
ar
X

iv
:2

31
1.

07
47

8v
1 

 [
q-

fi
n.

PM
] 

 1
3 

N
ov

 2
02

3

Optimal portfolio allocation with uncertain covariance

matrix

Maxime Markov∗ and Vladimir Markov

November 14, 2023

Abstract

In this paper, we explore the portfolio allocation problem involving an uncertain
covariance matrix. We calculate the expected value of the Constant Absolute Risk
Aversion (CARA) utility function, marginalized over a distribution of covariance
matrices. We show that marginalization introduces a logarithmic dependence on
risk, as opposed to the linear dependence assumed in the mean-variance approach.
Additionally, it leads to a decrease in the allocation level for higher uncertainties.
Our proposed method extends the mean-variance approach by considering the un-
certainty associated with future covariance matrices and expected returns, which is
important for practical applications.

1 Introduction

Portfolio allocation is a classical problem in finance. The two dominant methodologies
for deriving portfolio weights are either by maximizing the expected utility (EU) [1] or
by focusing on the mean-variance (MV) of the portfolio in relation to those weights [2].
While the MV approach is favored for its conceptual simplicity and analytical tractabil-
ity, the utility function method offers a more comprehensive perspective. When using a
Constant Absolute Risk Aversion (CARA) utility function with Gaussian returns, both
methods yield identical results. However, because real-world returns are not strictly
Gaussian, the utility function method, which can accommodate arbitrary return distri-
butions, is often preferred.

All modern portfolio optimization models use expectations of future returns and vari-
ances estimated from the past data. These estimates are imperfect and can be very far
from reality during market regime changes. Comprehensive modeling and optimization
should explicitly incorporate the fact that future returns and variances are unknown,
utilize predictive models of future returns and variances, and study the implications of
these uncertainties. Therefore, investors would be better off not focusing on detailed
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estimation and forecasting of parameters but instead on averaging over all possible sce-
narios or estimating the worst-case scenario. This can be achieved in the EU approach
to portfolio allocation.

In our prior work [3], we examined the portfolio allocation problem with uncertain
expected returns for both Gaussian and Asymmetric Laplace-distributed (ALD) returns.
Our findings illustrate that uncertainty in expected returns leads to shrinkage in optimal
portfolio weights, while skewness and fat tails alter the risk-term dependence. This paper
focuses on the portfolio allocation problem involving an uncertain covariance matrix.
Our methodology is loosely inspired by the construction of Bayesian models. In this
context, the model parameters — expected returns and covariance matrix — are treated
as random variables with a specified distribution and corresponding hyperparameters.
To obtain observables, we marginalize (integrate) over these random parameters.

The distribution of parameters, which is external to the model, reflects the mod-
eler’s perspective on future parameter values and their associated uncertainty. This
uncertainty primarily arises from two factors: statistical error due to finite sample esti-
mation and, more significantly, prediction error in a non-stationary environment. Such
non-stationarity makes it impossible to precisely estimate future parameter values, even
with the most advanced forecasting algorithms. In this paper, we propose three covari-
ance matrix noise models that capture both types of errors in different scenarios.

This paper is structured as follows: First, we will briefly compare the expected
utility and mean-variance approaches to portfolio allocation. Second, we will discuss
the marginalization over the variance distribution in the univariate case. Third, we
compute the expected value of the utility function and corresponding allocation weights
by marginalizing the covariance matrix using three analytically solvable noise models:
the Wishart distribution, an equivariance model with a block structure, and a two-state
model that considers the non-zero probability of a market crash. Finally, we will discuss
the practical application of the results.

2 Mean-variance vs. Expected utility approaches

In the standard economic approach, asset allocations are derived by maximizing the
expected value of the investor’s utility function. The utility non-linearly transforms the
investor’s wealth and encodes his aversion to risk. The most commonly used utility
model in finance is the CARA [4, 5]. The utility functions Ua(x, a) for CARA with
respect to the investment outcome (return) x and the risk aversion parameter a can be
expressed as follows:

Ua(x, a) =

{

1−exp(−ax)
a

, if a 6= 0

x, if a = 0
, (1)

To determine the optimal portfolio weights, we maximize the expected value of the
utility function U(x, a) with respect to w:

w = argmax
w

EP [Ua(x, a)] = argmax
w

∫

dx Ua(x, a)P (x) (2)
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where P (x) is the distribution of outcome x.
An investor using the MV approach optimizes the following function:

w∗ = argmax
w

[E[x] + λVar(x)] (3)

While the two approaches yield identical results in the case of a normally distributed
outcome, they diverge when the outcome distribution cannot be fully characterized by
only its first two moments. Obviously, the expected utility approach makes it straightfor-
ward to incorporate distributions with skewness and excess kurtosis. Some distributions,
like the Asymmetric Laplace Distribution (ALD), offer complete analytical tractability,
which is no more complex than that of the Gaussian distribution [3].

If the future covariance matrix Σ and the expected returns µ are random variables,
the optimal allocation weights are determined by integrating over all possible realizations
of the covariance matrix Σ with probability distribution P (Σ) and the expected returns
µ with probability distribution P (µ). The optimal weights w∗ are given by:

w∗ = argmax
w

∫

dΣ

∫

dµ

∫

dx Ua(x, a)P (x;µ,Σ)P (µ)P (Σ) (4)

where P (x) is the distribution of portfolio returns x. P (x) can be assumed to follow a
Gaussian distribution, as the fat tails of the actual return distribution can be attributed
to the integration over variance. The integration over Σ is a basic operation in multi-
variate statistics and involves integrating over all N(N+1)

2 independent components of Σ.
If P (Σ) has a discrete distribution, the integration is substituted by a summation over
the corresponding probabilities.

