate. We employ a non-parametric boot-

strap approach to handle the uncertainty surrounding our mean estimates. Mean values inferred

from skewed cost distribution with parametric methods may not reflect the real costs of stabilizing

farm income. It is thus essential to provide confidence intervals of cost estimates in order to reduce

forecast bias. We also tackle the uncertainties associated with GCMs, as the skill of the models

in representing historical droughts is very varied and leads to significant discrepancies in drought

projections across models. The consensus across climate studies is that multiple GCMs and an

ensemble of downscaling methods that include bias correction should be employed to ensure that

the full range of possible outcomes is explored and accounted for (Knutti et al., 2010). However,

a wide range of studies assessing the economic impacts of climate change uses only a single or a

few models, leading to potentially misleading projections (Burke et al., 2015). To overcome these

limitations and improve the accuracy of our representation of the climate system, we utilize an

ensemble of GCMs to account for their inherent uncertainty. Considering statistical and climate

model uncertainties provides a more accurate assessment of the possible range of projected costs

of stabilizing farm incomes under climate change and ultimately helps improve decision-making in

agricultural management.3

3We do not address the uncertainty caused by unexpected future for radiative forcings by using a single emissions
scenario (the RCP 8.5 scenario). Hawkins and Sutton (2009) argue that this uncertainty is of relatively minor
significance until the mid-twenty-first century, while becoming more significant at the end of the century. We also
ignore other sources of uncertainty derived from natural fluctuations (e.g., the El Niño/Southern Oscillation (ENSO),
the thermohaline–driven oceanic circulation, and the existing heat content in oceans) and the imperfect structure of
downscaling methods.
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The remainder of the paper is organized as follows. In Section 2, we detail the framework to quantify

present and future drought conditions, which combines real-time weather data and global circula-

tion model forecasts. We then document in Section 3 our dataset and our econometric method to

link drought, agricultural income, and income support payments. In Section 4, we present our main

results for the CONUS and by main commodity crops, and detail the statistical uncertainty sur-

rounding our estimates based on historical data. Section 5 uses data from global circulation models

to build projections of income support payments under climate change, considering the statistical

uncertainty of our point estimates and the uncertainty associated with climate model projections.

Section 6 concludes.

2. Quantifying current and future droughts: methodology and data

We gather weather data to assess the impact of local climate on US agriculture and utilize Global

Circulation Model (GCM) outputs to predict its future effect under climate change. To minimize

measurement errors, we follow the recommendations from Auffhammer et al. (2013) and Burke et al.

(2015). Our data includes high-resolution (4-km grid cells) climate data, which reduces uncertainties

in climate simulations across the CONUS, and an ensemble of 20 GCM climate projections from

the Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project

5 (CMIP5) to increase confidence in drought event predictions.

2.1. Weather variables and climate uncertainties

We rely on reanalysis products to estimate the impact of local climate on US agriculture. Compared

to traditional station-based data, these products provide consistent historical records of numerous

meteorological variables spanning the globe at various spatial and temporal resolutions. We down-

load meteorological variables from the Gridded Surface Meteorological (gridMET) dataset.4 This

source provides daily high-spatial resolution (4-km) gridded surface meteorological data, such as

temperature, precipitation, wind speed, relative humidity, and solar radiation, among others, that

covers the CONUS from 1979 to the present. The gridMET dataset combines satellite and weather

station data to provide accurate climate information (see Abatzoglou (2013) for a complete descrip-

tion of the dataset). It has been widely used in applications such as drought monitoring, crop yield

forecasting, and water resource management due to its ability to accurately reproduce observed

climate variability and extreme events in the CONUS (Blankenau et al., 2020).

The evaluation of the expected effects of climate change relies on predictions of how relevant climate

variables will change in the future. In the climate impacts literature, it is common to get future val-

ues of climate variables from predictions of GCMs, based on different Representative Concentration

4https://www.northwestknowledge.net/metdata/data/
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Pathways (RCP) scenarios. However, GCMs have a coarse spatial resolution, which can limit their

ability to accurately reflect regional or local–scale climate features and processes, particularly in

areas with complex topography or small–scale weather patterns. To improve the spatial resolution

of GCM data, statistical or dynamical downscaling methods can be used, although these methods

can add further sources of uncertainty (Auffhammer et al., 2013).

Several datasets on climate projections for North America, publicly available for download, include

climate variables that are downscaled to different grid resolutions (see Kim et al. (2022) for a

comparison of datasets for the CONUS). We get projections of climate variables over the CONUS

from the MACA v2 dataset, which is accessible at https://climate.nortwestknowledge.net/

MACA/. This dataset contains data from various GCMs of the Coupled Model Intercomparison

Project CMIP5, which have been downscaled using the Multivariate Adaptive Constructed Analogs

(MACA) approach.5 The MACA v2 dataset provides high-resolution (4 km) daily climate projec-

tions for the CONUS. This dataset is especially useful for analyzing the regional or local impacts of

climate change, such as on water resource management or agriculture, as it provides high–resolution

climate projections tailored for the United States. Another advantage of the MACA database is

that it offers a set of comparable model simulations derived from 20 downscaled GCMs (out of

the 23 CMIP5 GCMs) gathered into a Multi–Model Ensemble (MME).6 As no single model can

adequately describe the overall process of climate systems, relying on multiple downscaled GCMs

into a MME provides a more robust solution by generating climate forecasts based on a set of model

ensembles.

We obtain our climate projections by calculating an unweighted MME average, which assigns the

same weight to each climate model. This approach is preferred because it avoids subjective weight-

ing or selection criteria, thus increasing the reliability of climate projections. Additionally, an

unweighted MME average can be more robust to outliers and biases in individual models than

weighted schemes. Even, weighted schemes assigning more weight to models that perform well in

historical simulations can lead to overconfidence in their future projections, as they may not cap-

ture the full range of uncertainty. An unweighted approach avoids this potential bias and provides

a more comprehensive view of the range of possible outcomes (Houghton et al., 2001). However,

since the best way to handle multiple GCM projections remains a controversial issue, we perform

several tests in Appendix A to compare the performance of the MME average to the 20 GCMs. The

performance metrics clearly indicate that the MME average outperforms any individual model in

its ability to reproduce observed weather patterns. This result is consistent with the MME benefits

found in other multi–model ensemble studies (Peng et al., 2002; Kharin and Zwiers, 2002; Tebaldi

5More details of this statistical downscaling method can be found in Abatzoglou (2013).
6See Table A.1 in Appendix A for a description of the 20 downscaled GCMs in the MACA v2 dataset.

6



and Knutti, 2007).

To account for the uncertainty due to multiple projections from different GCMs, we also compare

the projections from the MME average to those from individual GCMs, without assigning any

weighting to the individual GCMs and independently of their relative performance to character-

ize the past climate at the scale of the CONUS. Figures 1.A to 1.C give a first impression of the

range of projected precipitation and temperature anomalies across the 20 downscaled GCMs. These

anomalies are calculated as deviations from their average over the reference period of 1950–2100.

Figure 1: Range of projected precipitation and temperature anomalies around the multi–model
ensemble average from 1950 to 2100, according to 20 MACA v2 downscaled GCMs and under the
RCP 8.5 scenario
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Note: Figures 1.A and 1.B illustrate the range of projected precipitation and temperature anomalies across the 20
different GCMs from the MACA v2 dataset (shaded areas) and around the multi-model ensemble average (solid
lines) from 1950 to 2100 over the CONUS. Figure 1.C shows the projected precipitation and temperature anomalies
from 1950 to 2100 for the top three corn producing states. These projections are also based on the 20 different GCMs
from the MACA v2 dataset and compared to their central tendency (red line).

The figures reveal significant uncertainty among the predictions from the different models, especially

for near–term projections and for variables with a low signal-to-noise ratio, such as precipitation.7

7Projecting changes in precipitation in a warmer climate is more complex because of uncertainty in projecting
changes in the large-scale circulation that plays an essential role in the formation of clouds and precipitation (Shep-
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This divergence in temperature and precipitation anomalies is also evident spatially. As shown in

Figure 1.C, there is a high level of disagreement on the future climate of the top 3 corn-producing

states among climate models and against their central tendency. These figures make it clear that it

is not appropriate to rely on a single or just a few GCMs when estimating the impacts of climate

change. Instead, all climate model outputs must be considered.

2.2. Quantifying past and future droughts

Many different drought indices have been developed, but their use has revealed several issues that

have led to the development of improved formulations. Firstly, it is commonly accepted that drought

indices must include precipitation in combination with other hydroclimatic variables (Mishra and

Singh, 2010). The inclusion of evapotranspiration is often considered an accurate way to capture

the multivariate nature of drought, along with the importance of incorporating temperature in

drought analysis (Vicente-Serrano et al., 2010). Secondly, the literature places particular emphasis

on standardized indices due to their ability to enable spatial and temporal comparisons, which is

essential for accurate drought analysis (Vicente-Serrano et al., 2010). Lastly, using a multi–scalar

index is also central, as it allows for determining the rarity and severity of drought events at any

time scale of interest (McKee et al., 1995).

The Standardized Precipitation Evapotranspiration Index (SPEI) developed by Vicente-Serrano

et al. (2010) is a drought index that meets these three criteria. It has been widely used in recent

years to evaluate drought patterns and their impacts on agriculture in the United States (Zipper

et al., 2016; Krakauer et al., 2019; Lu et al., 2020; Barai et al., 2021; Yaddanapudi and Mishra,

2022). Moreover, the literature has shown that this index has a higher capability than other drought

indices to capture drought impacts on a wide variety of crops and for a wide range of periods in

the south-central United States (Tian et al., 2018) and across the entire CONUS (Peña-Gallardo

et al., 2019). Therefore, we use this index in this study to measure drought severity and its future

changes under global warming over the CONUS.

The SPEI uses, as its input, a climatic water balance, defined as the difference between precipitation

and reference evapotranspiration.8 The method for deriving historical SPEI from the water balance

series involves three steps (see Vicente-Serrano et al. (2010); Begueŕıa et al. (2014)). First, water

balance series are accumulated at a chosen time scale (3, 6, or 12–months). Second, the accumu-

lated water balances at each grid cell are normalized by fitting them to a log-logistic probability

distribution. Finally, the SPEI values are obtained as the standardized values of the probabil-

herd, 2014). Furthermore, the CONUS is located between high–latitude regions, generally projected to become wetter
and the subtropical zone projected to become drier. There is, therefore, significant uncertainty about the sign and
magnitude of future anthropogenic changes to seasonal precipitation in a large part of the country.

8See Appendix B for the definition of reference evapotranspiration.
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ity distribution function of the accumulated water balance series, following the approximation of

Abramowitz and Stegun (1964). This standardization process ensures that the long–term mean of

the SPEI for each grid cell is zero and its variance is one. The long–term mean represents what can

be considered typical climate or normal weather conditions during a fixed and common reference

period. The current values of the SPEI are measured in standard deviation units and represent

weather anomalies relative to the reference period, which are comparable across space and time.

Negative values indicate drier conditions than the typical climate, while positive values denote wet-

ness in excess of normal conditions.

We provide a summary of the essential steps for the SPEI assessment.9 In this study, we choose a

3–month accumulation period to calculate the SPEI, as it is the most suitable time scale to detect

drought effects on crop yields (Peña-Gallardo et al., 2019; Santini et al., 2022). We calculate refer-

ence evapotranspiration using the American Society of Civil Engineers (ASCE) Penman–Monteith

formulation, as recommanded by the United Nations Food and Agriculture Organization (Allen

et al., 2006). We fit the historical accumulated water balances using maximum likelihood esti-

mation and normalize the resulting SPEI values using a three–parameter log–logistic probability

distribution, relative to the climate normals based on a reference period from 1979 to 2020. This

period of more than 30 consecutive years is long enough to accurately measure normal weather

conditions and associated weather anomalies.

