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Abstract

This paper introduces the method of composite quantile factor model for factor

analysis in high-dimensional panel data. We propose to estimate the factors and factor

loadings across multiple quantiles of the data, allowing the estimates to better adapt

to features of the data at different quantiles while still modeling the mean of the

data. We develop the limiting distribution of the estimated factors and factor loadings,

and an information criterion for consistent factor number selection is also discussed.

Simulations show that the proposed estimator and the information criterion have good

finite sample properties for several non-normal distributions under consideration. We

also consider an empirical study on the factor analysis for 246 quarterly macroeconomic

variables. A companion R package cqrfactor is developed.
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1 Introduction

Factor model is a useful statistical tool to describe data with unobserved and systematic

components. Detailed textbook discussions on classical factor analysis for data with a fixed

or small number of variables can be found in Lawley and Maxwell (1971); Anderson (2003).

Following the important work in Stock and Watson (1998, 2002a,b); Bai and Ng (2002); Bai

(2003) on high-dimensional panel data, the research on factor analysis in panel data has

been extended to many directions, and there now exists a large body of literature on factor

analysis for high-dimensional panel data. See Bai and Wang (2016) for a review on recent

developments in this burgeoning field.

At the heart of factor analysis for high-dimensional panel data is the use of principal com-

ponent analysis (PCA) method. The estimates for factors are chosen to be the normalized

eigenvectors of the sample covariance matrix of the data, based on which we can estimate the

factor loadings using the least-squares (LS) method. These eigenvectors coincide with the

solutions in PCA, and the procedure’s simplicity greatly contributes to its wide popularity

as a research tool in empirical macroeconomics and finance.

Despite its simplicity, the PCA-based procedure typically imposes some higher-order

moment conditions on the factor and error terms (see, e.g., the assumptions in Stock and

Watson (2002a); Bai (2003)) in order to obtain desirable asymptotic results. However, the

sample covariance matrix on which PCA operates may be irrelevant for data with infinite

(or very large) variances and PCA becomes invalid. Weakening or even removing these

conditions will be appealing since many data in applications such as finance are either heavy

tailed or of unknown nature. Two approaches for robust factor analysis have emerged in

recent literature. Chen et al. (2021) introduce the quantile factor models (QFM), where

both the factors and factor loadings are quantile-dependent. At the quantile position 0.5,

QFM estimator can be interpreted as the least absolute deviation (LAD) estimator that

may be robust to certain error distributions. Ando and Bai (2020) provide a more general

framework that adds a regression component with heterogeneous coefficients. By assuming
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the factors and errors follow a joint elliptical distribution, He et al. (2022) propose a second

approach to replacing the sample covariance matrix in PCA with the spatial Kendall’s tau

matrix that can handle non-normal distributions with large or infinite variances, a situation

in which the standard PCA fails.

This paper studies another approach to robust factor analysis and we term it composite

quantile factor models (CQFM). Our approach is inspired by the interesting work in Zou

and Yuan (2008). Zou and Yuan (2008) notice that, in a linear regression with infinite

error variance, the parameter estimator will no longer have root-n consistency or asymptotic

normality; a robust procedure such as LAD can be used but its relative efficiency to the LS

estimator can be very small. The authors propose to estimate the regression coefficients by

simultaneously minimizing the standard quantile regression objective function at multiple

quantile positions and call this procedure composite quantile regression (CQR). Zou and

Yuan (2008) demonstrate the good finite sample properties of the CQR estimator for several

non-normal error distributions.

Although factor analysis is different from linear regression, they are intrinsically con-

nected (see, e.g., Stock and Watson (1998) for the use of LS method in deriving the solution

to the factor model). If CQR works in linear regression, we conjecture a variant of it will also

work in factor model. This paper studies the extension of CQR to the estimation of factor

model by simultaneously minimizing the objective function at multiple quantiles. The re-

sulting estimates are shown to have good finite sample properties under various non-normal

error distributions. Because the CQFM visits different quantiles of data during estimation,

the estimated factors can usually pick up more skewness (and kurtosis) information about

the data, often resulting a better fit of the model. It is important to point out that, although

CQFM uses the method of quantile regression, its estimates are for the mean factor model.

This sets our paper apart from the work in Ando and Bai (2020); Chen et al. (2021), where

the goal is to estimate parameters at a specific quantile position.

We make the following contributions to the growing literature on panel factor analysis.
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First, we introduce CQFM as a new method to perform factor analysis on the mean fac-

tor model that can capture features of data at different quantiles. Second, we develop the

asymptotic distribution results for the estimated factors and factor loadings; an informa-

tion criterion is also developed to consistently select the factor number. Third, we provide

extensive simulation evidence to show that CQFM works well for several non-normal error

distributions. A special case of CQFM is when one chooses to optimize the objective func-

tion at a single quantile position, say 0.5. This reduces CQFM to the QFM in Chen et al.

(2021). In several simulation examples, we demonstrate the advantage of CQFM as a result

of using information at multiple quantiles. We also develop an R package cqrfactor that

implements the CQFM method in this paper. The cqrfactor package can be downloaded

from https://github.com/xhuang20/cqrfactor.

The rest of the paper is organized as follows. Section 2 sets up the objective function

for CQFM and discusses the estimation procedure and the asymptotic results. Section 3

discusses the information criterion for the selection of factor numbers. Section 4 presents all

simulation results. Section 5 applies CQFM method to the modeling of the quarterly macroe-

conomic data in McCracken and Ng (2020). Section 6 concludes. The online supplement

contains all proofs, additional figures and tables.

2 Model estimation and the asymptotic results

2.1 The model and the algorithm

Let Yit be the observation at time t for the ith cross-section unit. Consider the following

factor model:

Yit = λ′
0iF0t + εit, for i = 1, · · · , N, t = 1, · · · , T, (1)

where F0t is an r × 1 vector of factors, λ0i is an r × 1 vector of factor loading, and εit is the

error term. Both F0t and λ0i are unobserved, and the goal is to estimate them jointly. We
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assume the number of factors (r) is known. An information criterion will be developed to

estimate r consistently in Section 3. Rewrite eq. (1) in matrix form to have

Y
T×N

= F0
T×r

Λ′
0

r×N

+ ε
T×N

. (2)

where Yit and εit are elements of Y and ε, respectively, and

F0 =
[
F01, · · · , F0t, · · · , F0T

]′
, Λ0 =

[
λ01, · · · , λ0i, · · · , λ0N

]′
. (3)

Let τ be a quantile position with 0 < τ < 1 and b0τ be the 100τ% quantile of εit. For the

quantile factor model, we seek the estimates for b0τ , F0t, and λ0i that minimize the following

QFM objective function:

1

NT

N∑
i=1

T∑
t=1

ρτ (Yit − bτ − λ′
iFt) , (4)

where ρτ (u) = u(τ − I(u ≤ 0)) is the check function in quantile regression. The estimates

from eq. (4) depend on τ and can be written as F̂t(τ) and λ̂i(τ), an approach adopted in

Ando and Bai (2020); Chen et al. (2021).