For multivariate Gaussian returns rt ∼ N(µ,Σ), the expected utility is given by:

EN [Ua(µ,Σ)] =

∫

dx Ua(x, a)P (x;µ,Σ) ∼ (−1)e
1
2
a2wT

Σw−aµTw (5)

As one can see, the terms related to Σ and µ are separated and can be integrated
independently. Correspondingly, we are interested in:

∫

dΣ e
1
2
a2wT

ΣwP (Σ) = EP (Σ)[e
Tr(WΣ)] = M(W ), (6)

where W = a2

2 w
Tw is the Hadamard product of weights w and M(W ) is the momen-

tum generating function (mgf) for the distribution P (Σ). Here, we used the identity
wTΣw = Tr(WΣ).

The integration over the expected returns µ can be done using the following formal
analogy:

∫

dµ e−aµTwP (µ) = EP [e
itx]|t=iaw (7)

The last term is a characteristic function (cf) EP [e
itx] of the probability distribution

P (µ), well known for many statistical distributions.
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The goal of this paper is to examine the impact of uncertainties in future variances
and correlation coefficients on optimal portfolio allocation. For a general distribution
P (Σ), the marginalization over Σ cannot be done analytically. Therefore, we investigate
three analytically tractable models of covariance matrix distribution that may be relevant
for practical applications. First, we model Σ as being distributed according to the
Wishart distribution. Second, we study equivariance block diagonal covariance matrices
where the variance of each block is distributed based on the shifted gamma distribution,
and the correlation matrix remains fixed. The shift accounts for minimal future volatility,
which is an important feature of the stock market. In the third model, we calculate the
expected value of the utility function in two scenarios: with probability p, we assume the
future market to be in a normal regime with parameters (µn,Σn), and with probability
(1 − p), the market is under stress with parameters (µs,Σs). This approach allows for
the construction of a robust portfolio if a modeler anticipates a non-zero probability of
a market crash.

It is important to note that marginalization over covariance matrix Σ produces a
trivial result in the MV approach, which is linear in the risk term R ∼ Σ. In this scenario,
integration over all possible realizations of Σ yields the expected value of E[Σ], and the
parameter controlling the uncertainty of Σ is absent in the final result. Regarding the
uncertainty of expected returns, the Black-Litterman model serves as the primary means
to account for it in the MV approach [6]. Despite 30 years of development, the practical
use of the model remains limited due to a slew of non-observable and challenging-to-
guess parameters. We contend that it is more natural and computationally efficient to
directly incorporate future market perspectives by treating both µ andΣ as distributions
of random variables and marginalizing (averaging) over their realizations in the EU
approach.

3 Univariate case: Marginalizing over variance and expected return

In this section, we derive the optimal allocation weight after marginalizing over a one-
dimensional covariance matrix, which is the variance. Although this is a simplified case,
it offers full analytical tractability of the problem. Many features of this solution can
also be extended to the multidimensional case.

3.1 Shifted gamma distribution as a noise model for variance

Assume that returns are distributed according to the normal distribution rt ∼ N(0, σ2).
Then, the sample variance s2 of n observations follows the chi-squared distribution
χ2
n(σ

2):

s2 ∼ 1

n

n
∑

i=1

r2i =
1

n
χ2
n(σ

2) (8)

The chi-squared distribution χ2
n(σ

2) is a one-dimensional version of the Wishart
distribution, which will be discussed in the subsequent section. Additionally, it has a
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relationship with the gamma distribution, given by the identity χ2
n(σ

2) = Γ(n2 , 2σ
2). An

important feature of the equity market is the presence of minimal variance that is not
accounted for by the χ2

n(σ
2) distribution. In other words, variance can be divided into

a minimal variance deterministic part and a stochastic part. As a result, we employ a
gamma distribution shifted by minimal variance as the model for the future variance
distribution. The shifted gamma distribution is flexible enough to capture both finite
sample uncertainty and forecasting power limitations by treating n as a model parameter.

The probability density function of the three-parameter gamma distribution is given
by:

Γ(x, α̃, β̃, γ̃) =
(x− γ̃)α̃−1e

− (x−γ̃)

β̃

β̃α̃Γ(α̃)
, x > γ̃, α̃ > 0, β̃ > 0 (9)

The standard two-parameter (shape-scale) parametrization corresponds to γ̃ = 0
, and the exponential distribution corresponds to parameters α̃ = 1, γ̃ = 0. The
momentum-generating function is given by:

Mx(t) = E[etx] =
eγ̃t

(1− β̃t)α̃
(10)

We model the future variance using the following distribution:

s2 ∼ Γ(
α

2
,
2σ2

α
, σ2

min), (11)

with the shape parameter α
2 , the scale parameter 2σ2

α
, and σ2

min shifting the distribution
by a minimum variance value σ2

min. The mean is given by E[s2] = σ2
min + σ2. We

use this equation to estimate σ. The uncertainty parameter α can be estimated from
V ar[s2] = 2σ4

α
. The larger values of α correspond to a lower variance around the target

value E[s2].
Approximate values of the parameters σmin and α can be estimated from historical

market data. The forward-looking 30-day volatility, as measured by the VIX index,
reached a minimum value of 9.5 between the years 2006 and 2023. This value can be used
to determine the approximate value σmin ≈ 10%. The volatility of volatility is measured
by the VVIX Index, which represents the expected volatility (standard deviation) of
the 30-day forward price of the VIX Index. The typical value of the VVIX index is in
the 80 percent range. This corresponds to a very high level of uncertainty in volatility,
with α < 1, which makes the mean value of volatility almost useless when applying the
two-sigma rule.