To assess future climate conditions, we compute monthly accumulated climate balance series from

1979 to 2100 for each downscaled GCM. We derive the climate balance series using a MME ap-

proach by averaging the simulated reference evapotranspiration and precipitation from all models

and then calculating the difference between these two averaged series. Future SPEI values are

then calibrated with the parameters of the log–logistic distribution estimated from the SPEI series

computed over the reference period. This method allows the derivation of predicted changes in the

mean and the variance of future SPEI while preserving their historical distribution. Consequently,

the predicted SPEI will capture the overall shift caused by climate change. We forecast SPEI values

and derive future weather anomalies relative to the 1979-2020 reference period for two consecutive

30–year periods corresponding to a near (2020–2049) and more distant (2030–2059) future. These

two 30–year time horizons provide a suitable window for climate risk planning and accurate climate

forecasts. They correspond to a MME average temperature increase of +2◦C and +2.5◦C above

the pre–industrial level under the RCP 8.5 scenario.

Since we are interested in the effects of drought on agricultural outcomes, we compute county–level

historical and future SPEI that reflect drought severity in agricultural areas. To do this, we match

each SPEI grid cell value to agriculture production areas using the USDA’s Cropland Data Layer

9The method for calculating the SPEI is detailed in Appendix B.
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(CDL) hosted on CropScape.10 The CDL is an annual crop–specific land cover map produced from

satellite imagery with a resolution of 30m. It is used to determine which crops are being grown in

specific areas and assess patterns and trends in crop production across the CONUS. Since the CDL

is only available for limited states from 1997 to 2007, we assign the CDL data for the year 2008

to the previous SPEI values to ensure that data are comparable across counties and over time.11

We exclude counties with low and sparse agricultural lands (cropland or pasture/hay) based on

CDL counts of less than 10,000 acres (approximately 40 km²). This leaves us with 137 counties

with no agricultural land pixels, accounting for 4.4% of the counties in the CONUS. Since the CDL

and SPEI datasets have different spatial resolutions, we compute an intermediate logical layer (wi),

taking the value 1 if at least one parcel is observed within each SPEI data grid i and a missing value

otherwise.12 We then spatially aggregate monthly SPEI grid cell values at the county level. We use

a weighted spatial mean that considers the fraction of the cell covered by each county’s borders,

to obtain agricultural county-specific measures of relevant climate conditions. Finally, our analysis

focuses on the crop-growing season, typically from April to November, when climatic conditions

have the greatest impact on agricultural production.13 Yearly SPEI values are therefore computed

by averaging the 3–month SPEI monthly values over the crop growing season:

Dryc,t =
1

8

11∑
m=4

[
1

Ic

(
Ic∑
i=1

wi,t ×−SPEIi,m

)]
(1)

Where Ic is the number of cells included in the county c.

For readability, Dryc,t is computed in equation 1 using the opposite values of the SPEI, so that

positive values of Dryc,t indicate drier–than–normal conditions experienced in agricultural areas of

a county c during the crop-growing season of a year t. As such, a positive coefficient related to

this variable, when included as an explanatory variable in a regression, can be interpreted as the

effect of a 1 standard deviation increase in drought severity from the long–term mean occurring in

the agricultural areas of a county. The future climate is projected to be drier or wetter than the

climate of the reference period (1979–2020), depending on whether the projected values of Dryc,t

are positive or negative.

Maps A and B in Figure 2 show the geographical distribution of projected weather anomalies

10https://data.nal.usda.gov/dataset/cropscape-cropland-data-layer
11As generally acknowledged, the CDL is able to accurately identify major commodity crops, such as corn and

soybeans. However, some minor crops, such as alfalfa, may be incorrectly categorized as non-cultivated due to their
spectral similarity to non-cropland covers. According to Lark et al. (2021), specific classes can be aggregated into
broader landcover domains such as cropland or non-cropland to accommodate low accuracies.

12The maps in Figure A.2 (Appendix A) show the geographical distribution of the layers wi for the years 2008,
2012, and 2017.

13Refer to Appendix A, Figure A.3 to view the crop calendars for the United States.
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relative to the 1979–2020 reference period, based on the MME average over the CONUS. Drier–

than–normal conditions are projected to increase over the entire CONUS in both forecast horizons,

with droughts expected to be more severe in the distant future (2030–2059) than in the near future

(2020–2049). At the regional scale, most states should experience overall warming over both peri-

ods, but the severity of projected drought conditions would vary due to regional-specific climates

and aridity conditions. The most significant changes are expected to occur in the western United

States, where the drought index could increase by more than 0.4, which is significant, given the

thresholds of 1.0, 1.5, and 2.0 representing moderate, severe, and extreme drought conditions, re-

spectively. In contrast, New England should be the least exposed region to drier conditions. The

Heartland region should also experience drought conditions, although to a lesser extent than the

western United States. These findings are in line with the projections made by Ahmadalipour et al.

(2017). According to these authors, climate change may lead to a considerable aggravation in the

severity and extent of future droughts in the western United States, and a tendency toward more

frequent and intense summer droughts across the CONUS.

Figure 2: Future severity of droughts (as deviations from the reference period of 1979–2020) for
the near (2020–2049) and more distant (2030–2059) future, under the RCP 8.5 scenario, multi–
model ensemble average

2020−2049A 2030−2059B

Standard Deviation from 1979−2020 period

< 0 > 0 0.1 0.2 0.3 0.4 0.5 0.6−1.0

Note: Projected deviations in drought severity under the RCP 8.5 scenario across the CONUS over the near (2020–
2049) and more distant (2030–2059) future, using 1979–2020 as the reference period. The drought index is based on
SPEI computed at 3–month time scale and is calculated using the multi-model ensemble average. A positive value
indicates an increasing value of the drought index and more severe future droughts.

While climate change is expected to intensify drought conditions over the CONUS, the exact magni-

tude of this intensification remains uncertain due to differences in projections among the 20 GCMs.

Figure 3 shows that future SPEI are projected to increase more under several models, especially the

Hadley Models (HadG–EM2–ES and HadGEM2–CC), compared to the MME average, indicating
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an expected exposure of the CONUS to more severe drought events. In contrast, models such as

the Geophysical Fluid Dynamics Laboratory (GDLF–ESM2G, GDFL–ESMEM) and the Meteoro-

logical Research Institute of Japan (MRI–CGM3) project smaller or unchanged drier conditions.

The full range of projected SPEI over the CONUS spans from -0.03 (+0.04) to +0.56 (+0.70) for

the near (more distant) future, indicating significant climate model uncertainty.

Therefore, relying on the MME average can provide a more reliable estimate of future climate

conditions, as it helps to smooth out the idiosyncrasies of individual models. However, it is also

important to consider the full range of model predictions to get a comprehensive view of possible

future drought conditions and assess the uncertainty associated with these different climate model

projections (Burke et al., 2015).

Figure 3: Future intensity of droughts (as deviations from the reference period of 1979–2020) for
the near (2020–2049) and more distant (2030–2059) future, under the RCP 8.5 scenario and by
GCM

2020−2049 2030−2059

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

GDFL−ESM2M
MRI−CGCM3

GDFL−ESM2G
CNRM−CM5

IPSL−CM5B−LR
CSIRO−Mk3−6−0

inmcm4
BNU−ESM

MIROC5−ESM
canESM2

bcc−csm1−1
MME

bcc−csm1−1−m
MIROC5−CHEM

MIROC5
IPSL−CM5A−LR

CCSM4
NorESM1−M

IPSL−CM5A−MR
HadGEM2−CC
HadGEM2−ES

Standard deviation from 1979−2020

Note: The plots on the left (right) side show the distribution of future drought severity (as deviations from the
reference period of 1979–2020) for the near (more distant) future across 20 downscaled GCMs and the multi–model
ensemble average. See Table D.1 in Appendix D for a detailed overview of the results.
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3. Empirical framework

3.1. The sample

We construct a county-level panel dataset from Agricultural Censuses maintained by the National

Agricultural Statistics Service (NASS) of the USDA and for the following census years: 2002, 2007,

2012, and 2017.14 A county–level analysis is more appropriate to evaluate the potential benefits

of agricultural policy, since analyzing government payments at the individual farm level may re-

flect individual strategic choices and characteristics of the farm operation (Goodwin et al., 2011).

Additionally, it allows us to exploit the diversity of agricultural production patterns, the large

cross–county variation in observed and future weather patterns and the sensibility of agricultural

production to local climate across the CONUS.

US farm programs are updated about every 5 years through a comprehensive package of legislation

known as the Farm Bill. An important consideration when analyzing these programs is that the

amount of support they provide may vary greatly from year to year, as agricultural programs are

highly dependent on the market and weather conditions of each year (Goodwin et al., 2011). Our

analysis relies upon several census years of data (2002, 2007, 2012, and 2017 agricultural censuses),

which makes it easier to generalize our results. Additionally, there has been a significant change in

agricultural policy since the Farm and Agricultural Improvement and Reform (FAIR) Act of 1996,

which has shifted policy away from government involvement and toward more market–oriented

policies. By using data from the 2002 to 2017 census years, we are able to analyze federal farm

programs, which cover three Farm bills (2002, 2008, and 2014) and broadly share the same design.

We first extract government payment data from each census year, including loan deficiency pay-

ments, disaster payments, and all annual direct payments and counter-cyclical payments as defined

under the the 2002 and 2008 Farm bills, and those specified in the 2014 Agricultural Act (Agricul-

ture Risk Coverage and Price Loss Coverage). This definition only covers income support programs,

that are designed to stabilize farmers’ earnings through three specific program mechanisms: direct

payments, market loss assistance and counter–cyclical payments, and loan deficiency payments and

marketing loans (Goodwin et al., 2011). We, therefore, exclude programs from the Federal Crop

Insurance Program that provide subsidized insurance to mitigate risk in agriculture (Crane-Droesch

et al., 2019) and annual rental revenues from conservation programs designed to prompt changes

in land use or production practices (Claassen et al., 2007).15

We construct a measure of net returns from the market at a county level by taking the average

14The Census is conducted every five years and is administered to all farms and ranches (in rural or urban settings),
producing and potentially selling at least $US 1,000 of their products. The Census is the only source of detailed
county–level agricultural data collected, tabulated, and published using a uniform set of definitions and methodology.

15We also exclude Commodity Credit Corporation proceeds, and payments from state and local government agri-
cultural programs.
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difference between total agricultural sales receipts (excluding government payments) and total pro-

duction costs (including all expenses, marketing charges, hauling fees, other fees, and income taxes),

following Goodwin et al. (2011).

We calculate all sources of income at the county level and per operation.16 This is done by dividing

the total net returns from the market and income support payments from federal farm programs in

a specific county by the total number of operations in that county. To account for price changes and

ensure accurate comparisons over time, net returns from the market and income support payments

are deflated to 2011 constant dollars using the index of agricultural prices.

Table 1 reports county–level summary statistics for the census years 2002, 2007, 2012, and 2017.

After considering all missing observations due to disclosure controls and removing singleton observa-

tions, we obtain an unbalanced panel of 9607 counties, which represents an average time dimension

of 3.56 years for 2696 counties.

Table 1: Summary descriptive statistics, CONUS

2002 2007 2012 2017

Sample

Number of agricultural counties 2,417 2,452 2,404 2,334

Number of operations 1,861,812 1,940,867 1,833,158 1,706,287

Mean number of op. by county 770.30 791.54 762.54 731.06

Income support payments ($US 2011 prices)

Mean payments 3,348,811 2,785,817 2,364,118 2,995,012

Median payments 2,098,418 1,570,312 1,558,040 1,715,591

Mean payment per operation 4,347.41 3,519.49 3,100.31 4,096.81

Net returns from the market ($US 2011 prices)

Mean net returns 14,017,688 21,842,136 20,985,012 21,075,026

Median net returns 3,151,142 8,774,639 8,076,118 8,456,452

Mean net returns per operation 18,197.70 27,594.48 27,519.88 28,828.04

Note: Income support payments and net returns from the market are adjusted for agricultural prices fluctuations
using the agricultural price index with base year 2011. An agricultural county corresponds to a county with more
than 10,000 acres ≈ 40 km2 agricultural land (cropland or pasture/hay).

From 2002 to 2017, the number of farm operations per county varied between 731 and 790, with a

downward trend since 2007. The average net returns per operation increased from $US 18,197 to

$US 28,828. The average income support payments per operation was more variable, reaching $US

4,347, $US 3,519, $US 3,100, and $US 4,097 in 2002, 2007, 2012, and 2017, respectively.

16Defining net returns and government payments per operation helps to ensure that the measurement is not affected
by the differences in county sizes across the United States.
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Table 2 presents statistics on the frequency of drought events, classified by severity, among the

various climate regions of the United States from 2002 to 2017.