In CQFM, instead of estimating the model at a single quantile position τ , we estimate

the model simultaneously at multiple quantiles by choosing a sequence of K quantiles, 0 <

τ1 < τ2 < · · · < τK < 1, and minimizing the following objection function:

1

NT

K∑
k=1

N∑
i=1

T∑
t=1

ρτk(Yit − bτk − λ′
iFt), (5)

where bτk estimates b0τk , the 100τk% quantile of εit. Let λ̂i and F̂t be the estimators for λ0i

and F0t in eq. (5). Unlike the solutions to eq. (4), λ̂i and F̂t are not dependent on any specific

quantile position, and they estimate parameters in the mean factor model. By minimizing

the objective function across multiple quantiles, the estimators can adapt to data features

at different quantiles while still giving estimates for the mean of the process. We usually
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select equally spaced quantiles with τk = k
K+1

for k = 1, 2, · · · , K and K is an odd number

such as 5 or 7. This will always include the 50% quantile in estimation, but an even number

of quantiles also works for eq. (5). The number K can be viewed as a tuning parameter of

CQFM. In the special case of K = 1, i.e., when a single quantile position is used in eq. (5),

CQFM reduces to the quantile factor model. Our R package can estimate both CQFM and

QFM.

There is no closed-form solution to the minimization exercise in eq. (5), b̂τk , λ̂i, and F̂t

need to be obtained through an iterative algorithm. Since λi and Ft appear as a product

in eq. (5), they are not separately identifiable. We use the following normalization for

identification purposes:

1

T

T∑
t=1

F̂tF̂
′
t = Ir, an identity matrix of dimension r,

1

N

N∑
i=1

λ̂iλ̂
′
i = Σλ̂, a diagonal matrix with decreasing diagonal elements.

(6)

We describe the steps of the algorithm below. Let s denote the iteration step and the ranges

of the subscripts i, t, k are the same as those appear in eq. (5).

Step 1. Choose a random starting value for F
(0)
t for all t. Use F

(0)
t to get the initial

estimates for λ
(0)
i and b

(0)
τk .

Step 2. Given b
(s−1)
τk and λ

(s−1)
i , obtain F

(s)
t that minimizes eq. (5).

Step 3. Given b
(s−1)
τk and F

(s)
t , obtain λ

(s)
i that minimizes eq. (5).

Step 4. Given λ
(s)
i and F

(s)
t , obtain b

(s)
τk that minimizes eq. (5).

Step 5. Repeat Steps 2 to 4 for s = 1, 2, · · · until estimates converge. Normalize the

final solution according to eq. (6).

A few remarks follow.

Remark 1. The minimization exercise in eq. (5) is non-convex in the parameters. However,

it is convex, for example, when we solve λ
(s)
i given b

(s−1)
τk and F

(s−1)
t . Our simulation experi-

ence indicates the final solution is not sensitive to the starting values of F
(0)
t . Our R package
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cqrfactor allows the user to supply different random seeds to initialize F
(0)
t , making it easy

to check the solution’s sensitivity to starting values. This iterative strategy is also used in

several other papers such as Bai (2009); Chen et al. (2021).

Remark 2. When solving eq. (5) in steps 2 to 4, we use the majorization-minimization

(MM) algorithm for quantile regression described in Hunter and Lange (2000). This is one

of the several popular methods for solving a quantile regression problem.

Remark 3. In step 5, there is no unique way to define the convergence of the algorithm.

Between steps s and s+ 1, one can check the difference in the loss function eq. (5) to see if

it is small enough; alternatively, one can check the (average) absolute change in parameter

estimates between steps s and s+ 1.

2.2 Asymptotic results of the estimators

We make the following assumptions to derive the asymptotic results.

Assumption 1. The factors F0t are random with 1
T

∑T
t=1 F0t → E(F0t) = 0 and 1

T

∑T
t=1 F0tF

′
0t →

ΣF0 = Ir as T → ∞. The factor loadings have the limit 1
N

∑N
i=1 λ0iλ

′
0i → Σλ0 , a diagonal

matrix with σii > σjj > 0 if i < j.

Assumption 2. The distribution of the error term εit has an absolutely continuous cumula-

tive function Fε with a continuous density function fε that is uniformly bounded away from

0 and ∞.

Assumption 3. The error terms εit are i.i.d. and are independent of the factors F0t across

all i and t.

Assumption 1 is almost identical to Stock and Watson (2002a, Assumption F1) and Chen

et al. (2021, Assumption 1(i)) and can help identify both F0 and Λ0. See Bai and Ng (2013)

for a more detailed discussion on the identification in factor models. Assumption 2 is a stan-

dard one in quantile regression. This assumption is made for the unconditional distribution
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of εit. If we consider the conditional distribution of εit given F0t in Assumption 2, all expec-

tations in the proof will be conditional. The i.i.d. requirement in Assumption 3 is strong.

However, this assumption simplifies the presentation of the asymptotic results and allows us

to make direct comparison of our asymptotic results to the cross-section regression result in

Zou and Yuan (2008); in addition, the simple form of our asymptotic results facilitates the

efficiency comparison between the CQFM-based factors and the PCA-based factors in Bai

(2003) (see a remark following Theorem 1 for a discussion). We can modify Assumption 3

so that it is conditional on F0t, and the asymptotic covariance in Theorem 1 will have the

standard sandwich form. We discuss this in a remark following Theorem 1. Our simulation

section includes results for errors with heteroskedasticity and AR(1) structure, and CQFM

continues to give good results especially when the sample size is large.

The following theorem gives the asymptotic distribution of the estimated factors and

factor loadings.

Theorem 1. Under Assumptions 1 to 3, the asymptotic distribution of
√
N(F̂t − F0t) is

N(0,ΣCQFM,F ) with

ΣCQFM,F =

∑K
k1=1

∑K
k2=1min(τk1 , τk2)(1−max(τk1 , τk2)(∑K

k=1 fε(b0τk)
)2 Σ−1

λ0
;

the asymptotic distribution of
√
T (λ̂i − λ0i) is N(0,ΣCQFM,λ) with

ΣCQFM,λ =

∑K
k1=1

∑K
k2=1 min(τk1 , τk2)(1−max(τk1 , τk2)(∑K

k=1 fε(b0τk)
)2 Σ−1

F0
.

The format of the limiting distributions in Theorem 1 resembles the result for linear

regression coefficients in Zou and Yuan (2008, Theorem 2.1).