In Figure 1, we show the distribution of annualized volatility in the model for high,
medium, and low uncertainties of σ2 for α = 10, α = 100, and α = 1000, respectively.
For this simulation, we set the parameters σmin = 0.1 (10% annualized) and σ = 0.15
(15% annualized). Subsequently, N = 105 random variances were generated according
to Eq. 11.
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Figure 1: Noise model for volatility distribution given by Eq. 11 for different values of α

3.2 Marginalization over variance and expected return

To develop intuition, we first discuss the MV framework, which assumes Gaussian re-
turns. Given that the portfolio return x follows a normal distribution x ∼ N(µ, σ), the
expected utility function EN [Ua(x, a)] can be expressed as:

EN [Ua(x, a)] =

∫

dx Ua(x, a)N(µ, σ) =
1− e

1
2
a2σ2−aµ

a
(12)

where we examine the CARA utility function Ua(x, a) from Eq. 1. According to Eq. 2, the
optimal portfolio maximizes the expected utility function in Eq. 12. This is equivalent
to maximizing the expression µ− a

2σ
2 or MV in Eq. 3.

The location parameter µ is often unpredictable. To model it, we assume that µ
follows a normal distribution µ ∼ N(µ0, σ0) with parameters µ0 and σ0. We then
marginalize (integrate) Eq. 2 over the location parameter µ. The optimal weight w∗ is
given by:

w∗ = argmax
w

∫

dµEN [Ua(x, a)]N(µ;µ0, σ0) = argmax
w

Eµ[Ua(x, a)] (13)

To derive the optimal weight after marginalization over µ, we rely on the following
identity:

∫ ∞

−∞
dµ e−awµN(µ;µ0, σ0) = e

1
2
a2σ2

0w
2−aµ0w (14)

The optimal weight w∗
N after marginalization over µ is given by [3]:

w∗
N = argmax

w

[

(−1)e−a(µ0−r0)w+ a2

2
w2(σ2+σ2

0)

]

(15)

Taking the logarithm of Eq. 15, we arrive at:

w∗
N = argmax

w

[

w(µ0 − r0)−
a

2
w2(σ2 + σ2

0)
]

=
µ0 − r0

a(σ2 + σ2
0)

(16)
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here, r0 is a risk-free return. In order to avoid trivial cluttering, we assume later in the
text that an investor chooses between stock and cash (r0=0).

We model variance with the model in Eq. 11: s2 ∼ Γ(α2 ,
2σ2

α
, σ2

min). The optimal
weight w∗ is given by:

w∗ = argmax
w

∫

ds2 EN [Ua(x, a)]Γ(s
2;

α

2
,
2σ2

α
, σ2

min) = argmax
w

Eσ2 [Ua(x, a)] (17)

Using the mgf of the gamma distribution in Eq. 10 and the identity in Eq. 14,
the expected utility function Eµ,σ2 [Ua(x)] after marginalization over variance s2 and
expected return µ is given by:

Eµ,σ2 [Ua(x, a)] ∼ (−1)e
a2

2
(σ2

min+σ0)w2−awµ0

(

1− a2

α
w2σ2

)−α
2

(18)

Maximization leads to a cubic equation:

a3(σ2
min + σ2

0)σ
2w3 − a2µ0σ

2w2 − aα(σ2 + σ2
min + σ2

0)w + µ0α = 0 (19)

The solution is a cumbersome expression given by the Cardano formula. The asymp-
totics for µ0 → 0 (µ0 ≪ σ2

min + σ2
0 + σ2) is given by:

w∗ =
µ0

a(σ2
min + σ2

0 + σ2)
− σ4µ3

0

aα(σ2
min + σ2

0 + σ2)4
+O(µ4

0) (20)

The asymptotics for µ0 → ∞ (µ0 ≫ σ2
min + σ2

0 + σ2) is given by:

w∗ =

√
α

aσ
− α

2aµ0
+O(µ−2

0 ) (21)

The asymptotics for α → ∞ (small variance uncertainty) is given by:

w∗ =
µ0

a(σ2
min + σ2

0 + σ2)
− σ4µ3

0

aα(σ2
min + σ2

0 + σ2)4
+O(α− 3

2 ) (22)

The leading term corresponds to the MV solution but with additional regularization
(shrinkage) due to the expected return uncertainty σ2

0. We note that an increase in α (a
decrease in variance uncertainty) leads to an increase in the allocation to the risky asset
w∗.