Table 2: Relative frequency of wetness/dryness events over the CONUS distributed by Köppen-
Geiger climate classes, census years (from 2002 to 2017)

% of total CONUS counties

Weather conditions
Köppen–Geiger Census years

B C D 2002 2007 2012 2017

Dry ≥ 1 Dry 23.85 19.86 21.34 5.41 27.78 49.35 0.16

0.5 ≤ Dry < 1 Slightly dry 23.19 17.55 18.00 17.43 23.61 27.62 4.82

−0.5 ≤ Dry < 0.5 Near normal 41.80 49.42 49.36 66.43 36.57 20.19 71.27

−1 ≤ Dry < −0.5 Slightly wet 8.19 11.20 8.78 9.22 8.53 2.21 20.81

Dry ≤ −1 Wet 2.62 1.56 2.45 1.30 3.84 0.10 2.54

Note: Positive (negative) values of Dry indicates drier (wetter) conditions. Frequencies by hydro–climatic conditions
are calculated at the county level over the CONUS for each census year. Dominant regional climate zones B, C and
D are defined according to the Köppen–Geiger climate classification (see Peel et al. (2007) for a description of the
classification). Zone B: arid or dry zone, Zone C: warm/mild temperate zone, Zone D: continental zone.

The severity of drought episodes has fluctuated throughout the studied period. In 2012, the United

States experienced its most intense drought since the 1950s (Rippey, 2015), with approximately

50% of its land area affected. In contrast, 2002 and 2017 saw much milder conditions, with less

than 23% and 6% of US counties in drought, respectively. Overall, normal weather conditions pre-

vailed on average and drought events were evenly distributed across all climate zones. This provides

evidence that our study will not be affected by sample–selection bias.

3.2. Identification and empirical strategy

The primary goal of our analysis is to assess by how much income support payments from federal

farm programs increase in a county when the net returns of this county decrease due to drier–than–

normal conditions. For a county c, the net cash farm income (CASHc) corresponds to the sum of

the net returns from the sale of agricultural commodities (INCc) and the income support payments

from federal farm programs (GOVc):

∆CASHc = ∆INCc +∆GOVc (2)

Let income support payments be a function of net returns, so that every 1 percent decrease in net

returns results in a β percent increase in income support payments. That is,

β = −∆GOVc/GOVc

∆INCc/INCc
(3)

15



∆CASHc = λ∆INCc with λ = 1− β × GOVc

INCc
(4)

Equation 4 illustrates the income–stabilization capacity of income support payments. It tells us

that, if a county experiences a negative one-dollar shock to its net returns, its net cash farm income

will decrease by less than one dollar (1 − β × GOVc/INCc cents). Our empirical strategy is then

to estimate the elasticity β using county-level data with the following empirical specification:

GOVc,t = α+ βINCc,t + ϵc,t (5)

where GOVc,t and INCc,t refer to income support payments and net returns per operation of a

county c at a given date t, respectively.

To ensure that we are not picking up effects at the US level, we consider county-level income support

payments and net returns relative to their CONUS level (GOVUS,t and INCUS,t). Identification

comes, therefore, only from within-county variations, eliminating any concerns of time-trending

unobservables at the federal level.17 The modified equation is therefore the following:

Govc,t = α+ βIncc,t + ϵc,t (6)

where Govc,t = GOVc,t/GOVUS,t and Incc,t = INCc,t/INCUS,t.

Since the relevant variables are now expressed in relative terms, the coefficient β measures the

percentage change in a county’s income support payments (relative to the rest of the CONUS)

when its net returns from the market change by 1%, holding constant the changes in CONUS

aggregate net returns. The magnitude of β represents, therefore, the average size of the income–

stabilization effect provided by income support payments.

Because our main goal is to assess the capacity of income support payments to offset income losses

caused by drought conditions, we employ an instrumental variables (IV) approach and use our

drought index time series, as defined in equation 1, as excluded instruments for net returns. This

approach allows us to focus on income support payments that are specifically meant to offset losses

caused by drought events. Moreover, it addresses endogeneity concerns inherent to policy variables.

Payments from federal farm programs can shape farm income, making reverse causality a likely

17Moreover, reasoning in relative terms enables us to deal with counties characterized by a negative net return
(33.1% of all observations). The conventional technique of replacing negative values by missing values with for
negative values cannot be employed in our study. Negative values are taken into account when calculating net
returns and therefore impact federal payments. Consequently, using the log transformation is not feasible. Adding a
constant value to the data would also be inappropriate, by creating a problem of adequacy with what would happen
with government payments. Finally, reasoning in relative terms allows us to mitigate the differences between counties
due to price differences and to consider the distribution of the total budget among agricultural producers.
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feature of our specification (Westcott and Young, 2004; Weber and Key, 2012).18 For instance,

areas that receive more payments can experience an increase in crop yields and higher subsequent

net returns from the market. Such endogeneity concerns motivate an IV approach to estimate the

income–stabilizing capacity of income support payments more reliably.

However, instrumenting net returns using an index of drought severity raises two issues. First, the

choice of net returns as a proxy of farm incomes implies omitting storage activities that farmers may

employ to smooth out the impact of drought on their income over time. Fisher et al. (2012) points

out that this may lead to an endogeneity bias toward zero. While this argument is persuasive,

a careful examination of storage activities would require an extended panel dataset with more

comprehensive information on farmer behavior that the census data do not provide. Additionally,

including temporal fixed effects may partially address this issue. The other concern is that droughts

can affect other outcomes that may also influence income support payments. Because of this, two–

stage least squares (2SLS) estimates based on our instruments can be biased as the assumption

that droughts only affect payments from federal farm programs through their effect on net returns

may be no more valid. To address this issue, we include relevant control variables, Xc,t, in our

specification to make the exclusion restriction assumption plausible. First, we control for the

proportion of agricultural irrigated land. Indeed, omitting the irrigation process usually results in

an important bias, leading to less damaging projected climate impact estimates for US agriculture,

as irrigated yields tend to be higher and less variable than rainfed yields (Schlenker et al., 2005). We

also control for the importance of cropland areas as a percentage of total agricultural land. Federal

farm programs target certain field crops (e.g., corn, soybeans, and wheat) and may therefore provide

higher payments to areas where these crops are grown. Finally, we account for the concentration

of agricultural production at the county level. Drought episodes can impact the concentration

of agricultural production, since risk mitigation measures, such as diversifying production across

crops, may be less effective on smaller farms (Ramcharan, 2010). As a result, droughts, by altering

the distribution of farm sizes, can influence income support payments.19

We therefore estimate a two-stage model of the following form:

Incc,t = ac +B′Dryc,t + ω′Xc,t + ϕyeart + ec,t (7)

and

Govc,t = ac + βÎncc,t + Γ
′
Xc,t + γyeart + υc,t (8)

18Even decoupled payments may have some allocative (”coupling“) effects due to uncertainty, imperfect credit,
labor and land markets, and farmer expectations for future payments (see Bhaskar and Beghin (2009) for detailed
mechanisms).

19Table C.1 in Appendix C presents the summary descriptive statistics of the control variables.
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where counties are indexed by c and years are indexed by t. Incc,t is county’s c net returns from the

market relative to the total amount at the CONUS level (in % of total $US per 1000 operations);

Govc,t is county’s c income support payments relative to the total amount at the CONUS level (in

% of total $US per 1000 operations); Xc,t is the vector of included instruments. ac captures time–

invariant county factors and yeart captures the aggregate time effect in period t that is common

among all counties.

Identification in this two–stage model arises from drought measures, indicated by the vector Dryc,t

in equation 7, calculated as contemporary values of monthly negative SPEI aggregated over the

crop–growing season (as in equation 1) and used as instrumental variables for net returns from

the market. The parameter B′ measures net returns’ sensitivity to drought and is expected to be

negative.20 In equation 8, the parameter of interest is β, which measures the capacity of income

support payments to mitigate net return losses caused by drier conditions. β is expected to be

negative if these payments are effective.

4. Results

4.1. Results for the CONUS

Table 3 presents our results for the CONUS. The first-stage conditional correlations suggest that

drier–than–normal conditions negatively impact net returns per operation. The base specification in

column 1 shows that the drought index (Dry) is negative and significant. The evidence also suggests

that lower net returns are significantly associated with higher income support payments. The IV

baseline estimate in column 2 implies that a 1% decrease in a county’s net returns relative to the

CONUS leads to an increase of 0.36% in income support payments. The results of the hypothesis

tests at the bottom of Table 3 show that our instrument meets the exclusion assumptions and

provides reliable and unbiased estimates, by successfully addressing the issue of endogeneity.21

The estimated coefficients for the control variables (columns 3 and 4) are in close agreement with

existing literature, suggesting that net returns from the market are positively correlated with land

concentration, irrigation, and cropland areas. Additionally, land concentration and cropland areas

also positively affect income support payments (Schlenker et al., 2005; Ramcharan, 2010). Our

findings are little changed when the control variables are added to the model, supporting our

assumption that drought effects on income support payments work primarily through changes in

net returns.

20Following Burke and Emerick (2016), we choose to specify a linear impact of weather. These authors build on
the argument of McIntosh and Schlenker (2006) that including a quadratic term in the standard panel fixed effects
model allows unit means to re-enter the estimation and can therefore raise omitted variables concerns.

21The Kleibergen–Paap rk Wald F statistic suggests that our instrument is strong enough to predict net returns
from the market. The Kleibergen–Paap LM statistic is also significant and rejects the null hypothesis of under–
identification.
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Table 3: Benchmark results, CONUS average, 2002-2017

Without control variables With control variables

1st stage 2nd stage 1st stage 2nd stage

(1) (2) (3) (4)

Dry -0.0069∗∗∗ -0.0071∗∗∗

(0.0014) (0.0013)

Inc -0.3621∗∗∗ -0.3569∗∗∗

(0.1325) (0.1260)

Irrigation 0.0038∗∗∗ 0.0014∗

(0.0009) (0.0008)

Field crop 0.0317∗∗∗ 0.0280∗∗∗

(0.0089) (0.0059)

Concentration 0.0145∗∗ 0.0358∗∗∗

(0.0060) (0.0048)

N 9607 9607

F-stat 7.4728 17.886

KP F-stat 26.194 27.827

KP-LM test 25.794∗∗∗ 27.390∗∗∗

Note: The excluded instrument is the drought index (equation 1). A rise in this index reflects drier conditions.
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively. The first-stage F-statistic is used
to investigate the strength of the instruments. The Kleibergen and Paap Wald rk F statistic tests if the excluded
instruments are weak (weak identification). The null hypothesis of the Kleibergen–Paap rk LM statistic, KP LM-stat,
is that the equation is under–identified. Robust standard errors clustered by Federal Information Processing System
(FIPS) codes are reported in parenthesis.

We conduct a robustness analysis to evaluate the stability and reliability of our estimated coeffi-

cients. First, we account for a potential persistent effect of droughts by including a temporal effect of

our drought index. The results show that the first lag of our drought index is insignificant, while the

variable’s coefficient remains negative and significant contemporaneously, suggesting that contem-

poraneous drier–than–normal conditions explain most of the observed variability in net returns per

operation. Lower net returns are still significantly associated with higher income support payments,

indicating that these payments absorb 32% of income losses due to an adverse drought episode (see

Table C.2 in Appendix C). We also perform a placebo test, dividing counties into metropolitan and

non-metropolitan based on Rural–Urban Continuum Codes (2013).22 As expected, our findings

22https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx. The Rural–Urban Contin-
uum Codes (RUCC) is a classification system developed by the USDA to categorize US counties into different
levels of rurality or urbanization. The codes are based on a county’s population size, degree of urbanization, and
proximity to larger urban areas. The system assigns each county a code ranging from 1 to 9, with 1 representing the
most urban counties and 9 representing the most rural counties. We consider counties as metropolitan if they belong
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indicate that the sensitivity of net returns to drought events and the income-stabilizing effect of

income support payments are insignificant in metropolitan areas where farming is relatively unim-

portant. In contrast, the results for non-metropolitan areas are comparable to the CONUS average

(see Table C.2 in Appendix C). Finally, we test the sensitivity of our estimates using an alter-

native drought index, the Palmer Drought Severity Index (PDSI) developed by Palmer (1965).23

The results from this index largely corroborate those from our benchmark index (see Table C.3 in

Appendix C).