Remark 4. WhenK = 1, CQFM reduces to the quantile factor model. Results in Theorem 1

are comparable to those in Ando and Bai (2020). Use the asymptotic distribution for factor
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loadings as an example. At quantile position τ , its asymptotic variance is

Ando and Bai (2020, Theorem 2): τ(1− τ)Γ−1
i,0,τVi,0,τΓ

−1
i,0,τ , (7)

where both Vi,0,τ and Γi,0,τ are defined in their theorem and “Vi,0,τ” is similar to ΣF0 in

Theorem 1. This sandwich estimator for covariance is commonly found in other papers on

quantile regression with panel data such as Kato et al. (2012); Galvao and Kato (2016);

Chen et al. (2021). In Theorem 1 with K = 1, based on eqs. (S.41) and (S.43), we have

ΣCQFM,λ = τ(1− τ)
(
fε(b0τ )ΣF0

)−1

ΣF0

(
fε(b0τ ),ΣF0

)−1

=
τ(1− τ)

fε(b0τ )2
Σ−1

F0
, (8)

which matches the result in Ando and Bai (2020). Our result is made simpler by the i.i.d.

errors in Assumption 3 that allow us to separate fε(b0τk) from ΣF0 in the term fε(b0τk)ΣF0 ;

other papers typically consider the distribution of εit conditional on either some regressors

or the factors, see, for example, the term “Γi,0,τ = T−1
∑T

t=1 git(0|·)zit,0,τzit,0,τ” in Ando and

Bai (2020, Theorem 2), where the conditional density function git(0|·) cannot be taken out

of the summation sign as T → ∞. This simplification can also be found in Koenker (2005,

Theorem 4.1) for the linear quantile regression with i.i.d. errors. If the distribution of εit is

conditional on F0t, ΣCQFA,λ will have a format similar to eq. (7).

Remark 5. If the true factor and factor loading, F0t and λ0i, do not meet the normalization

conditions in eq. (6), F̂t and λ̂i estimate a rotation of the corresponding true values. Our

proof can be adapted to incorporate a rotation matrix. To simplify the presentation of the

asymptotic results, we assume factors and loadings are identifiable under the normalization

assumptions and omit the rotation matrix in Theorem 1, similar to Ando and Bai (2020).

Remark 6. Although the asymptotic results in Theorem 1 are developed for the panel

mean factor model while those in Ando and Bai (2020); Chen et al. (2021) are for panel

quantile factor model, all proofs are related to techniques in quantile regression. Ando and
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Bai (2020) give a proof based on the uniform consistency of parameter estimates and higher-

order moment conditions on the error term; Chen et al. (2021) derive the asymptotic results

based on a smoothed quantile objective function by replacing the indicator function with

a differentiable kernel function. In our proof, we replace the objective function with an

asymptotic quadratic form of the parameters and solve λ̂i − λi and F̂t − F0t directly from

the first-order conditions, similar to the proof strategy in Zou and Yuan (2008) for CQR and

Koenker (2005) for quantile regression.

Remark 7. To compare the relative efficiency between CQFM and PCA-based solutions, we

compute the asymptotic relative efficiency (ARE) of CQFM relative to PCA — the ratio of

their asymptotic variances. Consider the estimator for F0. In CQFM, its variance is given in

Theorem 1; for PCA-based factor analysis, the variance is given in Bai (2003, Theorem 1(i)).

We will simplify the variance expression for F̂t in Bai (2003, Theorem 1(i)) to facilitate the

comparison. The notation for factor estimator is “F̃t” in Bai (2003), while we use F̂PCA
t to

denote the same estimator. An r × r rotation matrix, H = (Λ′
0Λ0/N)(F ′

0F̂
PCA/T )V −1

NT , is

introduced in Bai (2003, p. 158) to describe the indeterminacy of the solutions, where VNT

is a diagonal matrix that contains the eigenvalues of (NT )−1Y Y ′. For our purpose, it will

be desirable to set H = Ir so that
√
N(F̂PCA

t −H ′F0t) in Bai (2003, Theorem 1(i)) becomes
√
N(F̂PCA

t −F0t), matching the format in Theorem 1. Replacing F0 in H with the estimator

F̂PCA and using the normalization FPCA′FPCA/T = Ir, we obtain VNT = Λ′
0Λ0/N → Σλ,

where the convergence result follows Assumption B in Bai (2003). This result, combined

with equation (7) in Bai (2003, p. 150), suggests the variance of
√
N(F̂PCA

t −H ′F0t) in Bai

(2003, Theorem 1(i)) can be written as σ2
εΣ

−1
λ if εit is i.i.d. and independent of F0t, where

σ2
ε is the variance of εit and is assumed to be a finite number. This result greatly simplifies

the efficiency comparison between CQFM and PCA-based factor analysis. Define the ARE
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of CQFM relative to the PCA-based factor analysis as

ARE(K)F =
σ2
ε

(∑K
k=1 fε(b0τk)

)2
∑K

k1=1

∑K
k2=1 min(τk1 , τk2)(1−max(τk1 , τk2)

, (9)

which is identical to equation (3.1) in Zou and Yuan (2008). As a result, we can apply (Zou

and Yuan, 2008, Theorem 3.1) to show that the ARE for the factor estimator from CQFM

in eq. (9) has a relative efficiency of at least 0.7026 with respect to that of the PCA-based

factor analysis when K → ∞. This result suggests that, compared to PCA, CQFM factors

will have about 30% efficiency loss in the worst scenario. This is a conservative theoretical

result. In our simulations (see Table 3 and Table S.3 in the supplement), the mean squared

error (MSE) of the estimated component λ̂′
iF̂t are mostly smaller or much smaller than that

of PCA-based estimate. Efficiency loss, if any, is small based on our simulation study.

Remark 8. To compute ΣCQFM,F and ΣCQFM,λ, we first note that quantities such as τk1 and

τk2 , along with K, are chosen beforehand by the researcher. Σλ0 can be replaced with the

normalized diagonal matrix Λ̂′Λ̂/N while ΣF0 is Ir. There is no unique way to estimate the

density fε(b0τk) (and its inverse). Since fε(b0τk) is the density of ε at 100τk% quantile and

the estimate for b̂τk is available, we can first obtain the residuals ε̂it, and use a consistent

nonparametric density estimator for the residuals to obtain f̂ε(b̂τk). Because of the i.i.d.

error assumption, this simple estimate for ΣCQFM,F and ΣCQFM,λ is always positive definite.

Remark 9. In a quantile factor model, the conditional quantile at τk can be written as

QYit
(τk) = λ0i(τk)

′F0t(τk) + b0τk , (10)

where the factors and factor loadings vary with τk. But our factor model in eq. (1), when

used inside eq. (5), have constant factors and factor loadings across selected quantiles. This

is not a misspecification since our goal is to estimate the λ0i and F0t in the mean of eq. (1)

but not λ0i(τk) and F0t(τk) in eq. (10). Much like in a standard linear regression, in addition
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to the least-squares method, one can use the lasso, principal components regression, LAD,

Huber loss regression, CQR, etc., for estimation, there are several ways to estimate the

mean factor model, and CQFM is one of the alternatives. While still permitting the quantile

model in eq. (10) for the data, CQFM combines the mean factor model in eq. (1) with the

composite quantile loss in eq. (5). A single quantile loss in eq. (4) gives estimates that adapt

to data at a particular quantile. By using multiple quantiles, CQFM is designed to give

the mean estimates that can adapt to data at multiple quantiles. Our simulation results

demonstrate that this approach works well for several examples of data with asymmetry,

heteroskedasticity and time series correlation.