The asymptotics for α → 0 (large variance uncertainty) is given by:

w∗ =

√
α

aσ
− α

2aµ0
+O(α

3
2 ) (23)

The leading term corresponds to the inverse volatility allocation.
The asymptotics for σ2

0 → ∞ (large expected return uncertainty µ0 ≪ σ2
0 ) is given

by:

w∗ =
µ0

aσ2
0

− µ0(σ
2
min + σ2)

aσ4
0

+O(σ−6
0 ) (24)
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The asymptotics for σ2
0 → 0 and σmin = 0 (small expected return uncertainty µ0 ≫

σ2
0) is given by:

w∗ =
−σα+

√

α(4µ2
0 + σ2α)

2aµ0σ
+O(σ2

0) (25)

We discuss the behavior of this case as a function of α and the square of the Sharpe

ratio
µ2
0

σ2 in the next section.

4 Multivariate case: Marginalization over covariance matrices

The integration over the covariance matrix distribution P (Σ) in Eq. 4 cannot be per-
formed for an arbitrary distribution. Therefore, in this section, we study three models
of covariance matrix distributions that allow analytical tractability of the problem.

4.1 Model 1: Marginalization over Wishart distribution of covariance matrices

The Wishart distribution S ∼ WN (n,Σ) is commonly used to model sample covariance
matrices of multivariate Gaussian data X ∼ N(0,Σ), where Σ ∈ RN×N [7]. The
multivariate distribution can be seen as an extension of the chi-squared distribution, and
it naturally emerges when analyzing the sample covariance matrix of multivariate normal
data. When we sample n observations from the distribution, the sample covariance
matrix X follows a Wishart distribution with a probability density function given by:

f(X|Σ, n) =
|X|n2−N+1

2 e−
1
2
tr(Σ−1X)

2
n
2
N |Σ|n2 ΓN

(

n
2

) (26)

where |X| is the determinant of matrix X and ΓN (α) is multivariate gamma function.
The expected value is E[X ] = nΣ, and the momentum-generating function isMW (Σ) =

E[etr(WΣ)] = |I − 2WΣ|−n
2 . Here, Σ is an empirical covariance matrix derived from

historical data, and I is an identity matrix.
Consequently, we study the following noise model for the covariance matrix Σ:

S ∼ WN (α,
Σ

α
) (27)

where α is a parameter that controls the noise level. For large α values, most of the
sample matrices S will closely resemble Σ, while for small α values, the elements of
the sample matrices S can deviate significantly from the desired covariance matrix Σ.
The expected value of S is given by the target covariance matrix E[S] = Σ, and the
momentum-generating function is given by:

MW (Σ) = |I − 2

α
WΣ|−α

2 (28)

In Appendix B, we present the distribution of variances and correlation coefficients
of two-dimensional matrices, as described by the model in Eq. 27, for various values of
the parameter α.

8



4.2 The expected utility function and optimal weights

In the case of multivariate Gaussian returns rt ∼ N(µ,Σ), the expected utility function
to be maximized is proportional to:

EN [Ua(µ,Σ)] ∼ (−1)e
a2

2
wT

Σw−aµTw (29)

Correspondingly, the optimization problem to maximize EN [Ua(µ,Σ)] is given by:

w∗ = argmax
w

[

µTw − a

2
wTΣw

]

, (30)

which has the following classical MV solution:

w∗ =
1

a
Σ−1µ (31)

The effect of the transaction cost can also be taken into account1. The minimum variance
portfolios with normalized weights can be obtained from MV portfolios Eq. 30 by setting
all elements of µ to 1. In this case, the term µTw becomes a constant, since the sum
of the weights

∑n
i=1wi is constant if the weights are normalized. This constant term is

irrelevant for optimization.
Marginalization of the expected utility function EN [Ua(µ,Σ)] over the expected re-

turns µ, which follow a normal distribution µ ∼ N(µ0,Σ0), can be done analytically:

∫ ∞

−∞
dµ e−awTµ N(µ;µ0,Σ0) = e

1
2
a2wT

Σ0w−aµT
0 w (32)

where Σ0 is a diagonal matrix with elements equal to the variances of the individual
components of µ.

Integration over all possible realizations of Σ, as given by the noise model in Eq. 27,
of the expected utility EN [Ua(µ,Σ)] in Eq. 29, is provided by:

EΣ[Ua(µ,Σ)] =

∫

dSEN [Ua(µ,S)]f(S|α,
Σ

α
) ∼ (−1)e−aµTw|I − a2

α
WΣ|−α

2 (33)

Using the identity ln det(X) = Tr ln(X), the definition of matrix logarithm ln(I −
X) =

∑∞
n=1(I −X)n/n, and (wTΣw) = Tr((wTw)Σ), we obtain the expected utility

after marginalization over random covariance matrices S:

EΣ[U(µ,Σ)] ∼ (−1)e
−aµTw−α

2
ln
[

1− a2

α
(wT

Σw)
]

(34)

1Additionally, one can take into account the transaction costs by including a term proportional to

the turnover, e
η

2
(w−w0)

2

, in the utility function in Eq. 29. Here, w0 represents the target weights. Since

the form is quadratic in w, it leads to a redefinition of µ and Σ:

µ
′

= µ+
η

a
w0, Σ

′

= Σ+
η

a2
I

9



Combining this result with marginalization over the expected returns µ, we arrive
at:

Eµ,Σ[U(µ,Σ)] ∼ (−1)e
−aµT

0 w+ a2

2
wT

Σ0w−α
2
ln
[

1− a2

α
(wT

Σw)
]

(35)

Later in the text, we assume that the parameters a and α are set in such a way that
the logarithm is real in order to avoid unnecessary notation clutter.