4.2. Heterogeneity across the CONUS

Our robustness analysis confirms that droughts have a significant impact on net returns, and income

support payments play an important role in mitigating 36% of the associated income losses at the

CONUS level. However, these results do not take into consideration the effects of more localized

climate conditions, which can be masked at the CONUS level, due to the diversity of crops produced

(Kuwayama et al., 2019). To accurately capture the heterogeneous impact of drought conditions,

we extend our analysis to include several major commodity crops that account for 90% of total US

crop production.

We utilize the proportional scores of county acreage values for 22 key crops from Hammond Wagner

et al. (2019). For each county, we sum up these scores to define three agricultural crop production

categories based on seven main commodity crops: (i) corn and soybeans, (ii) hay (alfalfa and

grasses), and (iii) wheat, barley, and cotton. By doing so, we identify the geographic specialization

in the production of these major commodity crops at the county level across the CONUS, considering

the share of each county in the production of each major crop category. This approach is more

advantageous than relying on regional divisions, as the definition of agricultural regions can be

problematic. Some counties may contribute significantly to the production of a crop type without

belonging to a dominant region, and there is often disagreement about how to define agricultural

regions (like the Corn Belt). By considering county-level crop acreage shares, we minimize the

potential for such biases related to regional classifications and can better apprehend the range of

crops produced and agricultural practices (e.g., crop rotation) at a local level.

Figure 4 shows the resulting geographic specialization in crop categories across US counties. Our

categorization reflects the main agricultural areas of specialization in the United States, with corn

and soybeans primarily grown in the Midwest, and wheat and barley mainly cultivated in the

Great Plains and Columbia River Basin. In contrast, hay production is more widely distributed

throughout the United States, with significant production in various western and southeastern

to the first two categories, i.e., in case of metropolitan areas with a population of more than 250,000.
23We use the PDSI as it is widely used and the climate variables necessary for its calculation are available in the

gridMET dataset.
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states. We further confirm the accuracy of our categorization through a Spearman’s correlation

analysis between the weights of the different crops, with significant results at the 95% probability

level.24

Figure 4: Typology of agricultural crop production in the United States and importance of main
major commodities acres by county, 2012

Corn grain
Soybeans
Alfalfa Hay
Other hay
Wheat
Barley
Cotton
Other crops
< 10,000 acres

Crop production typologyA

Corn & Soybeans Alfalfa & Grass hay Wheat, Barley & Cotton

Weight − Proportional Score

< 0.2 > 0.2 > 0.4 > 0.6 > 0.8

B

Note: Map A shows the distribution of crop acreage across the United States, as calculated by Hammond Wagner
et al. (2019). Map B shows the spatial distribution of main commodity crop-specific shares, which are calculated by
adding up the proportional acreage scores of each major crop in each crop category.

The proportions of major crop commodities produced by each county are then used as probability

24We use the Spearman’s correlation instead of the Pearson’s linear correlation because our data is not normally
distributed. The results of the pairwise correlations are shown in Table C.4 in Appendix C. We find one inverse
association between barley and cotton among all crops that belong to the same category. We repeat our estimations
without including cotton in our categorization. The results, which are available upon request from the authors,
remain unchanged.
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weights to estimate the model in equations 7 and 8. Table 4 reports the results of the weighted

2SLS estimates. They show the varying degree of drought sensitivity among crops, with wheat,

barley and cotton exhibiting the highest sensitivity. They also provide evidence of the capacity

of income support payments to smooth net returns losses due to drought episodes for all major

commodity crops, highlighting the importance of support for key crop producers in US farm policy.

Specifically, the coefficient β is always significant and negative, with values ranging from -0.28 to

-0.35 among the three crop categories.

Table 4: Results for major commodity crops, weighted 2SLS, 2002-2017

Corn & Soybean Alfalfa & Grass hay Wheat, Barley & Cotton

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

(1) (2) (3) (4) (5) (6)

Dry -0.0096∗∗∗ -0.0062∗∗∗ -0.0144∗∗∗

(0.0012) (0.0010) (0.0025)

Inc -0.3473∗∗∗ -0.3451∗∗∗ -0.2766∗∗

(0.0876) (0.0842) (0.1169)

Irrigation 0.0024∗∗ 0.0006 0.0024∗∗∗ 0.0014∗∗∗ 0.0038∗∗ 0.0004

(0.0011) (0.0007) (0.0009) (0.0005) (0.0019) (0.0012)

Field crop 0.0206∗∗ 0.0287∗∗∗ 0.0254∗∗∗ 0.0202∗∗∗ 0.0233∗∗ 0.0285∗∗∗

(0.0093) (0.0060) (0.0088) (0.0041) (0.0117) (0.0085)

Concentration 0.0100 0.0361∗∗∗ 0.0202∗∗ 0.0192∗∗∗ 0.0209∗∗ 0.0513∗∗∗

(0.0070) (0.0057) (0.0067) (0.0038) (0.0095) (0.0082)

N 8687 9377 8750

F–stat 15.782 17.59 13.230

KP F–stat 58.311 43.569 32.872

KP–LM test 53.415∗∗∗ 42.374∗∗∗ 31.803∗∗∗

Note: The excluded instrument is the drought index (equation 1). A rise in this index reflects drier conditions.
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively. The first-stage F-statistic is used
to investigate the strength of the instruments. The Kleibergen and Paap Wald rk F statistic tests if the excluded
instruments are weak (weak identification). The null hypothesis of the Kleibergen–Paap rk LM statistic, KP LM–
stat, is that the equation is underidentified. Robust standard errors clustered by Federal Information Processing
System (FIPS) codes are reported in parenthesis.
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From these estimates, we deduce the average loss in net returns in $US per operation due to a one-

standard deviation increase in the drought index and the subsequent average increase in income

support payments in $US per operation.25 Figure 5 shows these predicted economic outcomes,

for both the entire CONUS (for any crop category) and individual crop categories. To accurately

represent crop production across the entire CONUS, the outcomes for each crop category are cal-

culated by averaging predictions for counties located in areas where the crop category is dominant,

as depicted by map A in Figure 4 (turquoise bars), and by their relative share in total cultivated

areas across the entire CONUS (green bars).

The amount of income support payments per operation in response of drought conditions varies

among crop categories. This variation comes from two sources: the sensitivity of crops to drought

conditions and the income-stabilizing capacity of income support payments. For instance, alfalfa

and grass hay, which are less sensitive to drought conditions, exhibit the lowest income support

payment per operation of $US 32.1 (2011 prices). In contrast, corn and soybean have the highest

level of income support payments per operation ($US 70.7 2011 prices) due to a greater capacity

of these payments to mitigate net returns’ losses caused by drought. Due to an acreage-size effect,

predicted income losses and income support payments for the CONUS are clearly tied to corn and

soybean-producing areas, which account for about 50% of the total outcomes. Lastly, crop areas

that are more sensitive to drought conditions do not necessarily have a higher capacity for income

stabilization through income support payments. Instead, the degree of income–stabilization is more

closely related to the percentage of cultivated areas across the entire CONUS, mirroring the current

design of the US agricultural policy, with payments from federal farm programs mainly based on

acres historically planted to program crops (“base acres”) and cropping patterns.

25The coefficient β measures the effect of a 1% drop in a county’s net returns, caused by drier–than–normal
conditions on income support payments that the county receives in comparison to the CONUS. When average cash
incomes decrease by one–dollar, average income support payments increase by β̂ × Gov/Înc.

23



Figure 5: Predicted losses in net returns and increases in income support payments due to drought
conditions for the CONUS and crop categories, average over the 2002–2017 period
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Note: The bar graphs show average predicted losses in net returns and increases in net income support payments
due to drought conditions for the CONUS level and crop categories from 2002–2017. The turquoise bars indicate
the average predictions for dominant production areas. The green bars show the average predictions weighted by
acreage for all cultivated areas across the entire CONUS. The gray bars denote the size of net returns’ sensitivity
to drought events (× 100) and the percentage of income stabilization provided by income support payments for the
CONUS and crop categories derived from our estimate results.

4.3. Regression uncertainty

Our estimated parameters based on historical data provide insights into the relationship between

net returns and income support payments under existing climate conditions. They also serve as

benchmarks for evaluating the expected costs of mitigating farm income losses due to drier condi-

tions under climate change. As such, it is essential to fully grasp the uncertainties surrounding these
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parameters due to their implications on policy recommendations. Indeed, without a reliable assess-

ment of the uncertainty surrounding average estimates, the costs of stabilizing farm incomes may be

inconsistent. In addition, estimating these uncertainties can play an essential role in identifying po-

tential risks and formulating contingency plans, ultimately fostering more effective decision-making

in agricultural management.

The traditional way to estimate the uncertainty of regression coefficients is to use parametric stan-

dard errors, which are based on the assumption that errors follow a normal distribution. However,

this assumption may not always be valid, leading to incorrect assessments of the standard errors. To

ascertain the statistical uncertainty of our mean estimates, we estimate block bootstrap regression

coefficients from our main specifications, for both the CONUS and crop categories. We generate a

distribution of estimated parameters and their corresponding confidence intervals based on 10,000

repetitions by repeatedly resampling the data (with replacement) and clustering the resampled data

into groups at the county level.

The results from the bootstrap regression analysis are reported in Table 5.26 They show low mean

bias, indicating that our model accurately estimates the coefficients for net returns’ sensitivity

to drought (Dry) and the income–stabilization capacity of income support payments (Inc). Sen-

sitivities of net returns to drought are notably robust, as demonstrated by the close alignment

between bias–corrected and accelerated confidence intervals (BCa) derived from bootstrapped es-

timates and the analytical confidence intervals. However, the bootstrapped confidence intervals for

income–stabilization capacities of income support payments exhibit a noticeable downward shift.

This shift toward more negative values suggests that the distribution of these coefficients deviates

from what was initially expected using the traditional parametric approach. Consequently, this

affects the level of confidence associated with these coefficients and ultimately the predicted values

of income support payments.

Figure 6 shows the distribution of bootstrapped estimated income support payments by operation

and 95% BCa empirical confidence intervals for the CONUS and crop categories. For compari-

son, the graphs also show the distributions that are implied by the estimated coefficients and their

standard errors (assuming normality) from our parametric estimations. The uncertainty in income-

stabilization coefficients from block bootstrap estimates results in a wider range of plausible values

for income support payments mainly located in the upper part of the distribution. Indeed, while

the average predicted values estimated from the resampled data and parametric estimates are close,

their distributions exhibit different shapes. The bootstrapped estimates are slightly more skewed

to the right, indicating a higher probability of observing larger-than-average predicted values of

income support payments.

26The complete results from the block bootstrap regressions are available upon request.
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Table 5: Non–parametric bootstrapped estimates at the CONUS level and by crop categories, 2002–2017

CONUS level
Crop categories

Corn & Soybean Alfalfa & Grass hay Wheat, Barley & Cotton

Dry Inc Dry Inc Dry Inc Dry Inc

Coefficients

Mean estimate -0.00747 -0.3488 -0.0096 -0.3473 -0.0064 -0.3472 -0.0147 -0.2799

Median estimate -0.00750 -0.3368 -0.0098 -0.3386 -0.0064 -0.3373 -0.0147 -0.2695

Bias -3.952e-04 8.009e-03 -1.527e-4 1.642e-3 -1.463e-04 -2.078e-03 -3.183e-4 -3.296e-3

Standard errors

Bootstrapped 0.00139 0.1200 0.0014 0.0961 0.00103 0.0864 0.00248 0.1069

Asymptotic 0.00134 0.1260 0.0012 0.0876 0.00095 0.0842 0.00250 0.1169

Confidence Intervals (95%)

Analytical
Lower -0.0097 -0.6039 -0.0123 -0.5374 -0.0081 -0.5101 -0.0192 -0.5057

Upper -0.0044 -0.1098 -0.0067 -0.1605 -0.0044 -0.1800 -0.0094 -0.0475

Percentile
Lower -0.0102 -0.6201 -0.0125 -0.5533 -0.0084 -0.5467 -0.0194 -0.5236

Upper -0.0048 -0.1495 -0.0070 -0.1745 -0.0044 -0.2063 -0.0098 -0.0982

BCa
Lower -0.0094 -0.6884 -0.0122 -0.5806 -0.0081 -0.5729 -0.0187 -0.5451

Upper -0.0039 -0.1788 -0.0067 -0.1899 -0.0041 -0.2192 -0.009 -0.109

Note: Mean and median estimated coefficients are retrieved from the coefficient distributions obtain from 10,000 replications. Asymptotic Standard
errors and 95% analytical confidence intervals are shown for the sake of comparison. 95% confidence intervals calculated from block bootstrap regression
are obtain using the percentile method and the Bias Corrected and accelerated method (BCa).
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Figure 6: Statistical uncertainty surrounding estimated income support payments, average over
the 2002–2017 period
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Note: The black dotted lines represent the BCa 95% confidence intervals (CI) calculated. The mean predictions (red
dotted lines) as well as the entire distribution of predicted income support payments obtained at the county level from
block bootstrapped estimates (with 10,000 repetitions) are calculated from counties producing predominantly at least
one of the crops belonging to the category. The orange curve represents the predicted income support distribution
estimated from the parametric model. The predicted mean income support payments and the associated confidence
intervals are the following: CONUS $US 54.8 per operation [95% CI: -178.083 ; 400.121]; corn and soybean: $US
70.7 per operation [95% CI: -138.745 ; 424.282]; alfalfa and grass hay: $US 32.1 per operation, [95% CI: -111.502 ;
266.286] ; wheat, barley, and cotton: $US 39.8 per operation [95% CI: -190.014 ; 367.150].