3 Factor number selection

The number of factors is assumed to be known in Theorem 1. We discuss the selection of

factor number in this section. Since the important work in Bai and Ng (2002) on consis-

tent factor number selection, there has been continued development of new methods in the

literature. See Bai and Ng (2007); Amengual and Watson (2007); Hallin and Lǐska (2007);

Onatski (2009); Lam and Yao (2012) for panel mean regression models and Ando and Bai

(2020); Chen et al. (2021) for panel quantile regression models.

Denote r the estimated number of factors. To work with eq. (5), we propose the following

information criterion (IC):

IC(r) = log

[
1

NT

K∑
k

N∑
i=1

T∑
t=1

ρτk(Yit − b̂τk(r)− λ̂i(r)
′F̂t(r))

]

+ r × q(N, T ), (11)

where

q(N, T ) =

(
N + T

NT

)
log

(
NT

N + T

)
, (12)

and we use b̂τk(r), λ̂i(r) and F̂t(r) to denote estimates based on r number of factors. This
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information criterion is similar to the one used in Ando and Bai (2020) and ICp1 in Bai and

Ng (2002, p. 201). Theorem 2 shows the consistency of IC(r). Let CNT = min(N, T ).

Theorem 2. Under Assumptions 1 to 3, as N, T → ∞, if q(N, T ) → 0, the information

criterion in eq. (11) selects the number of factors consistently.

See the online supplement for the proof.

Remark 10. The condition for q(N, T ) in Theorem 2 defines a class of penalty functions,

and eq. (12) is an example of possibly many other penalty functions. The IC with eq. (12)

works quite well for most of the simulation examples in our study. However, it fails when

the error term follows a t distribution with 1 degree of freedom (t1). In this case, we propose

another q(N, T ) function that works well with the t1 distribution

q(N, T ) = log

(
log

(
NT

N + T

))(
N + T

NT

)
. (13)

This penalty function also meets the requirement for q(N, T ) in Theorem 2, but it converges

to 0 faster and, consequently, imposes less penalty than eq. (12) . Its performance for the t1

error distribution is reported in Table S.4 in the online supplement.

4 Monte Carlo simulation

In this section, we use Monte Carlo simulation to study the finite sample properties of the

CQFM method. To compare CQFM to other methods, we use the R code in He et al. (2022)

to compute the robust two-step (RTS) factors and the matlab code in Chen et al. (2021) to

compute the QFM factors at quantile position 0.5 (QFM(0.5)) and also the estimated factor

numbers. When space permits, we also add the PCA results.

The number of quantiles in CQFM is an additional tuning parameter, and we choose

K = 5 for demonstration purposes, which corresponds to the quantiles of 0.17, 0.33, 0.5, 0.67

and 0.83. A convergence criterion of 10−3 is used in the MM algorithm.
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4.1 Data simulation

Consider the following 3-factor data generating process (DGP):

Yit =
3∑

j=1

λ0i,jF0t,j + εit,

where F0t,1 = 0.8F0t−1,1 + e1t, F0t,2 = 0.5F0t−1,2 + e2t, F0t,3 = 0.2F0t−1,3 + e3t, and both e and

λ0i,j are i.i.d. N(0, 1). This is identical to the DGP in Chen et al. (2021, Section 5.1) except

that we consider several asymmetrical i.i.d. errors. They are summarized in Table 1. Let γ1

and γ2 be the skewness and excess kurtosis coefficient, respectively.

Table 1: Description of the 5 asymmetric error distributions

Error distribution parameter setting

1. skewed normal (sn) µε = 0, σε = 1, γ1 = 0.99

2. skewed t µε = 0, σε = 1, γ1 = 0.99, γ2 = 3

3. asymmetric Laplace location= 0, scale= 0.5, asymmetry= 4

4. log-normal µ = 0, σ = 1.5

5. mixture of skewed normal 0.9 · sn(0, 1, 0.99) + 0.1 · sn(0, 9, 0.99)

The R package sn is used to simulate the skewed normal and skewed t distributions in

Table 1. If one specifies the skewness parameter directly, the sn package restricts |γ1| <

0.99527; we set γ1 = 0.99 for the first two error distributions. The asymmetric Laplace error

term is generated using the rlaplace function in the R package LaplacesDemon. The three

numbers, 0, 0.5, 4 correspond to the location, scale, and kappa parameter in the rlaplace

function in R. For the asymmetric Laplace distribution, a kappa value of 4 implies a skewness

of about −1.99. Next, we consider a more skewed log-normal distribution with mean and

s.d. equal to 0 and 1.5, respectively. These are the parameter values for the log-normal

density, which implies the error term εit has its mean, s.d., and skewness equal to 3.08, 8.97

and 33.47. For both the asymmetric Laplace distribution and the log-normal distribution,

we subtract the theoretical mean from the simulated errors so that all error terms have zero
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mean. Finally, we consider a mixture of skewed normal distribution, where sn(0, 1, 0.99)

and sn(0, 9, 0.99) denote the skewed normal distribution with µε = 0, σε = 1, γ1 = 0.99 and

µε = 0, σε = 3, γ1 = 0.99, respectively. The weights for the mixture normal are 0.9 and 0.1.

We consider five different sample sizes: (N, T ) = (50, 100), (100, 50), (100, 200), (200, 100)

and (300, 300). For each error distribution and sample size, we report the value of an

evaluation metric based on 100 replications for every estimation method.

Tables S.2 to S.4 in the online supplement report the results for 5 symmetric error distri-

butions, including N(0, 1), t distribution with 1 degree of freedom, etc. Tables S.5 to S.10

report the results for the following heteroskedasticity and AR(1) asymmetric errors:

heteroskedasticity Yit =
3∑

j=1

λ0i,jF0t,j + [2 + cos(2π × λ0i,4F0t,4)]× εit, (14)

AR(1) error Yit =
3∑

j=1

λ0i,jF0t,j + εit with εit = 0.5εi,t−1 + uit, (15)

where λ0i,4 and F0t,4 are i.i.d. N(0, 1) and εit and uit are asymmetric errors defined in Table 1.

CQFM is found to have good finite properties in these cases too.

4.2 Estimation of the factor and factor loading

Similar to Chen et al. (2021, Table 1), Table 2 reports the average adjusted R2 from regress-

ing F0t,1, F0t,2, and F0t,3 on the 3 estimated factors from the RTS, QFM(0.5), and CQFM

methods. Results in Table 2 assess how well the estimated factors span the space spanned

by the true factors. Table S.1 in the supplement expands Table 2 to include the PCA results.