The optimal weights w∗, considering the uncertain expected return and covariance
matrix, are given by:

w∗ = argmax
w

[

µT
0 w − a

2
wTΣ0w +

α

2a
ln

[

1− a2

α
(wTΣw)

]]

(36)

The optimization problem is convex and can be solved with constraints by a numerical
optimizer. In the limit of a large α (representing a small noise level in the covariance
matrix Σ), the Taylor expansion of Eq. 36 can be expressed as:

w∗ = argmax
w

[

µT
0 w − a

2
wT (Σ+Σ0)w

]

(37)

The solution is given by:

w∗ =
1

a
(Σ +Σ0)

−1µ0 (38)

For the case of zero uncertainty in the expected returns, with Σ0 = 0, we have the
following optimization problem:

w∗ = argmax
w

[

µT
0 w +

α

2a
ln

[

1− a2

α
(wTΣw)

]]

(39)

Maximizing Eq. 39 yields the following system of quadratic equations with respect
to w:

µ0

(

1− a2

α
wTΣw

)

− aΣw = 0 (40)

The solution is given by:

w∗ =
1− a2

α
d

a
Σ−1µ0 = gW (q, α) ×

(

1

a
Σ−1µ0

)

(41)

where d = wTΣw, q = µT
0 Σ

−1µ0, and gW (q, α) = 1− a2

α
d. By substituting the solution

(41) into the definition of d, we obtain a quadratic equation with the following solution:

d =
α

2a2q

(

2q + α−
√

α(4q + α)
)

(42)

The solution provided by Eq. 41 coincides with Eq. 25 in the univariate case.

10



Figure 2: Scaling function gW (q, α)

We note that the solution in Eq. 41 appears similar to the optimal weights calculated
in [3] for outcomes that follow a Laplace distribution:

w∗
LD = gLD(q)×

(

1

a
Σ−1µ0

)

(43)

where

gLD(q) = 1− a2d̃

2
, d̃ =

2(1 + q −√
1 + 2q)

a2q
(44)

The scaling function 0 < gW (q, α) ≤ 1 does not depend on the risk aversion parameter
a. It represents the decrease in the absolute allocation level due to non-zero uncertainty
regarding the future covariance matrix in comparison to the standard MV solution w∗ =
1
a
Σ−1µ. Thus, gW (q, α) can be used to compare allocation levels for different return-

to-risk parameters q and varying levels of covariance matrix noise α. We present the
function gW (q, α) in Figure 2 for different values of q and α. The scaling function
gW (q, α) is positive and decreases as the noise level α increases. This suggests that
as uncertainty about future Σ decreases, the allocation level also decreases. In the
conventional MV approach, weights are normalized to one

∑N
i=1 wi = 1, and only relative

weights are considered. While using the EU approach, we provide insights into both the
absolute level and relative weights as functions of model parameters due to the nature
of absolute risk in the utility function. In other words, accounting for uncertainty in the
covariance results in a decrease in the absolute level while maintaining the same relative
allocation.

If the uncertainty of the expected returns is not zero Σ0 6= 0, the optimal weights
w∗ are given by:

w∗ = argmax
w

[

µT
0 w − a

2
wTΣ0w +

α

2a
ln

[

1− a2

α
wTΣw

]]

(45)

11



Eq. 45 can be solved by a convex numerical optimizer, such as CVXPY [8], even when
additional constraints, such as long-only, maximum number of positions, turnover, and
other constraints, are introduced. The unconstrained solution of Eq. 45 can be obtained
by taking the derivative with respect to w. Thus, we arrive at the following system of
cubic equations:

(µ0 − aΣ0w)

(

1− a2

α
wTΣw

)

− aΣw = 0 (46)

The solution is given by:

w∗ =
(1− a2

α
d)µ0

a(Σ+ (1− a2

α
d)Σ0)

(47)

where d = wTΣw. By substituting the solution from Eq. 47 into the definition of d,
we obtain a nonlinear equation for d that can be solved numerically. It is worth noting
that the uncertainty Σ0 of the µ plays a similar role to the regularization (shrinkage)
approach detailed in [9]. However, the EU approach provides a clearer interpretation,
and there is no need to estimate a shrinkage constant.

In the case of non-zero uncertainty in expected returns, i.e., Σ0 6= 0, both the
analytical solution in Eq. 47 and the numerical simulations indicate that the solution of
Eq. 45 can deviate (sometimes significantly) from the MV solution w∗

MV = 1
a
Σ−1µ0. In

this case, the uncertainties of expected returns and the covariance matrix interfere with
each other.

4.3 Model 2: Marginalization over variance using block covariance matrices

In [3], we proposed deriving the covariance matrix from a precision matrix with a graph-
ical structure determined by conditional independence. The resulting matrix has a block
structure. The graphical structure reduces the number of nonzero elements in the covari-
ance matrix, thereby improving the condition number and making the matrix inversion
operation more stable. In this section, we investigate allocation rules for two analytically
solvable cases of covariance matrices, Σm1 and Σm2. In the first model, each block has
an equivariance structure, but there are no cross-correlation terms between blocks:

Σm1 =











(σ2
min;1 + σ2

1)R1

(σ2
min;2 + σ2

2)R2

. . .

(σ2
min;K + σ2

K)RK











, (48)

In the second model, all blocks have the same variance, but the correlation structure
is encoded in equicorrelation blocks:

Σm2 = (σ2
min + σ2)R2m = (σ2

min + σ2)











R11 R12 · · · R1K

R21 R22 · · · R2K
...