Overall, our findings suggest that our mean estimates can be used as unbiased benchmarks for

assessing the potential impacts of climate change. Moreover, using non-parametric bootstrapped

estimates provides a more accurate assessment of the possible extreme values in the cost of smooth-

ing income losses caused by drought events. A more accurate apprehension of these costs for the

whole CONUS and major commodity crops is especially relevant in predicting their future trends

under climate change, as the effects of climate change are also uncertain and can have far-reaching

impacts.

27



5. The cost of stabilizing farm incomes under climate change

Our final empirical exercise aims to quantify how much additional income support payments would

be needed to maintain their income stabilization capacity under global warming. Accordingly, we

compare the cost of stabilizing farm incomes when counties are subject to their observed 2002–2017

climate, with the cost that would be observed if they experience future climate conditions from

2020–2049 and 2030–2059 under the RCP 8.5 scenario.

5.1. Empirical Implementation

We first develop “counterfactual” drought index time series wherein drought events will occur in

the future by using projected drought index data for each county over the periods 2020–2049 and

2030–2059. Formally, Dryc,t represents the drought index value in a county c at time t during the

studied period (2002-2017), and ∆Dryc,h is the future average change in hydro–climatic conditions

based on the RCP 8.5 scenario, where h is the forecast horizon.

Denoting the counterfactual drought conditions for any county c asDryc,t+∆Dryc,h, we can deduce

the associated change in net returns from the market due to climate change:27

∆Încc,t = B̂′ (Dryc,t +∆Dryc,h)− B̂′Dryc,t (9)

The counterfactual level of income support payments that would be needed to offset the impact of

future drought conditions on net returns can thus be derived as follows:

Govc,t +∆Govc,h = β̂
(
B̂′Dryc,t +∆Încc,h

)
(10)

Most studies that assess the economic impacts of climate change use mean regression coefficients

from parametric regression models and an average from multiple climate models to project impacts

of predicted climate change. Instead of relying on these two common simplifications, we follow

the recommendation of Burke et al. (2015) and account for both the uncertainty in the regression

coefficients (statistical uncertainty) and the uncertainty in the climate models (climate uncertainty)

when projecting future income support payments.

To do so, we consider the non-parametric bootstrapped coefficients of our main specification and

climate projections from the CMIP5 20 downscaled GCMs to estimate a range of possible future

drought conditions and income support payments levels under the RCP 8.5 scenario. We then

compare three sets of projections to determine the impact of uncertainties in both the regression

coefficients and the climate models on projected income support payments for the CONUS and each

27Projected counties net returns and income support payments levels are treated as nuisance parameters and are
absorbed by multiple fixed effects and controls in equations 7 and 8.
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crop category. Our first set of projections (a) relies on fixed changes in climate conditions projected

with the MME average, while the regression coefficients for both the sensitivity of net returns to

drought and the income–stabilization capacity of income support payments are allowed to vary. Our

second set of projections (b) accounts for uncertainty in the climate models by allowing the climate

projections to vary between the minimum and maximum drought projected values, while keeping

the regression coefficients at their point estimates. In our third set of projections (c), we consider

regression coefficients and climate model uncertainties, by allowing both climate projections and

regression coefficients to vary.

5.2. Projections of income support payments

Figure 7 shows the projected income support payments for the CONUS and crop categories for the

near (2020–2049) and more distant (2030–2059) future according to our first set of projections. The

graphs also include the predicted levels of income support during the studied period (2002–2017)

for comparison.

The values shift markedly to the right over time, indicating a shift in income support payments

to larger amounts per operation. Precisely, under the RCP 8.5 emissions scenario, income support

payments at the CONUS level are forecasted to reach an average of $US 99 and $US 116 (2011

prices) per operation with drought conditions projected over 2020–2049 and 2030–2059, compared

to $US 55 (2011 prices) per operation over the studied period (2002–2017). Our mean estimates

imply that income support payments per operation would be about 111% higher relative to the

2002–2017 period if future climate conditions over 2030-2059 prevailed. Wheat, barley, and cotton

are expected to see the most significant growth in income support payments over both forecast

periods, with increases of 115% for 2020–2049 and 156% for 2030–2059. Alfalfa and grass hay are

also expected to see significant growth, with increases of 97% for 2020–2049 and 129% for 2030–

2059. Despite a relatively lower projected growth rate in income support payments (+55% for

2020–2049 and +75% for 2030–2059), corn and soybean are expected to remain the most subsidized

crops under climate change. Although their contribution to the total cost is projected to decrease,

they should still account for more than 46% of future income support payments.
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Figure 7: Projected income support payments at the CONUS level and by crop categories, multi-
model ensemble average
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Note: The predicted values of income support payments are similar to those in Figure 5. Projected values on
income support payments are based on fixed changes in climate conditions projected with the multi–model ensemble
average, while regression coefficients for both net returns’ sensitivity to drought and the income–stabilization capacity
of income support payments are allowed to take any value within the 95% confidence intervals obtained from non–
parametric bootstrapped estimates. The turquoise bars indicate the average predictions for dominant production
areas. The green bars show the average predictions weighted by acreage for all cultivated areas across the entire
CONUS.

We further analyze the influence of uncertainty on our projected distributions of income support

payments, specifically investigating whether the uncertainty is uniformly distributed or confined to

observations at the tails of the distribution. Table 6 presents information on the statistical sig-

nificance of the mean differences between the sample distributions derived from our three sets of

projections that account for (a) statistical uncertainty (uncertainty in the regression coefficients), (b)
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climate uncertainty (uncertainty in the climate models), and (c) both uncertainties, respectively.28

By comparing these three distinct sample distributions, we systematically assess the relative con-

tributions of each type of uncertainty to the overall variability in our estimates.

The differences between the sample distributions (b) and (a) indicate that climate uncertainty can

significantly impact our average projections of income support payments.29 The comparison re-

veals a strongly significant difference in means, even after trimming extreme values, with varying

effects depending on the considered crop category. For wheat, barley, and cotton, the comparison of

sample distributions between (b) and (a) shows a negative difference in means, indicating that the

overall average of distribution after accounting for climate uncertainty is lower than that of distri-

bution after accounting for statistical uncertainty. However, the slightly positive but not significant

trimmed mean difference, which excludes extreme values, suggests that the central tendencies of

the two distributions are more similar. In contrast, for the other crop categories –corn and soybean,

and alfalfa and grass hay–, accounting for climate uncertainty leads to notable differences in the

central tendency of our estimates. The comparison between (b) and (a) displays a positive differ-

ence in means, with the mean difference becoming even greater and significant after accounting for

extreme values. The central tendency between the two distributions is, therefore, different and the

difference becomes even more pronounced when considering extreme values.

For all crop categories, the comparison of sample distributions between (c) and (a) shows a dif-

ference in means positive and strongly significant, including the trimmed mean difference. The

combined effect of both statistical and climate uncertainties leads therefore to a notable difference

in central tendency compared to considering only statistical uncertainty (sample distribution a),

even after excluding extreme values. Moreover, the combined influence of statistical and climate

uncertainties on the overall variability of the estimates is not simply additive. Examining the dif-

ferences in non–trimmed and trimmed means between our different sets of projections highlights

that the cumulative effects of these uncertainties (sample distribution c) cannot be solely explained

by the straightforward sum of their individual contributions (sample distributions a and b). This

non-additive nature may stem from interactions or synergistic relationships between statistical and

climate uncertainties, which in turn cause distinct impacts on the central tendency and distribution

of the estimated values when considered together.

28To ascertain if extreme values are influencing our overall findings, we calculate the mean differences by incorpo-
rating all data points (non-trimmed mean differences) and by excluding the outer 10% of the data as outliers (10%
trimmed mean differences), thus providing a more comprehensive statistical assessment of the central tendency in
each sample distribution.

29See Table D.2 in Appendix D for projected income support payments at the CONUS level and by GCMs.
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Table 6: Robustness of the multi-model ensemble average to the full uncertainty in projecting income support payments for the
CONUS and by crop categories, 2030–2059

Mean Mean difference

Estimate
CI (95%)

Estimate Trimmed
Welch t–test1 Yuen t–test2

Lower Upper t p–value t p–value

CONUS CONUS

Regression uncertainty (a) 115.6673 -84.1064 541.4335

Climate uncertainty (b) 118.8201 -209.4976 427.8468 (b) - (a) 3.1528 15.0215 2.9374∗∗∗ 0.00331 12.973∗∗∗ 0.0000

Total uncertainty (c) 129.2421 -154.3686 646.7052 (c) - (a) 13.5748 13.43136 58.854∗∗∗ 0.00000 56.9265∗∗∗ 0.0000

Corn & Soybean Corn & Soybean

Regression uncertainty (a) 124.0256 -65.1918 522.3261

Climate uncertainty (b) 130.7771 -178.9751 481.5001 (b) - (a) 6.7515 15.4723 3.468∗∗∗ 0.0005 7.3651∗∗∗ 0.0000

Total uncertainty (c) 146.0941 -127.2070 787.2290 (c) - (a) 22.0685 15.43128 86.688∗∗∗ 0.0000 62.6179∗∗∗ 0.0000

Alfalfa & Grass hay Alfalfa & Grass hay

Regression uncertainty (a) 73.40409 -52.4914 358.7091

Climate uncertainty (b) 78.43444 -122.4318 327.4999 (b) - (a) 5.03035 10.27175 4.004∗∗∗ 0.0000 7.978∗∗∗ 0.0000

Total uncertainty (c) 84.75321 -101.2737 401.9809 (c) - (a) 11.34912 7.5007 69.848∗∗∗ 0.0000 55.529∗∗∗ 0.0000

Wheat, Barley & Cotton Wheat, Barley & Cotton

Regression uncertainty (a) 101.9669 -69.87284 582.78899

Climate uncertainty (b) 96.6788 -212.7227 420.9042 (b) - (a) -5.2901 3.74484 -1.9209∗ 0.05483 1.3623 0.1841

Total uncertainty (c) 109.1015 -131.1232 706.9986 (c) - (a) 7.1346 3.64616 30.415∗∗∗ 0.0000 17.2671∗∗∗ 0.0000

Note: The estimated mean difference is calculated by comparing: (i) the mean of estimated projections considering climate uncertainty and the mean
of estimated projections considering statistical uncertainty (b) – (a) ; (ii) the mean of estimated projections considering total uncertainty and the
mean of estimated projections considering statistical uncertainty (c) –(a). The 95% confidence intervals for mean estimates are calculated using the
BCa method. 1We report results from a t–test for mean differences assuming unequal variances between the sampled distributions (Weslsh t–test).
2We also report the results from a bootstrap trimmed t statistic assuming unequal variance (bootstrapped Yuen t–test) using 1000 repetitions and a
trimming factor of 10%. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
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Therefore, our results highlight the importance of considering both statistical and climate uncer-

tainties when analyzing future income support payments related to droughts. Ignoring climate

uncertainty may lead to incomplete or potentially biased projections, as considering the full range

of climate uncertainty affects the accuracy and reliability of the estimated central tendency, espe-

cially in areas producing corn and soybean, and alfalfa and grass hay. Our findings also suggest

that the projected increase in support income payments and its associated uncertainty are not nec-

essarily driven by extreme values and may be therefore relatively dispersed across the CONUS. To

provide further insights into this issue, we examine the spatial distribution of the projected increase

in support income payments.