For the first two error distributions with small skewness in Table 2, all three methods

perform well. Their differences in the adjusted R2 mostly appear in the third digit. Still, we

see CQFM performs slightly better than RTS and QFM. In the case of asymmetric Laplace

error, the difference between CQFM and the other two methods start to grow larger. For

example, for the sample size (50, 100), the adj. R2 associated with F0t,3 is 0.8682 for QFM,
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Table 2: Adj. R2 of regressing 3 true factors on the estimated factors

(T,N)
R2

1,RTS R2
2,RTS R2

3,RTS R2
1,QFM R2

2,QFM R2
3,QFM R2

1,CQFM R2
2,CQFM R2

3,CQFM

εit ∼ skewed normal

(50,100) 0.9950 0.9914 0.9893 0.9915 0.9857 0.9821 0.9951 0.9917 0.9898

(100,50) 0.9909 0.9828 0.9786 0.9847 0.9712 0.9645 0.9911 0.9832 0.9790

(100,200) 0.9978 0.9961 0.9949 0.9960 0.9928 0.9908 0.9979 0.9962 0.9952

(200,100) 0.9959 0.9921 0.9898 0.9926 0.9856 0.9816 0.9961 0.9924 0.9903

(300,300) 0.9986 0.9975 0.9967 0.9974 0.9953 0.9938 0.9987 0.9976 0.9969

εit ∼ skewed t

(50,100) 0.9950 0.9916 0.9895 0.9936 0.9895 0.9866 0.9954 0.9923 0.9903

(100,50) 0.9908 0.9828 0.9790 0.9885 0.9783 0.9737 0.9914 0.9840 0.9804

(100,200) 0.9978 0.9960 0.9949 0.9972 0.9950 0.9936 0.9981 0.9964 0.9954

(200,100) 0.9959 0.9921 0.9899 0.9947 0.9900 0.9871 0.9962 0.9928 0.9908

(300,300) 0.9986 0.9975 0.9967 0.9983 0.9968 0.9958 0.9988 0.9978 0.9971

εit ∼ asymmetric Laplace

(50,100) 0.9569 0.9254 0.9085 0.9482 0.9108 0.8682 0.9759 0.9590 0.9518

(100,50) 0.9277 0.8698 0.8438 0.9151 0.8443 0.8062 0.9573 0.9221 0.9057

(100,200) 0.9826 0.9673 0.9577 0.9777 0.9566 0.9341 0.9911 0.9834 0.9784

(200,100) 0.9664 0.9375 0.9204 0.9571 0.9143 0.8900 0.9823 0.9663 0.9572

(300,300) 0.9891 0.9797 0.9739 0.9843 0.9704 0.9613 0.9946 0.9900 0.9874

εit ∼ log-normal

(50,100) 0.5958 0.3578 0.2543 0.9541 0.8272 0.6834 0.9889 0.9823 0.9769

(100,50) 0.5637 0.3286 0.2245 0.9216 0.7739 0.5421 0.9781 0.9598 0.9512

(100,200) 0.8045 0.5902 0.4469 0.9754 0.8402 0.5698 0.9964 0.9932 0.9914

(200,100) 0.7470 0.5382 0.4320 0.9687 0.8033 0.4895 0.9931 0.9863 0.9826

(300,300) 0.8950 0.7967 0.7229 0.9881 0.8448 0.4473 0.9980 0.9963 0.9952

εit ∼ mixture of skewed normal

(50,100) 0.9908 0.9851 0.9807 0.9899 0.9835 0.9788 0.9937 0.9900 0.9870

(100,50) 0.9829 0.9694 0.9609 0.9816 0.9670 0.9586 0.9880 0.9785 0.9731

(100,200) 0.9960 0.9929 0.9908 0.9954 0.9920 0.9893 0.9974 0.9954 0.9941

(200,100) 0.9926 0.9858 0.9818 0.9914 0.9837 0.9789 0.9952 0.9908 0.9880

(300,300) 0.9976 0.9955 0.9941 0.9971 0.9946 0.9929 0.9985 0.9972 0.9964

Notes : Each number is the average of adjusted R2 over 100 replications of regressing one of the
three true factors on the estimated factors based on the RTS, QFM(0.5), and CQFM method,
respectively. We choose τ = 0.5 for the QFM method and K = 5 for the CQFM method.
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while it is 0.9518 for CQFM. The log-normal error distribution poses the greatest challenge

to the other methods, as the regression yields much lower adj. R2s compared to those of

CQFM, and increasing sample size from (50, 100) to (300, 300) does not seem to help.

To further investigate the accuracy of the estimates, we compute the mean squared error

(MSE) of the estimated components and report them in Table 3. The MSE is defined as

MSE =
1

NT

N∑
i=1

T∑
t=1

(
λ′
0iF0t − λ̂′

iF̂t

)2
.

Table 3 clearly indicates that CQFM always yields the smallest MSE for the 5 error distri-

butions. Depending on the error distribution, CQFM’s reduction in MSE can be huge – its

MSE can be a fraction of that of PCA.

We can draw several conclusions based on Tables 2 and 3. First, compared to QFM

at a single quantile position τ = 0.5, the higher adj. R2 and smaller MSE of CQFM

suggests that there is some benefit in performing the estimation at multiple quantile positions

simultaneously. Second, CQFM continues to work well in cases such as the asymmetric

Laplace and log-normal errors, implying that CQFM can be a useful alternative to PCA in

certain cases.

The online supplement also includes the adj. R2 and MSE results (Tables S.2 and S.3)

for 5 symmetric error distributions. Overall, CQFM continues to provide robust estimates.

4.3 Estimation of the factor number

Next, we study the performance of the information criterion in eqs. (11) and (12). Table 4

reports the average estimated factor number and the frequency of correct factor number

estimation. Both CQFM and PCA perform well in majority of the cases. For log-normal

error, all methods fail in small sample. However, CQFM yields better results when sample

size is large with Prob(r̂ = 3) = 82% in the case of (300, 300).

For the 5 symmetric error distributions in Table S.4, our proposed IC with eq. (12)
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Table 3: MSE under asymmetric errors

(T,N)
εit ∼ skewed normal εit ∼ skewed t

RTS QFM CQFM PCA RTS QFM CQFM PCA

(50,100) 0.101 0.157 0.097 0.090 0.099 0.114 0.090 0.089

(100,50) 0.092 0.155 0.088 0.089 0.092 0.114 0.084 0.089

(100,200) 0.048 0.085 0.048 0.045 0.048 0.058 0.044 0.045

(200,100) 0.046 0.084 0.043 0.045 0.046 0.058 0.041 0.045

(300,300) 0.021 0.040 0.020 0.020 0.021 0.026 0.019 0.020

εit ∼ asymmetric Laplace εit ∼ log-normal

(50,100) 0.836 1.139 0.458 0.801 19.888 4.124 0.214 36.456

(100,50) 0.794 1.134 0.439 0.799 14.344 4.157 0.211 36.752

(100,200) 0.390 0.747 0.198 0.379 6.727 4.294 0.084 26.414

(200,100) 0.382 0.744 0.196 0.381 4.865 4.283 0.076 26.531

(300,300) 0.167 0.440 0.080 0.165 1.726 4.377 0.038 17.464

εit ∼ mixture of skewed normal

(50,100) 0.176 0.182 0.120 0.161

(100,50) 0.168 0.182 0.113 0.164

(100,200) 0.086 0.097 0.058 0.081

(200,100) 0.083 0.097 0.053 0.081

(300,300) 0.037 0.046 0.025 0.036

Notes : Each number is the average MSE over 100 replications for the RTS,
QFM(0.5), CQFM, and PCA method, respectively. We choose τ = 0.5 for the
QFM method and K = 5 for the CQFM method.

continues to work well except for the t1 error. In this case, the rank-based approach in Chen

et al. (2021) gives good results when sample size is large. After standardizing the data and

using eq. (13) in eq. (11), CQFM also gives satisfactory results when the sample size is large.