...
. . .

...
RK1 RK2 · · · RKK











(49)
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We marginalize the variance of each block, assuming that the future variance follows
a shifted gamma distribution.

If a covariance matrix Σ has a block equivariant structure, the bilinear form wΣ1mw

is given by the sum over K blocks:

wΣm1w =
K
∑

i=1

σ2
iwiRiwi (50)

where σ2
i , Ri, and wi represent the i-th block variance, correlation matrix, and weights,

respectively. Assuming that each block variance σi follows a shifted gamma distribution,
we derive the expected utility function by marginalizing over variance and expected
returns:

Eµ,Σ[U(x)] ∼ (−1)e−awTµ+ a2

2

∑K
i=1 σ

2
min;iw

T
i Riwi

K
∏

i=1

(

1− a2σ2
i

αi
wiRiwi

)−
αi
2

(51)

This leads to the following optimization problem:

w∗ = argmax
w

[

µT
0 w − a

2
wTΣ0w − a

2

K
∑

i=1

σ2
min;iw

T
i Riwi +

K
∑

i=1

αi

2a
ln

[

1− a2σ2
i

αi
wT

i Riwi

]

]

(52)
Eq. 52 can be solved numerically using a convex optimizer, with additional con-

straints if needed. In the limit of large α (small noise level), we have the standard MV
accompanied by shrinkage:

w∗ = argmax
w

[

µT
0 w − a

2
wT (Σmin +Σ+Σ0)w

]

(53)

where wTΣw =
∑K

i=1 σ
2
iw

T
i Riwi and wTΣminw =

∑K
i=1 σ

2
min;iw

T
i Riwi.

In the second model, each block Rij of the covariance matrix Σ2m is represented by
an equicorrelation matrix:

Rij =











1 ρij · · · ρij
ρij 1 · · · ρij
...

...
. . .

...
ρij ρij · · · 1











(54)

At first glance, the model Σ2m might seem like a crude approximation. However,
in practice, sample estimates may not align with the population parameters of the co-
variance matrix, making precise modeling unwarranted. Furthermore, instead of the
N(N+1)/2 parameters in the original covariance matrix, the matrix Σ2m requires fewer
parameters to estimate. Specifically, it only requires a single univariate variance σ2 and
K(K + 1)/2 correlation coefficients ρij , which can be taken as averages per block [10].
The block assumption ensures that the matrix Σ2m is invertible. In [11], advanced sta-
tistical methods were introduced to estimate matrices with such block structures. The

13



global industry classification standard (GICS) groups emerged as the best model for
block selection based on minimizing the Bayesian Information Criterion.

Thus, the optimization problem is as follows:

w∗ = argmax
w

[

µT
0 w − a

2
wTΣ0w − a

2
σ2
minw

TR2mw +
α

2a
ln

[

1− a2σ2

α
wTR2mw

]]

(55)
Based on the symmetry of the problem (assuming that the expected return parame-

ters µ0 and Σ0 follow the same block structure), stocks within each ith block have equal
weight allocation:

wi = [wi, wi, · · · , wi] (56)

and the optimization in Eq. 55 only needs to find K block weights wi, leading to more
stable weights.

4.4 Model 3: Two-state scenario optimization

Stock markets do not grow in a linear trend. There are multiple periods when (almost)
all assets experience severe and prolonged declines. In this section, we aim to calculate
portfolio allocation rules for situations where a modeler assigns a non-zero probability
of a market crash or correction occurring during the expected holding period of the
portfolio.

Financial correlation matrices have a unique property: the correlation between stocks
increases with volatility. In the event of a market crash, volatility spikes, and almost all
correlations approach one. Although it is possible to integrate the correlation coefficient
over an appropriate distribution, operating in a discrete space is more practical. In this
approach, the future is modeled as a two-state system: a normal regime with parameters
µn and Σn, and a stressed regime with parameters µs and Σs. Within this context,
the expected value of the utility function is a discrete sum, with probability p assigned
to the normal regime and probability 1 − p to the stressed regime. Consequently, the
expected utility of the two-state system E2s[Ua] is given by:

E2s[Ua] = pE[Ua(µn,Σn)] + (1− p)E[Ua(µs,Σs)] (57)

For conceptual clarity, we use the expected utility from Eq.29 instead of Eq.35. Taking
the logarithm of Eq. 57, we have the following optimization problem:

w∗ = argmin
w

[log(exp un + expus)] (58)

where un = log(p) + a2

2 w
TΣnw − aµnw and us = log(1 − p) + a2

2 w
TΣsw − aµsw.

The optimization problem corresponds to the minimization of the LogSumExp (LSE)
function [12] and is convex. This convexity can be inferred from the fact that both un and
us are convex functions of w, and the LogSumExp function is also convex. LogSumExp
is an approximation to the maximum maxi∈{n,s} ui with the following bounds:

max {un, us} ≤ log(expun + expus) ≤ max {un, us}+ log(2) (59)
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In the limit of high risk aversion parameter a → ∞, the equation Eq. 58 simplifies to:

w∗ = argmin
w

max
n,s

[a

2
wTΣnw − µnw,

a

2
wTΣsw − µsw

]

(60)

Thus, we end up optimizing the MV utility function for the corresponding state.
In the limit of low risk aversion parameter a → 0, the exponent in the expected value

of logE2s[Ua] can be approximated by the Taylor expansion ex ≈ 1+x+ x2

2 with respect
to the risk aversion parameter a and we have:

w∗ = argmin
w

[a

2
wT Σ̃w − µ̃Tw

]

(61)

where µ̃ = pµn + (1− p)µs and Σ̃ = pΣn + (1− p)Σs + p(1− p)(µn − µs)
T (µn − µs).