5.3. Geography of projected income support payments

We calculate the projected payments values at the county level based on the projections for each

crop category. Accordingly, we sum up the predictions for all major crops in each county, weighted

by the share of cultivated areas. This gives us the total contribution of all major crops to income

support payments at the county level. We then multiply our predictions by the number of opera-

tions in each county to get the total cost by county. Projected changes are also computed at the

county level, by subtracting the projected income support payments from their predicted values.

The changes relative to the period 2002–2017 and the total projected income support payments for

the 2030–2059 period are shown in Figure 8.

On average, income support payments are expected to increase across all US counties if projected

drought conditions over 2030–2059 prevailed. Only three counties localized in Maine should expe-

rience a decrease in their income support payments compared to the period 2002–2017. The geo-

graphic patterns do not perfectly mirror the geographical distribution of projected future drought

conditions (see map B Figure 2). Instead, the largest effects are expected to be in areas that will

not necessarily be the driest but where the greatest amount of payments were allocated during the

2002-2017 period. The counties predicted to have the highest increases in costs are mostly concen-

trated in areas that are currently producing most corn and soybeans, such as the Midwest. Some

counties of the Northwest (Oregon, Washington) and the West South Central (Colorado, Texas,

Oklahoma) most specialized in wheat, barley, cotton, or alfalfa, and grass hay may also see large

increases. The distribution of economic costs offers a similar picture, since large increases in costs

are concentrated in areas that received the most payments during the 2002–2017 period, except for

counties in the east part of Texas and in Colorado. While these counties are expected to experience

significant cost increases, their income support payments are predicted to be lower than those in

certain areas of the Midwest, such as Iowa.
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Figure 8: Income support payments under the RCP 8.5 scenario, all major crops, 2030–2059
projections

Note: Map A shows the projected levels of income support payments (in 1000 $US 2011 prices) under drought
conditions projected for the distant future (2030–2059). Map B shows the projected changes in income support
payments between the distant future (2030–2059) and the recent past (2002-2017). We classify data into natural
breaks using the Fisher–Jenks algorithm, which clusters data into groups that minimize within–group variance and
maximize between–group variance. Counties in grey have negative forecasted values and counties in white color are
those that are excluded from our study.

If the United States focuses its agricultural policy on addressing the impact of future droughts,

our results suggest that most US counties will need much larger income support payments in the

coming decades than in the past. This result provides a strong argument for revising US agricul-

tural policy in a way that could help farmers to better prepare for the coming weather changes in a

cost-effective manner. But such revision could also depend on the degree of uncertainty associated

with projections of future drought severity and how income support payments can offset income

losses caused by drought conditions.

To provide some insights into this issue, we consider the geographic distribution of the total uncer-

tainty surrounding the future path of income support payments. Figure 9 shows two bivariate maps,

which combine the predicted variations in income support payments (map A) and their forecasted

levels (map B) along with their associated uncertainty.
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Figure 9: Income support payments and uncertainty under the RCP 8.5 scenario, all major crops,
2030–2059 projections

Note: These bivariate maps show forecasted changes in income support payments (map A) and their forecasted
values (map B) along with the importance of uncertainty surrounding these forecasts with color–coded legend. The
counties with the highest values of forecasted income support payments and low uncertainty are shown in dark blue,
while those with high uncertainty are shown in dark purple. We classify data into natural breaks using the Fisher–
Jenks algorithm, which clusters data into groups that minimize within–group variance and maximize between–group
variance. Counties in white color are those that are excluded from our study.

The two maps show significant differences in the relationship between future income support pay-

ments and their associated uncertainty across US counties. Dark blue areas indicate counties where

income support payments needed to mitigate drought-induced income losses are expected to be

high with low uncertainty. This combination is particularly visible in states such as Wisconsin and

Illinois. Drier conditions due to climate change may increase the likelihood of large income losses

for farmers in these counties. The implications for program costs are expected to be significant

since these counties already receive high income support payments. They also produce crops (corn

and soybean) that benefit from payments with a high capacity to mitigate losses in net returns

caused by drought conditions. Therefore, for these counties, farm programs should increase the at-

tractiveness of altering current production practices in response to changing climate conditions, so

that farmers could better cope with climate change and subsequently decrease the expected cost of

climate change in terms of farm income stabilization. In contrast, dark purple areas are character-

ized by high forecasted income support payments, but with greater uncertainty. This combination

is more dispersed over the territory. It occurs in some counties belonging to states along the Pacific

coastline of the United States, such as California, Oregon, and Washington. It can also be found

in some counties in Midwest states like Missouri and Wisconsin, as well as in West South Central

states like Arizona, Oklahoma, and Texas. In these counties with high forecasted income support

payments but greater uncertainty, more precise climate change forecasts and improved estimates

of income support payments’ response are needed. Relative to the group of counties previously
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mentioned, less can be said about the severity of future droughts that could threaten agriculture

in these geographical areas and the response of income support payments to these threats. As a

result, the likelihood of increased costs in the future is also uncertain. Therefore, imposing rigid

targets in terms of adaptation strategies in these areas may not be appropriate, since the cost of

such policies could be very high, and the benefits in the future uncertain.

In this sense, our results support the major changes made to US agricultural policy since the

2018 Farm Bill and more recently with the Inflation Reduction Act and the USDA’s climate-smart

commodities partnership, which make climate change a major part of federal farm programs. By

considering county-level uncertainty in our assessment of future income support payments, our re-

sults also suggest that further exploration is needed to develop policy actions that better account

for the uncertainties surrounding the effects of climate change.

6. Conclusion

Since the 1930s, protecting farmers’ incomes from market and weather fluctuations has been a

major issue in the United States. As such the formal goals of US agricultural policy still reflect

this objective with its reference to ensuring a safety net to farmers. However, if climate change

increases the severity of droughts and the probability of incurring larger income losses for farmers,

this objective could become gradually more costly for US agricultural policy.

In this paper, we quantify these financial costs at the county level for the CONUS and major

commodity crops by assessing the future trends of income support payments from expected cli-

mate change. Our estimates are based on current US policy design and farmers’ behaviors. We

extrapolate projected costs from this current environment to a future simulated by climate models.

Our findings provide therefore a plausible indirect benchmark for the mid–term cost of adapting to

climate change.

We show that income support payments can partially offset losses in net returns caused by drought

conditions during the growing season. Our non–parametric estimates confirm that our point esti-

mates are robust and can therefore be used to accurately predict the potential costs of stabilizing

farm income due to expected climate change. Using 20 individual climate models under the RCP

8.5 emissions scenario, we predict that droughts across the CONUS will become more severe in the

coming decades compared to the recent historical period (1979-2020). Our projections show that

the financial cost of stabilizing farm incomes across the CONUS could result in a 111% increase

in income support payments compared to the 2002-2017 period if future drought conditions over

2030-2059 prevailed. Even though their contribution to this total cost is expected to decrease,

agricultural areas where corn and soybeans are grown should still account for more than 46% of

total income support payments.
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Our paper also highlights the importance of considering statistical and climate uncertainties when

predicting the impact of climate change and identifying which counties are most likely to be im-

pacted. Considering these uncertainties increases the projected financial costs of stabilizing farm

income under climate change and reveals two different spatial patterns in areas of high income–

stabilizing costs. The first one is centered in Wisconsin and Illinois where the low uncertainty of

climate change effects suggests that adaptation measures, as encouraged by recent US agricultural

policy changes, are justified, particularly to avoid an increasing trend in income–stabilizing costs.

Although the costs of adaptation in these areas may be high today, the benefits of achieving a

sustainable trend of income–stabilizing costs in the future could be significant. The other spatial

pattern is more dispersed and includes the western parts of Texas and Oklahoma, Wisconsin, and

areas along the Pacific coastline. In these areas, uncertainty is more prominent and further research

is needed to improve climate change forecasts and estimates of income support payments’ response.

While it is beyond the scope of this study to determine specific policy actions that could redesign

the US agricultural policy to address uncertainties generated by climate change, our analysis sug-

gests that postponing policy actions until uncertainties are resolved is not an adequate response.

Clearly, all climate models project an intensification of droughts in the United States and, despite

the uncertainties surrounding our projections, the impacts on income support payments associated

with climate change are significant and likely to occur in the near future. These reasons argue for

strengthening climate measures in federal government payments to better manage on–farm climate

risks and prevent a significant strain on public finances in the coming decades.

37



References

Abatzoglou, J.T., 2013. Development of gridded surface meteorological data for ecological applica-

tions and modelling. International Journal of Climatology 33, 121–131.

Abramowitz, M., Stegun, I.A., 1964. Handbook of Mathematical Functions. U.S. Government

printing office.

Ahmadalipour, A., Moradkhani, H., Svoboda, M., 2017. Centennial drought outlook over the

CONUS using NASA-NEX downscaled climate ensemble. International Journal of Climatology

37, 2477–2491.

Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder, R., Itenfisu, D., Ste-

duto, P., Berengena, J., Yrisarry, J.B., et al., 2006. A recommendation on standardized surface

resistance for hourly calculation of reference ET0 by the FAO56 Penman-Monteith method. Agri-

cultural Water Management 81, 1–22.

Auffhammer, M., Hsiang, S.M., Schlenker, W., Sobel, A., 2013. Using Weather Data and Climate

Model Output in Economic Analyses of Climate Change. Review of Environmental Economics

and Policy 7, 181–198.

Barai, K., Tasnim, R., Hall, B., Rahimzadeh-Bajgiran, P., Zhang, Y.J., 2021. Is Drought Increasing

in Maine and Hurting Wild Blueberry Production? Climate 9, 178.
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Appendix A. Multi–model ensemble average validation

We check the accuracy of our results, which are calculated by taking the average of 20 individual

GCMs (MME average). We do this by assessing the level of agreement between each downscaled

GCM, including the MME average, and observations from the gridMET dataset over the reference

period of 1979–2020. Specifically, we apply the Taylor diagram (Taylor, 2001), which simultane-

ously represents three different statistics: the centered root mean square (RMS) difference, the

Pearson correlation, and the standard deviation. This approach allows us to determine if the MME

average outperforms individual GCM simulations in reproducing weather patterns for each county

in the CONUS. The performance evaluation is conducted for three variables (precipitation, evapo-

transpiration, and water balance) on a monthly basis over the period 1979-2020, which represent a

total of 1,566,462 observations for each model. We also use the root mean square error (RMSE),

the mean absolute error (MAE), and the coefficient of determination R-squared (R²) as additional
statistical metrics to measure the performance of the models. The main results of this performance

evaluation are presented in Figure A.1.

Figure A shows that the MME average has a pattern correlation of 0.62 with gridMET reanalysis

data for precipitation from 1979-2020 across the CONUS. Individual GCMs, on the other hand,

have a lower level of agreement with observations as they are less able to reproduce inter–monthly

variations in precipitation. Figures B and C show that the MACA v2 dataset has excellent statisti-

cal properties for describing historical temperatures used to calculate reference evapotranspiration

and the climatic water balance. The correlation between the MME average and observations is 0.95

for reference evapotranspiration and 0.72 for water balance. Taylor diagrams also show that the

MME average underestimates the standard deviations in precipitation and water balance due to

error compensations in individual downscaled GCMs. Bias analysis (Figure D) also confirms that

the MME average performs well in reproducing observed weather patterns. The normalized mean

absolute biases are less than 3% for all variables used to calculate the drought index and are much

lower than those of individual models. Table A.1 details the 20 downscaled GCMs in the MACA

v2 dataset. Table A.2 provides more details on the performance metrics.