5 Empirical application

In this section, we use the quarterly macroeconomic data set, FRED-QD, in McCracken

and Ng (2020) to study the properties of CQFM factors. We use the version “2023-06.csv”,
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Table 4: Average estimated factor number and frequency of correct estimation

(T,N) QFM CQFM PCA QFM CQFM PCA

avg. r̂ Prob(r̂ = 3)

εit ∼ skewed normal

(50,100) 2.52 3 3 0.61 1 1

(100,50) 2.55 3 3 0.6 1 1

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.92 3 3 0.92 1 1

(300,300) 3 3 3 1 1 1

εit ∼ skewed t

(50,100) 2.52 3 3 0.59 1 1

(100,50) 2.55 3 3 0.61 1 1

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.92 3 3 0.92 1 1

(300,300) 3 3 3 1 1 1

εit ∼ asymmetric Laplace

(50,100) 2.66 1.8 2.9 0.66 0.14 0.9

(100,50) 2.75 1.74 2.91 0.71 0.12 0.91

(100,200) 3.31 3 3 0.64 1 1

(200,100) 3.37 3 3 0.57 1 1

(300,300) 3.95 3 3 0.05 1 1

εit ∼ log-normal

(50,100) 2.71 1.21 3.51 0.57 0.02 0.16

(100,50) 2.95 1.21 3.49 0.56 0.01 0.2

(100,200) 3.46 2.42 3.38 0.42 0.27 0.16

(200,100) 3.57 2.3 3.21 0.37 0.28 0.23

(300,300) 4 3.19 3.83 0 0.82 0.21

εit ∼ mixture of skewed normal

(50,100) 2.54 3 3 0.6 1 1

(100,50) 2.61 3 3 0.64 1 1

(100,200) 2.95 3 3 0.96 1 1

(200,100) 2.92 3 3 0.92 1 1

(300,300) 3 3 3 1 1 1

Notes : To estimate r, we use the rank minimization method in Chen et al. (2021) for QFM
at τ = 0.5, the IC in eqs. (11) and (12) for CQFM, and the ICp1 in (Bai and Ng, 2002,
p. 201) for the PCA method. Avg. r̂ is based on 100 replications.
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which contains 258 quarterly observations from 1959/3/1 to 2023/3/1 for 246 macroeco-

nomic variables. The data link is: https://research.stlouisfed.org/econ/mccracken/

fred-databases/. We use the matlab code in McCracken and Ng (2020) to prepare the

data, including transforming all variables to stationary time series based on the tcode in Mc-

Cracken and Ng (2020), removing outliers, and using the EM algorithm to fill in missing val-

ues. The final data set has 255 quarterly observations and 246 variables (T = 255, N = 246).

The number of estimated factors varies across different methods. For example, the CQFM

estimate is 1 (3 if eq. (13) is used); the rank minimization method in Chen et al. (2021)

reports 4 factors at τ = 0.5; the ICp1 and ICp2 in Bai and Ng (2002, p. 201) give 12 and

8 factors, respectively. Since our focus is on the property of the estimated factor, we follow

Stock and Watson (2012) and choose the number 6 across different methods. The scree plot

in Figure S.1 reveals why the proposed IC with eq. (12) selects only one factor: the first

eigenvalue is 54 and explains about 22% of the variation in the (standardized) data while

the second eigenvalue is 19 and explains about 7.8% of the variance in the data.

Figure 1 plots the first three CQFM and PCA factors (factors 4 to 6 are plotted in

Figure S.2). The first three factors from CQFM and PCA are very similar to each other.

Despite this visual similarity, the estimated factors exhibit different moment properties.

Table 5 summarizes the skewness and kurtosis of the six estimated factors from the four

methods. We make a few observations. First, the CQFM-based factors tend to have larger

skewness and kurtosis in the first few factors. This means, if the data have large skewness

and/or kurtosis, the CQFM-based factors will likely give a better fit for the component

(λ′
0iF0t). Second, even if other methods such as PCA-based factors exhibit larger skewness

and/or kurtosis in later factors – for example, the 5th PCA factor exhibits larger skewness

than CQFM, these larger value will unlikely be helpful in capturing the skewness and kurtosis

in the data since it is typically the first few factors that determines the overall variability

of the data. Third, compared to CQFM-based factors, the QFM-based factors exhibit less

skewness and kurtosis, suggesting that estimation done at a single quantile position such as

20

https://research.stlouisfed.org/econ/mccracken/fred-databases/
https://research.stlouisfed.org/econ/mccracken/fred-databases/


1st factor

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

−5.0

0.0

5.0 CQFM
PCA

2nd factor

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
−5.0

−2.5

0.0

2.5

3rd factor

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
−4.0

−2.0

0.0

2.0

Figure 1: The first three CQFM and PCA factors from 1959/3/1 to 2023/3/1

τ = 0.5 may not be effective in capturing certain features of the data; the composite quantile

approach is more effective in this regard. The small MSEs for CQFM in Table 3 attest to

the above arguments.

Next, following Stock and Watson (2002b), we use the diffusion indexes to forecast one-
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Table 5: Skewness and kurtosis of the 6 estimated factors

method F̂1 F̂2 F̂3 F̂4 F̂5 F̂6

skewness (γ1)

RTS 1.85 -0.33 -0.38 -0.27 -0.52 0.17

QFM -1.95 0.70 -0.33 0.34 0.35 0.43

CQFM -2.51 -0.93 0.59 -0.52 -0.02 -0.16

PCA -2.23 -0.76 0.51 -0.18 -0.12 0.00

kurtosis (γ2)

RTS 14.55 4.43 13.57 2.76 3.68 3.47

QFM 17.62 6.54 5.25 2.80 3.08 7.50

CQFM 26.03 7.98 4.93 15.58 2.71 3.32

PCA 24.36 6.62 4.51 16.70 2.88 4.87

Notes : This table reports the skewness and kurtosis of the estimated six factors for different
methods based on the FRED-QD data between 1959Q1 and 2023Q1. We focus on the
magnitude of γ1 since factors have sign indeterminacy.

quarter-ahead macroeconomic variables. The forecasting function is given by

yi,t+1 = βi +
3∑

j=0

βjyi,t−j + β′
F F̂t + ϵi,t+1, for i = 1, · · · , 246, (16)

where yit is the original data transformed according to the tcode in FRED-QD “2023-06.csv”

and F̂t is the estimated 6 factors at time t. The forecast period starts from 2000Q1 to 2023Q1,

a total of 93 forecasts for each of the 246 macroeconomic variables, and this forecast period

covers three NBER-determined recessions, including the one induced by the recent pandemic.

For each rolling forecast, we use a rolling window of 120 quarters to estimate factors and

the coefficients βj and βF . We forecast the data that are transformed using the tcode in

McCracken and Ng (2020) and convert the forecast back to data in their original levels.