Thus w∗ = 1
a
Σ̃

−1
µ̃. In one dimensional case, the optimal weight is given by:

w∗ =
1

a

pµn + (1− p)µs

pσ2
n + (1− p)σ2

s + p(1− p)(µn − µs)2
(62)

The minimum variance portfolio with additional constraints w > 0 and
∑N

i=1 wi = 1
can be obtained from Eq. 61 by setting all expected returns as equal (µn;i = const1
and µs;i = const2). In this scenario, both µT

nw and µT
s w become constants that are

irrelevant for optimization. The optimal weights are then given by:

w∗ = argmin
w

[

wT Σ̃w + cwTw
]

, Σ̃ = pΣn + (1− p)Σs (63)

We observe that the resulting covariance matrix Σ̃ is shrunk towards the covariance
matrix in the stressed regime Σs with a shrinkage coefficient of 1 − p with added L2

regularization term wTw. A similar problem involving the CARA utility function and
a mixture of multivariate Gaussian returns was also studied in [13].

In theory, one can extend the formalism to an arbitrary number of market states to
better capture the fat tails and skewness of real returns. However, in practice, we need to
model future returns and the covariance matrix, both of which are known with significant
uncertainty. In such cases, a two-state model appears optimal, and the hypothetical
stressed state parameters µs,Σs should be modeled using the simplest model possible.

Often, there is no particular benefit in in precisely modeling the covariance matrix in
the stressed regime, Σs. For long-only equity strategies, this matrix can be represented
in a simplified form as an equicorrelation and equivariance matrix with a high correlation
coefficient value, ρs ≈ 0.8. Its variance is denoted by σ2

s . The matrix is defined as:

Σs = σ2
s((1 − ρs)I + ρs11

T ) (64)

where I is an identity matrix and 11T is a matrix of ones. In Appendix C, we provide a
scatter plot of monthly average volatility vs. monthly average correlation between index
constituents for the years 2016 and 2022, which correspond to the normal regime, and
for the years 2008 and 2020, which correspond to the stressed regime. The historical
values can be used to specify Σs.
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In general, there are three regimes for correlation coefficients in the stressed regime,
and the specifics depend on asset classes and investment strategies. In equities, the
correlation between assets tends to approach ρs = 1 as all assets move in unison. For
statistical arbitrage or relative value strategies, assets that are typically correlated can
become anti-correlated, with ρs = −1. Furthermore, during a crash, the correlation
between different asset classes might approach zero, ρs = 0, as price dynamics become
chaotic. In such scenarios, price movements are largely influenced by liquidity demands
or the need to cover margin calls.

5 Concluding Remarks

In both our previous work [3] and in this paper, we have investigated possible ways to
go beyond the limitations of the classical MV approach. We found it useful to think
of MV as a limiting case of the more general CARA expected utility maximization in
the case of multivariate Gaussian returns with zero uncertainty of expected returns and
the covariance matrix. We demonstrated that it is often technically easier to start the
analysis by utilizing the formal definition of expected utility and its optimization.

In the EU approach, the expected value of the utility function can be calculated for
returns distributed according to the ALD [3]. This allows for studying the effects of fat
tails and skewness in the outcome distribution. We have shown that stock returns on
daily, weekly, and monthly scales can be well approximated by the ALD with moderate
skewness values. The skewness of the outcome becomes more important for quantitative
strategies, like those with trend-following programs, which demonstrate positive skew-
ness, or options or volatility selling, which exhibit negative skewness. Paradoxically, the
expected value of the utility function with returns following a skewed normal distribution
cannot be expressed as an elementary function. In this sense, the ALD offers the best of
both worlds: it takes into account the properties of real-world return distributions and
allows for full analytical tractability of the problem.

Uncertainty about the future values of model parameters is a cornerstone assumption
in any financial modeling. To account for this, we model the expected returns and the
covariance matrix as random variables. The corresponding expected values of the utility
function are obtained by marginalization (integration) over all possible values of these
random variables. In simple terms, the marginalization of expected returns results in the
shrinkage of the covariance matrix. Taking into account the uncertainty of the covariance
matrix leads to a decrease in the absolute level of allocation. This fact is missing when
returns are normalized.

Finally, we demonstrate that the worst-case scenario allows for an analytical solution
using the Karush–Kuhn–Tucker (KKT) method [3]. In the worst-case scenario, the
maximum weight is allocated to the worst-performing asset. The expected utility of
such a minimax (MM) portfolio has a convex form:

argmin
w

[

|w|∞ +
b

2
wTΣw

]

, s.t.

N
∑

i=1

wi = 1, wi ≥ 0 (65)
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where the infinity norm |w|∞ selects the maximum weight, defined as |w|∞ = maxiw.
The solution is a combination of uniform and MV weights and does not suffer from the
excessive concentration that is typical of the pure MV approach. The utility serves as
an alternative to risk-parity, but it is convex and has a clear interpretation.