43



Figure A.1: Performance evaluation of the multi–model ensemble average (MME) and 20 down-
scaled GCMs over the reference period 1979-2020

Note: Taylor diagrams compare the climatological mean for the reference period 1979-2020 of the multi–model
ensemble average (black solid circle) and each downscaled GCM (red circle) to US gridded observations from gridMET
(black circle, circle at 1.0 on the x–axis of the graphs). The standard deviation is shown by the distance from
gridMET observations. The root–mean–square difference between each model, including the multi–model ensemble
average, and observations is shown by the circular contours centered on the gridMET data point. The correlation
between model data and observations is shown by the azimuthal angle (straight lines from the origin). Figure D
shows measures of average error magnitudes, including the root–mean–square error (RMSE), the mean absolute error
(MAE), and the R². The RMSE is the square root of the variance of the residuals or the square root of the mean
square error (MSE), which measures the average of the squared deviations between the fitted values and the actual
data observations. The R² value measures how much of the variation is accounted for by the fitted model.
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Table A.1: 20 GCMs used in this study and their characteristics

Model Name Country Model Agency Resolution Ensemble

bcc–csm1–1 China Beijing Climate Center, China Meteorological Association 2.80° × 2.80° r1i1p1

bcc–csm1–1–m China Beijing Climate Center, China Meteorological Association 1.12° × 1.12° r1i1p1

BNU–ESM China College of Global Change and Earth System Science, China 2.80° × 2.80° r1i1p1

CanESM2 Canada Canadian Center for Climate Modeling and Analysis 2.80° × 2.80° r1i1p1

CCSM4 USA National Center of Atmospheric Research 1.25° × 0.94° r6i1p1

CNRM–CM5 France National Center of Meteorological Research 1.40° × 1.40° r1i1p1

CSIRO–Mk3–6–0 Australia Commonwealth Scientific and Industrial Research Organization 1.80° × 1.80° r1i1p1

GDFL–ESM2M USA NOAA Geophysical Fluid Dynamics Laboratory 2.50° × 2.00° r1i1p1

GDFM–ESM2G USA NOAA Geophysical Fluid Dynamics Laboratory 2.50° × 2.00° r1i1p1

HadGEM2–ES UK Met Office Hadley Center 1.88° × 1.25° r1i1p1

HadGEM2–CC UK Met Office Hadley Center 1.88° × 1.25° r1i1p1

inmcm4 Russia Institute for Numerical Mathematics 2.00° × 1.50° r1i1p1

IPSL–CM5A–LR France Institut Pierre Simon Laplace 3.75° × 1.80° r1i1p1

IPSL–CM5A–MR France Institut Pierre Simon Laplace 2.50° × 1.25° r1i1p1

IPSL–CM5B–LR France Institut Pierre Simon Laplace 2.75° × 1.80° r1i1p1

MIROC5 Japan Japan Agency for Marine-Earth Science and Technology 1.40° × 1.40° r1i1p1

MIROC–ESM Japan Japan Agency for Marine-Earth Science and Technology 2.80° × 2.80° r1i1p1

MIROC–ESM–CHEM Japan Japan Agency for Marine-Earth Science and Technology 2.80° × 2.80° r1i1p1

MRI–CGCM3 Japan Meteorological Research Institute, Japan 1.10° × 1.10° r1i1p1

NorESM1–M Norway Norwegian Climate Center, Norway 2.50° × 1.90° r1i1p1

Note: Table A.1 reports the downscaled GCMs chosen for this study and their main characteristics. This selection was based on the maximum number
of models forced by the same GCMs. Source: https://climate.northwestknowledge.net/MACA/GCMs.php
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Table A.2: Performance metrics by downscaled GCMs including the multi–model ensemble average (MME)

Normalized Mean Absolute Error Normalized Mean Bias Normalized Root Mean Square Error R2

Model Pr ET0 D Pr ET0 D Pr ET0 D Pr ET0 D

Bcc-csm1-1 0.040781 0.044955 0.042197 -0.00126136 -0.00082126 -0.00090014 0.05704630 0.06086045 0.05744399 0.1520289 0.8604849 0.2680627

Bcc-csm1-1-m 0.041446 0.045596 0.043062 -0.00042355 -0.00375409 0.00051058 0.05808160 0.06143429 0.05871830 0.1377022 0.8583235 0.2474646

BNU-ESM 0.039534 0.040546 0.039964 -0.00105225 0.00265706 -0.00153987 0.05599248 0.05581723 0.05514686 0.1594757 0.8844807 0.2918692

CNRM-CM5 0.039237 0.042586 0.040081 -0.00035919 -0.00573455 0.00103242 0.05553510 0.05784373 0.05524121 0.1668787 0.8709919 0.2789683

CSIRO-Mk3-6-0 0.039336 0.044624 0.040825 -0.00267230 0.00250565 -0.00289612 0.05567131 0.06117986 0.05629071 0.1445330 0.8651013 0.2747759

GDFL-ESM2M 0.040029 0.044079 0.041031 0.00038143 -0.00684107 0.00192942 0.05662157 0.06042377 0.05657094 0.1513044 0.8617753 0.2651352

GDFL-ESM2G 0.039964 0.042589 0.040893 -0.00098110 -0.00259604 -0.00024126 0.05651403 0.05892759 0.05615892 0.1488542 0.8680112 0.2708258

HadGEM2-CC 0.042365 0.043637 0.043178 -0.00218707 0.00161485 -0.00226938 0.05990555 0.06085139 0.05942279 0.1219232 0.8622871 0.2394922

HadGEM2-ES 0.042995 0.046281 0.044220 -0.00072638 0.00176039 -0.00104865 0.06117036 0.06535305 0.06139411 0.1200920 0.8438828 0.2291346

CanESM2 0.042328 0.038029 0.042390 -0.00062642 -0.00127369 -0.00024803 0.06045387 0.05154085 0.05914802 0.1193810 0.8962452 0.2340431

CCSM4 0.039536 0.038007 0.039536 -0.00030466 -0.00056543 -0.00013843 0.05584266 0.05207922 0.05431351 0.1630718 0.8947726 0.2958582

NorESM1-M 0.039015 0.036929 0.038819 0.00015471 -0.00132872 0.00043607 0.05578931 0.05092814 0.05395873 0.1617085 0.8989908 0.2986299

Inmcm4 0.040505 0.041148 0.041276 -0.00167613 -0.00377422 -0.00056087 0.05766492 0.05689389 0.05716825 0.1427072 0.8758327 0.2638425

IPSL-CM5A-LR 0.039822 0.038108 0.039710 -0.00193737 0.00024814 -0.00173287 0.05622682 0.05127471 0.05461361 0.1498003 0.8978764 0.2837399

IPSL-CM5A-MR 0.039854 0.037282 0.039768 -0.00182082 -0.00148555 -0.00122433 0.05651441 0.05085956 0.05498061 0.1493531 0.8992345 0.2828327

IPSL-CM5B-LR 0.038966 0.038473 0.038830 -0.00120755 -0.00273106 -0.00040401 0.05441932 0.05235047 0.05284211 0.1662510 0.8924216 0.3014725

MIROC5 0.039187 0.038794 0.039274 -0.00054731 -0.00103295 -0.00023677 0.05523243 0.05360190 0.05406150 0.1559029 0.8879327 0.2812862

MIROC5-ESM 0.038329 0.039164 0.038560 -0.00143846 -0.00332274 -0.00046302 0.05405203 0.05343946 0.05320561 0.1685030 0.8896251 0.3014773

MIROC5-CHEM 0.039420 0.041223 0.039751 -0.00061468 -0.00333463 0.00024755 0.05538665 0.05648318 0.05454454 0.1477985 0.8777419 0.2793681

MRI-CGCM3 0.037641 0.035205 0.037236 -0.00143860 -0.00609916 0.00019089 0.05274010 0.04835031 0.05081201 0.1747659 0.9085810 0.3147745

MME 0.028148 0.029270 0.028315 -0.00103695 -0.00179545 -0.00047784 0.03943045 0.03975445 0.03865439 0.3768876 0.9370007 0.5184420

Note: Pr, ET0, D, stand for precipitation, evapotranspiration, and water balance, respectively.
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Figure A.2: Geographical distribution of the layers wi for the years 2008, 2012, and 2017

Note: Figure A.2 displays the geographical distribution of the layers wi for the years 2008, 2012, and 2017. The layer is assigned a value of 1 if there
is at least one parcel present within each SPEI data grid and a missing value otherwise.
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Figure A.3: Crop calendars for the United States

Source: US Department of Agriculture. https://ipad.fas.usda.gov/rssiws/al/crop_calendar/us.aspx
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Appendix B. SPEI methodology

The SPEI uses, as its input, a “climatic water balance” calculated as the difference between pre-

cipitation and reference evapotranspiration.30 By relying on the combined effects of precipitation

and reference evapotranspiration, this index better accounts for the impact of surface warming

on droughts and wet spells compared to other drought indices. In this paper, reference evapo-

transpiration refers to the ASCE Penman–Monteith (ASCEPM) formulation, as recommended by

the United Nations Food and Agriculture Organization (FAO).31 The Penman–Monteith reference

evapotranspiration (ET0) is formulated as:

ET0 =
0.408∆(Rn −G) + γ 900

T+273u2(ea − ed)

∆ + γ(1 + 0.34u2)
(B.1)

Where ∆ is the slope of the saturation vapor pressure function of temperature in kPa°C−1, Rn is

the net radiation in MJm−2d−1, G is soil heat flux in MJ.m−2.d−1, γ is the psychrometric constant

in kPa°C−1, T is the mean surface temperature in °C, u2 is the wind speed at 2m above the surface

in m.s−1, and ea and ed are the saturation and actual vapor pressure in kPa, respectively.

We aggregate daily precipitation (Pr) and reference evapotranspiration (ET0) data on a monthly

basis to obtain monthly time–series climatic water balance (Dm) for each pixel from January 1979

to December 2020.32

Dm = Prm − ET0,m (B.2)

To calculate the SPEI, we use a three–step process (Vicente-Serrano et al., 2010). The first step

involves accumulating water balance series at different time scales. In this study, we use a 3–month

timescale, which is most appropriate for identifying drought impacts on crop yields (Santini et al.,

2022; Peña-Gallardo et al., 2019). The cumulative water balance for a month m in a particular

year t based on a 3–month timescale is calculated as follows:

Xk=3
t,m =


∑12

l=13−k+m Dt−1,l +
∑m

l=1 Dt,l, if m < k∑m
l=m−k+1 Dt,l, if m ≥ k

(B.3)

30Reference evapotranspiration is the estimation of the evapotranspiration from the “reference surface”. The
reference surface is a hypothetical grass reference crop with an assumed crop height of 0.12 m, a fixed surface
resistance of 70 s/m and an albedo of 0.23. The reference surface closely resembles an extensive surface of green,
well–watered grass of uniform height, actively growing and completely shading the ground.

31This formulation has a more physically robust calculation process than other standard formulations provided by
the Hargreaves or the Thornthwaite equations.

32The period 1979–2020 is the reference period (i.e., calibration period). Estimating a drought index requires a
sufficiently long base period (30–40 years) that samples the natural variability to describe average conditions and
associated anomalies.
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Where Xk=3
t,m is the accumulated difference between precipitation (Pr) and reference evapotranspi-

ration (ET0) at the k-month time scale in the mth month of year t. Dt,l is the monthly difference

between precipitation (Pr) and reference evapotranspiration (ET0) in the lth month of year t.

The second step involves normalizing the accumulated water balance series Xk=3
t,m at each grid cell.

This normalization is necessary due to seasonal differences in precipitation and evapotranspiration

and the heterogeneity of climate regimes. The data series is transformed to a normal distribution

with a mean of zero and a standard deviation of one using equal probability. As suggested by

Vicente-Serrano et al. (2010) a three–parameter log–logistic probability distribution is used to fit

the data due to the presence of negative values in the original data sequence. Estimating the pa-

rameters of the log-logistic probability distribution is essential for accurate drought analysis and

monitoring. This allows for spatial and temporal comparisons of the SPEI series at different lo-

cations, which must have the same average of zero and standard deviation equal to unity. The

accumulative function of the log–logistic probability distribution F (X) is given by:

F (X) =

[
1 +

(
α

X − γ

)β
]−1

(B.4)

α, β, and γ represent the scale, shape and origin parameters respectively that are estimated from

the sample X (difference between precipitation and ET0).