Table 6 reports the forecast root-MSE (RMSE) for the three most common macroeco-

nomic variables, real gross domestic product (GDPC1), civilian unemployment rate (UNRATE),

and consumer price index for all urban consumers (CPIAUCSL) in the FRED-QD data set.
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Table 6: Forecast RMSE of GDP, Unemployment rate, and Inflation

variable RTS QFM CQFM PCA AR(4)

GDPC1 322.131 303.498 258.293 355.526 299.965

UNRATE 1.227 1.110 1.093 1.246 1.203

CPIAUCSL 3.616 4.173 3.832 3.798 3.739

avg RMSE 8269.7 8302.2 8053.6 8578.6 8219.2

Notes : This table reports the average forecast RMSE over 93 forecasts from 2000Q1 to
2023Q1. GDPC1 is the real GDP in chained 2012 dollars; UNRATE is the civilian unemployment
rate (percent); CPIAUCSL is the CPI for all urban consumers. Results for columns 1 to 4 are
based on an AR(4) model with six factors as additional regressors. The last column reports
the forecast RMSE of the AR(4) model with no augmented factors. The variable avg RMSE

reports the average of RMSE for all the 246 macroeconomic time series for each of the 5
methods.

CQFM gives good results, but its performance is not the best for the CPI data. It’s also

somewhat surprising that the AR(4) model can sometimes do better than factor-augmented

methods. In the last row, we compute the average of RMSE over the 246 macroeconomic

variables for each of the 5 models, and CQFM gives the smallest average RMSE. Notice that

the results for the 4 factor-based models are obtained by simply choosing 6 factors without

any additional tuning of the model. McCracken and Ng (2020) consider 7 factors, and, for

the regression in eq. (16), they try 27− 1 = 127 different combinations of the 7 factors. Sim-

ilar approach can also be used here to possibly improve the performance of the factor-based

models. In addition, many other aspects of diffusion index modeling can be tuned to yield

a favorable model, which includes, but not limited to, the number lags of the factors (we

consider only 1 in our regression), the forecast horizon (3-month, 6-month, one-year, etc.),

the inclusion of lag variables in the Y matrix in eq. (2) in factor analysis, the use of balanced

panel data vs. unbalance panel data with EM-algorithm-generated data, the types of data

transformation used, whether to split the data before and after a recession, among others. In

the case of CQFM, we can also tune the parameter K to possibly improve its performance.

Table 6 is a simple demonstration of the use of CQFM-based factors. A more comprehensive
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study is needed to further study the properties of different factor-based models.

6 Conclusions

In this paper, we develop the method of composite quantile factor model. We demonstrate in

both simulations and an empirical study that, compared to PCA and several other methods,

CQFM can be more effective in modeling asymmetric data due to its capability of adapting

to data at multiple quantile positions. Asymptotic distributional theory and an information

criterion for consistent factor number selection are also discussed. PCA-based method is

popular for factor analysis, and CQFM will be a useful addition to a researcher’s toolkit

when handling non-normal data.

Many extensions of the current research are possible, and we give two examples that are

highly relevant to data modeling. One is the creation of sparsity in CQFM. Adding penalty

functions to eq. (5) gives

1

NT

K∑
k

N∑
i=1

T∑
t=1

ρτk(Yit − bτk − λ′
iFt) + penalty(F ) + penalty(Λ). (17)

Zou and Yuan (2008) use the adaptive lasso in Zou (2006) to induce sparsity in linear

regression, and many other penalty functions are available for F and Λ. The other example,

following the work in Bai (2009), is to add a regression component to eq. (5) so that it

becomes the panel data model with interactive fixed effects

1

NT

K∑
k

N∑
i=1

T∑
t=1

ρτk(Yit − bτk −X ′
itβ − λ′

iFt), (18)

where Xit is a vector of regressors. The model in eq. (18) is a hybrid of CQR in Zou and

Yuan (2008) and CQFM in the current paper. Given the good finite sample properties of

CQR and CQFM under certain non-normal data, we expect estimators from eq. (18) will

also show some robustness to non-normal data. We leave these topics for future research.
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Hallin, M. and Lǐska, R. (2007). Determining the number of factors in the general dy-

namic factor model. Journal of the American Statistical Association, 102 (478), 603–617.

25



He, Y., Kong, X., Yu, L. and Zhang, X. (2022). Large-dimensional factor analysis

without moment constraints. Journal of Business & Economic Statistics, 40 (1), 302–312.

Hunter, D. R. and Lange, K. (2000). Quantile regression via an mm algorithm. Journal

of Computational and Graphical Statistics, 9 (1), 60–77.

Kato, K., F. Galvao, A. and Montes-Rojas, G. V. (2012). Asymptotics for panel

quantile regression models with individual effects. Journal of Econometrics, 170 (1), 76–

91.

Knight, K. (1998). Limiting distributions for L1 regression estimators under general con-

ditions. The Annals of Statistics, 26 (2), 755 – 770.

Koenker, R. (2005). Quantile Regression. Econometric Society Monographs, Cambridge

University Press.

Lam, C. and Yao, Q. (2012). Factor modeling for high-dimensional time series: Inference

for the number of factors. The Annals of Statistics, 40 (2), 694 – 726.

Lawley, D. N. and Maxwell, A. E. (1971). Factor analysis as a statistical method /

D.N. Lawley and A.E. Maxwell. Butterworths London, 2nd edn.

McCracken, M. and Ng, S. (2020). FRED-QD: A Quarterly Database for Macroeconomic

Research. Working Paper 26872, National Bureau of Economic Research.

Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models.

Econometrica, 77 (5), 1447–1479.

Stock, J. H. and Watson, M. W. (1998). Diffusion Indexes. Working Paper 6702, Na-

tional Bureau of Economic Research.

— and— (2002a). Forecasting using principal components from a large number of predictors.

Journal of the American Statistical Association, 97 (460), 1167–1179.

— and — (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business

& Economic Statistics, 20 (2), 147–162.

26



— and — (2012). Disentangling the Channels of the 2007-2009 Recession. Working Paper

18094, National Bureau of Economic Research.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American

Statistical Association, 101 (476), 1418–1429.

— and Yuan, M. (2008). Composite quantile regression and the oracle model selection

theory. The Annals of Statistics, 36 (3), 1108 – 1126.

27



SUPPLEMENTARY MATERIAL TO

“COMPOSITE QUANTILE FACTOR MODEL”1

Xiao Huang

December 3, 2024

This supplement contains all lemmas and proofs for the theorems, as well as additional

figures and tables.

Contents

S.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

S.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

S.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

S.4 Additional tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

S.4.1 Table S.1: Table 2 with additional adjusted R2s of the PCA method

under asymmetric errors . . . . . . . . . . . . . . . . . . . . . . . . . 18

S.4.2 Table S.2: Adjusted R2 under symmetric errors . . . . . . . . . . . . 20

S.4.3 Table S.3: MSE under symmetric errors . . . . . . . . . . . . . . . . 22

S.4.4 Table S.4: Factor number estimation under symmetric errors . . . . . 22

S.4.5 Table S.5: Adjusted R2 under asymmetric errors with heteroskedasticity 24

S.4.6 Table S.6: MSE under asymmetric errors with heteroskedasticity . . . 26

S.4.7 Table S.7: Factor number estimation under asymmetric errors with

heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1Email: xhuang3@kennesaw.edu.