The diversity of trading styles, asset classes, and the use of leverage by portfolio
managers justify the variety of objective functions available for optimization studied
in this paper. Also, the exponential utility function is commonly used in many ar-
eas of economics and decision-making science. Extensions of MV to skewed, fat-tailed
distributions (such as ALD), differentiating between mean optimization and worst-case
optimization, and considerations of the uncertainty of outcome distribution parameters
are recurring themes in this research. We hope that the results obtained will prove useful
in both theoretical and practical contexts.
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Appendix A: Statistical uncertainty in variance and correlation coeffi-

cients

In this section, we revisit well-established results concerning the finite sample uncertainty
of variance and correlation coefficients, specifically in the idealized context of Gaussian
returns. We anticipate that accounting for distribution with fatter tails would likely
heighten the uncertainty estimates. Specifically, we focus on the conditional distribution
of the population variance and correlation coefficient, given the sample variance and
correlation coefficient. Although we do not apply the derived functional forms of uncer-
tainty in the models discussed in this paper, we present them to illustrate how sample
values may deviate from population parameters.

5.1 Sample uncertainty of variance

Assume that returns are i.i.d. and generated from a Gaussian distribution rt ∼ N(µ, σ2).
The joint distribution of µ and σ2, given data D = {x1, x2, ..., xn}, is:

p(µ, σ2|D) ∼ 1

σn+2
e−

∑n
i=1(xi−µ)2

2σ2 (66)

Assuming the mean is unknown and the prior for µ is p(µ) ∼ const, integrating over
µ yields the marginal distribution of variance σ2 given the sample variance estimate s2:

p(σ2|s2) ∼ (σ2)−
n+1
2 e−

(n−1)s2

2σ2 (67)

This is equivalent to a scaled inverse chi-squared distribution χ2(ν, s2) with param-

eters ν = n− 1 and scale s2 =
∑n

i=1(xi−x̄)2

n−1 .
In Figure 3, for a commonly used values of n = 20, 60, 252 days for volatility

estimation, we present the distribution of the population volatility σ corresponding to
sample volatilities s = 15%, 25%, and 30%. It can be observed that the variance
distributions are broad and overlapping. Analytically, for x ∼ χ2(ν, s2), the mean is

given by E[x] = s2 n−1
n−3 and the variance by V ar[x] = s4 2(n−1)2

(n−3)2(n−5) . For n = 20, the

mean is 19
17s

2, and the standard deviation is 0.4s2, with the ratio of the mean of the
variance to its standard deviation being 19

17/0.4 = 2.8.
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Figure 3: Conditional distribution of population volatility for a finite sample of obser-
vations

Figure 4: Conditional distribution of correlation coefficient for finite sample of observa-
tions

5.2 Sample uncertainty of correlation coefficient

The conditional distribution of the correlation coefficient ρ, given the sample estima-
tion r, for a bivariate normal distribution was calculated in [14]. The formula for this
distribution is as follows:

π(ρ|r) = Γ(ν + 1)√
2πΓ(ν + 1

2)

(

1− r2
)

ν−1
2

(

1− ρ2
)

ν−2
2 (1− rρ)

1−2ν
2 2F1(

3

2
,−1

2
, ν +

1

2
;
1 + rρ

2
)

(68)
here, 2F1 is the Gauss hypergeometric function and ν = n− 1.

In Figure 4, we present the distribution of the population correlation coefficient ρ for
sample correlations of r = 0.2, 0.5, and 0.8 with sample sizes of n = 20, 60, and 120.

In the financial industry, the convention is to use daily data with n = 20 observations
(a one-month window) for volatility estimation, and a year of data with n = 252 obser-
vations for correlation and covariance matrix estimation. This approach can be seen as
a practitioner’s implicit trade-off between sample uncertainty and uncertainty caused by
non-stationarity.
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Appendix B: Distribution of parameters of two-dimensional Wishart ma-

trices

In this section, we simulate the distribution of two-dimensional Wishart matrices as
described by the model in Eq. 27:

S ∼ W2(α,
Σ

α
)

with matrix Σ given by:

Σ =

[

σ2
A ρABσAσB

ρABσAσB σ2
B

]

where the volatility of asset A is σA = 0.2 (20% annualized), that of asset B is σB = 0.4
(40% annualized), and the correlation coefficient is ρAB = 0.5. We simulate N = 105

samples and display the distribution of volatilities and the correlation coefficient. The
result of the simulation is shown on Figure 5.

6 Appendix C: Dependence between volatility and correlation coeffi-

cient

In this section, we calculated the average volatility and average correlation coefficient
for major stock indexes on a monthly scale for the years 2008, 2016, 2020, and 2022. We
then plotted these values on a scatter plot Figure 6. Figures for all indexes are shown in
2. The constituents of the index were taken from the first day of each respective year.
This result can be used to model the covariance matrix in the stressed regime Σs in
equivariant and equicorrelation approximation.

2Figures for all indices: link to the Supplementary Material page on GitHub.
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Figure 5: Volatility (left panels) and correlation coefficient (right panels) distribution
for α = 10 (high noise level, top panels), α = 100 (medium noise level, middle panels),
and α = 1000 (low noise level, bottom panels)
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Figure 6: Scatter plot of average volatility versus average correlation coefficient for the
SPX, CCMP, NKY, and SHCOMP indices. The red dashed line corresponds to the
maximum correlation value, and the black solid line corresponds to the Huber regression
curves.
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