The final step involves deriving the SPEI values from the standardized values of the cumulative

function of the log-logistic probability distribution F (X). This is done using the approximation

method of Abramowitz and Stegun (1964):

SPEI =
W − (C0 + C1W + C2W

2)

1 + d1W + d2W 2 + d3W 3
(B.5)

Where W =
√
−2 ln(P ) for P ≤ 0.5 with P = 1−F (X), the probability of exceeding a determined

D value. The constants are C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788,

d2 = 0.189269 and d3 = 0.001308.

By doing so, the values of the SPEI are in standard deviations from a long–term mean centered

around zero and are comparable in space and time.33 The long–term mean represents the typical

climate at each cell during a reference period (in this case, 1979–2020). Negative values indicate

a deficit in the water balance, i.e., drier conditions than the typical climate, and positive values

denote wetness in excess of normal conditions.

33The parameters of these density functions were obtained by the method of unbiased probabilistic weighted
moments, which is recommended over other methods (Begueŕıa et al., 2014).
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Following Tam et al. (2019), the calculation of future drought conditions over the CONUS requires

two steps. First, we calculate monthly climate balance series from 1979 to 2100 for each downscaled

GCM f (f = 1, . . . , 20) and for the multi–model ensemble (MME) average:

Df
m = Prfm − ET f

0,m (B.6)

DMME
m = PrMME

m − ETMME
0,m (B.7)

Where PrMME
m and ETMME

0,m correspond respectively to the average over time of precipitation and

reference evapotranspiration of the 20 individual downscaled GCMs. The resulting projections for

the historical period are used to evaluate the performance of each GCM compared to actual obser-

vations.

Second, the calculation of future SPEI, SPEIfm and SPEIMME
m , is done by fitting the accumu-

lated Df
m and DMME

m values on a 3–month timescale to the log–logistic model, using distribution

coefficients established from observed Dm for the 1979–2020 reference period (Eq. B.4). Projected

drought conditions at a location are expressed as the number of standard deviations by which the

future SPEI deviates from its mean value for the 1979–2020 reference period. Since the SPEI is

a z–score with zero mean over the reference period, a projected SPEI value of zero indicates no

change in drought conditions relative to the reference period.
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Appendix C. Empirical framework

Table C.1: Summary statistics, control variables, CONUS

Census years 2002 2007 2012 2017

Mean share of irrigated land in total agricultural land (%) 3.061 3.212 3.236 3.413

Median share of irrigated land in total agricultural land (%) 0.375 0.377 0.358 0.383

Mean share of cropland in total agricultural land (%) 52.465 51.532 51.049 50.368

Median share of cropland in total agricultural land (%) 50.832 48.767 48.237 46.865

Average median farm size 220.187 190.780 193.412 191.308

Note: All variables are measured in acres and calculated per operation. Source: Census of Agriculture.
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Table C.2: Robustness Check, CONUS average, 2002–2017

Benchmark results Including lagged SPEI
Placebo test

Non-metropolitan counties Metropolitan counties

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

(1) (2) (3) (4) (5) (6) (7) (8)

Dry -0.0071∗∗∗ -0.0070∗∗∗ -0.0097∗∗∗ -0.0015

(0.0013) (0.0013) (0.0017) (0.0019)

Dry(-1) -0.0014

(0.0010)

Inc -0.3569∗∗∗ -0.3231∗∗∗ -0.3489∗∗∗ 0.3517

(0.1260) (0.1202) (0.1141) (0.8537)

Irrigation 0.0038∗∗∗ 0.0014∗ 0.0038∗∗∗ 0.0013∗ 0.0033∗∗∗ 0.0008 0.0023 -0.0005

(0.0009) (0.0008) (0.0009) (0.0007) (0.0011) (0.0008) (0.0015) (0.0021)

Field crop 0.0317∗∗∗ 0.0280∗∗∗ 0.0318∗∗∗ 0.0269∗∗∗ 0.0183∗ 0.0266∗∗∗ 0.0369∗∗ -0.0098

(0.0089) (0.0059) (0.0089) (0.0057) (0.0102) (0.0063) (0.0163) (0.0346)

Concentration 0.0145∗∗ 0.0358∗∗∗ 0.0146∗∗ 0.0353∗∗∗ 0.0154∗∗ 0.0397∗∗∗ 0.0111 0.0060

(0.0060) (0.0048) (0.0060) (0.0046) (0.0068) (0.0057) (0.0125) (0.0092)

N 9607 9607 7164 2443

F-stat 17.886 19.062 15.690 0.7261

KP F-stat 27.827 13.914 33.100 0.6420

KP-LM test 27.390∗∗∗ 27.419∗∗∗ 32.598∗∗∗ 0.6394

Hansen J 2.494

Hansen J p-val 0.114

Note: The excluded instrument is the drought index (equation 1). A rise in this index reflects drier conditions. ∗, ∗∗, and ∗∗∗ indicate significance at
the 10%, 5% and 1% levels, respectively. The first-stage F-stat is used to investigate the strength of the instruments. The Kleibergen and Paap Wald
rk F–stat test if the excluded instruments are weak (weak identification). The null hypothesis of the Kleibergen–Paap rk LM–stat, KP LM–stat, is
that the equation is underidentified. Hansen’s J test for exogeneity (in case of more instruments than endogenous variables). Robust standard errors
clustered by Federal Information Processing System (FIPS) codes are reported in brackets.
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Table C.3: Alternative measure of the drought index, CONUS average, 2002–2017

Benchmark results Including lagged PDSI
Placebo test

Non-metropolitan counties Metropolitan counties

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

(1) (2) (3) (4) (5) (6) (7) (8)

PDSI 0.0021∗∗∗ 0.0019∗∗∗ 0.0028∗∗∗ 0.0010∗

(0.0004) (0.0004) (0.0005) (0.0006)

PDSI(-1) 0.0007∗∗

(0.0003)

Inc -0.3338∗∗∗ -0.1668∗ -0.2944∗∗∗ -0.3290

(0.1168) (0.0976) (0.1057) (0.4054)

Irrigation 0.0038∗∗∗ 0.0013∗ 0.0038∗∗∗ 0.0007 0.0034∗∗∗ 0.0006 0.0025* 0.0010

(0.0009) (0.0007) (0.0009) (0.0006) (0.0011) (0.0007) (0.0015) (0.0013)

Field crop 0.0323∗∗∗ 0.0272∗∗∗ 0.0330∗∗∗ 0.0218∗∗∗ 0.0194∗ 0.0256∗∗∗ 0.0368∗∗ 0.0155

(0.0089) (0.0057) (0.0089) (0.0049) (0.0102) (0.0060) (0.0165) (0.0173)

Concentration 0.0146∗∗ 0.0354∗∗∗ 0.0145∗∗ 0.0330∗∗∗ 0.0157∗∗ 0.0389∗∗∗ 0.0109 0.0134∗∗

(0.0060) (0.0045) (0.0060) (0.0040) (0.0068) (0.0054) (0.0124) (0.0061)

N 9607 9607 7164 2443

F–stat 19.275 21.34 20.05 0.2452

KP F–stat 30.458 16.839 34.328 2.926

KP–LM test 30.301∗∗∗ 33.594∗∗∗ 34.168∗∗∗ 2.921∗

Hansen J 22.910

Note: The excluded instrument is the PDSI developed by Palmer (1965). Positive (negative) PDSI values represent wet (dry) conditions. ∗, ∗∗, and
∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively. The first-stage F–stat is used to investigate the strength of the instruments. The
Kleibergen and Paap Wald rk F–stat test if the excluded instruments are weak (weak identification). The null hypothesis of the Kleibergen-Paap rk
LM–stat, KP LM–stat, is that the equation is underidentified. Hansen’s J test for exogeneity (in case of more instruments than endogenous variables).
Robust standard errors clustered by Federal Information Processing System (FIPS) codes are reported in brackets.
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Table C.4: Spearman’s rank correlation test results

Corn grain Soybeans Hay Wheat Barley Cotton

Corn grain 1 0.779∗∗∗ -0.623∗∗∗ 0.070∗∗∗ 0.019∗∗ -0.092∗∗∗

Soybeans 1 -0.059∗∗∗ 0.129∗∗∗ -0.064∗∗∗ -0.017∗

Hay 1 -0.326∗∗∗ -0.037∗∗∗ -0.210∗∗∗

Wheat 1 0.282∗∗∗ 0.290∗∗∗

Barley 1 -0.237∗∗∗

Cotton 1

Note: ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
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Appendix D. Climate projections

Table D.1: Future severity of droughts (as deviations from the reference period of 1979–2020)
by downscaled GCMs, including the multi–model ensemble average (MME), under the RCP 8.5
scenario, CONUS average

Downscaled GCMs 2020-2049 2030-2059

HadGEM2–ES +0.558 +0.703

HadGEM2–CC +0.444 +0.502

IPSL–CM5A–MR +0.346 +0.461

NorESM1–M +0.352 +0.415

CCSM4 +0.303 +0.439

IPSL–CM5A–LR +0.273 +0.382

MIROC5 +0.257 +0.371

MIROC5–CHEM +0.241 +0.376

Bcc–csm1–1–m +0.213 +0.341

MME +0.224 +0.306

Bcc–csm1–1 +0.187 +0.341

CanESM2 +0.249 +0.267

MIROC5–ESM +0.216 +0.276

BNU–ESM +0.183 +0.302

Inmcm4 +0.110 +0.260

CSIRO–Mk3–6–0 +0.194 +0.159

IPSL–CM5B–LR +0.170 +0.153

CNRM–CM5 +0.126 +0.172

MRI–CGCM3 +0.013 +0.019

GDFL–ESM2G -0.001 +0.107

GDFL–ESM2M -0.027 +0.039

Standard deviation 0.139 0.162

Note: Projected drought severity under the RCP 8.5 scenario across the CONUS over the near (2020–2049) and more
distant (2030–2059) future, using 1979–2020 as reference period. The drought index is based on SPEI computed
at 3–month time scale. A positive value indicates an increasing value of the drought index and intensified future
droughts.
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Table D.2: Projected income support payments per operation ($US 2011 prices) by downscaled
GCMs, including the multi–model ensemble average (MME), 2030-2059, under the RCP 8.5 sce-
nario, CONUS average

Downscaled GCMs Lower 1,5*IQR 25th percentile Median 75th percentile upper1,5*IQR

BNU–ESM -116.7712 13.4284 104.1231 214.8304 356.6244

Bcc–csm1–1 -126.6376 18.0016 117.2638 225.9936 390.2562

Bcc–csm1–1–m -140.3702 16.9831 115.7427 230.3326 388.8912

CanESM2 -131.1193 7.9418 103.5503 207.6655 348.3503

CCSM4 -99.3247 34.7032 131.5750 251.3458 393.7977

CNRM–CM5 -166.6387 -22.4116 86.7109 199.8914 344.8459

CSIRO–Mk3–6–0 -179.2691 -24.0702 83.6706 193.0364 358.4623

GDFL–ESM2M -186.9123 -44.5469 58.4372 171.2093 313.6040

GDFL–ESM2G -205.4363 -24.4946 73.5262 179.8687 340.2081

HadGEM2–CC -99.5855 54.7562 147.0943 256.5109 407.8241

HadGEM2–ES -58.2206 94.6860 188.6341 301.1390 454.4175

Inmcm4 -145.5891 0.1371 97.2687 213.5146 370.5537

IPSL–CM5A–LR -118.6744 25.1484 125.4697 235.3394 382.2408

IPSL–CM5A–MR -93.6150 39.1114 139.2331 251.1122 407.2486

IPSL–CM5B–LR -172.3320 -21.3086 79.0066 197.2846 335.6788

MIROC5 -117.0413 21.7421 120.5848 234.5427 394.7268

MIROC5–CHEM -113.0750 25.5609 125.4080 235.0514 374.1134

MIROC5–ESM -165.0835 -2.2719 104.1439 223.3413 369.7796

MRI–CGCM3 -198.4592 -43.8263 53.4111 163.3776 317.8471

NorESM1–M -103.2556 26.6913 128.8525 250.1884 383.3280

MME -136.8705 9.7981 109.1853 221.7788 371.6399

Note: Projected income support payments for the more distant (2030–2059) future, under the RCP 8.5 scenario.
Income support payments per operation and in $US (2011 prices). IQR: interquartile range.
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