1



S.4.8 Table S.8: Adjusted R2 under asymmetric and AR(1) errors . . . . . 28

S.4.9 Table S.9: MSE under asymmetric and AR(1) errors . . . . . . . . . 30

S.4.10 Table S.10: Factor number estimation under asymmetric AR(1) errors 30

S.5 Additional figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

S.5.1 Figure S.1: Scree plot of the macroeconomic data set . . . . . . . . . 30

S.5.2 Figure S.2: Time series plot of the 3rd, 4th, and 5th CQFM and PCA

factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



S.1 Lemmas

This section discusses two lemmas that are used in proving the asymptotic distribution of the

estimated factors and factor loadings. Let the parameter vectors be θ0 = (b0τ1 , · · · , b0τK , λ′
01,

· · · , λ′
0N , F

′
01, · · · , F ′

0T )
′ and θ̂ = (b̂τ1 , · · · , b̂τk , λ̂′

1, · · · , λ̂′
N , F̂

′
1, · · · , F̂ ′

T )
′. Let ∥·∥ be the ℓ2

norm. We will repeatedly apply the identity in Knight (1998): for two variables x and y and a

quantile position τk, we have ρτk(x−y)−ρτk(x) = y(I(x < 0)−τk)+
∫ y

0
[I(x ≤ s)−I(x ≤ 0)]ds.

Define

d(θ̂, θ0) =

√√√√ 1

NT

T∑
i=1

T∑
t=1

K∑
k=1

(b̂τk + λ̂′
iF̂t − bτ0k − λ′

0iF0t)2 (S.1)

and

WNT =
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

[
ρτk(Yit − b̂τk − λ̂′

iF̂t)− ρτk(Yit − b0τk − λ′
0iF0t)

]
− 1

NT

N∑
i=1

T∑
t=1

K∑
k=1

E
[
ρτk(Yit − b̂τk − λ̂′

iF̂t)− ρτk(Yit − b0τk − λ′
0iF0t)

]
. (S.2)

We will show both d(θ̂, θ0) and WNT are op(1). Let c be a positive constant.

Lemma 1. Under Assumptions 1 to 3, d(θ̂, θ0) = op(1) and WNT = op(1) as N, T → ∞.

Proof of Lemma 1. Consider the expansion of the term E[ρτk(Yit − b̂τk − λ̂′
iF̂t) − ρτk(Yit−

b0τk − λ′
0iF0t)] in eq. (S.2) around the value c0,it = b0τk + λ′

0iF0t. An application of the

identity in Knight (1998) and the mean value theorem gives

E
[
ρτk(Yit − b̂τk − λ̂′

iF̂t)− ρτk(Yit − b0τk − λ′
0iF0t)

]
=

1

2
fε(c

∗
it,k)(b̂τk + λ̂′

iF̂t − b0τk − λ′
0iF0t)

2

≥ c(b̂τk + λ̂′
iF̂t − b0τk − λ′

0iF0t)
2 ≥ 0. (S.3)

where c∗it,k is between b0τk + λ′
0iF0t and b̂τk + λ̂′

iF̂t. Rearrange terms in eq. (S.2) to have

WNT +
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

E
[
ρτk(Yit − b̂τk − λ̂′

iF̂t)− ρτk(Yit − b0τk − λ′
0iF0t)

]
=

1

NT

N∑
i=1

T∑
t=1

K∑
k=1

[
ρτk(Yit − b̂τk − λ̂′

iF̂t)− ρτk(Yit − b0τk − λ′
0iF0t)

]
≤ 0, (S.4)

3



where the inequality in eq. (S.4) holds because (b̂τk , λ̂
′
i, F̂

′
t) is the minimizer of eq. (5). Com-

bining eq. (S.3) and eq. (S.4) gives

0 ≤ d2(θ̂, θ0) ≤ sup
θ̂∈Θ

|WNT (θ̂)|,

which is essentially the same as the last inequality in Chen et al. (2021, p. 895). The proof

of sup
θ̂∈Θ

|WNT (θ̂)| = op(1) follows the same steps in Chen et al. (2021) and is omitted.

Lemma 2. Under Assumptions 1 to 3, as N, T → ∞,

1√
N

∥∥∥Λ̂− Λ0

∥∥∥ = op(1) and
1√
T

∥∥∥F̂ − F0

∥∥∥ = op(1).

Proof of Lemma 2. Lemma 1 proves that d2(θ̂, θ0) = op(1), which implies that, for every k,

1

NT

N∑
i=1

T∑
t=1

(b̂τk + λ̂′
iF̂t − bτ0k − λ′

0iF0t)
2 = op(1). (S.5)

Use the inequality 1
2
(x2 + y2) ≤ (x+ y)2, eq. (S.5) gives that, for each k,

1

2

[
1

NT

N∑
i=1

T∑
t=1

(
b̂τk − bτk

)2
+

1

NT

N∑
i=1

T∑
t=1

(
λ̂′
iF̂t − λ′

0iF0t

)2]

≤ 1

NT

N∑
i=1

T∑
t=1

(b̂τk + λ̂′
iF̂t − bτ0k − λ′

0iF0t)
2 = op(1). (S.6)

It follows that
1

NT

N∑
i=1

T∑
t=1

(
λ̂′
iF̂t − λ′

0iF0t

)2
= op(1),

which is equivalent to
1√
NT

∥∥∥F̂ Λ̂′ − F0Λ0

∥∥∥ = op(1). (S.7)

Define PΛ̂ = Λ̂(Λ̂′Λ̂)−1Λ̂′, MΛ̂ = IN − PΛ̂, PF̂ = F̂ (F̂ ′F̂ )−1F̂ ′, and MF̂ = IT − PF̂ . Since

multiplying MΛ̂ shrinks its ℓ2 norm, we have

1√
NT

∥∥∥(F̂ Λ̂′ − F0Λ0

)
MΛ̂

∥∥∥ ≤ 1√
NT

∥∥∥F̂ Λ̂′ − F0Λ0

∥∥∥ = op(1). (S.8)
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With F̂ Λ̂′MΛ̂ = 0, the above result implies that 1√
NT

∥F0Λ
′
0MΛ̂∥ = op(1), i.e.,

1

NT
tr (MΛ̂Λ0F

′
0F0Λ

′
0MΛ̂) = tr

(
F ′
0F0

T

Λ′
0MΛ̂Λ0

N

)
= op(1).

Given the normalization condition F ′
0F0/T = Ir, we have

tr

(
Λ′

0MΛ̂Λ0

N

)
= op(1) or

1

N
∥MΛ̂Λ0∥2 = op(1). (S.9)

Expanding MΛ̂ gives

Λ′
0MΛ̂Λ0

N
=

Λ′
0Λ0

N
− Λ′

0PΛ̂Λ0

N
=

Λ′
0Λ0

N
− Λ′

0Λ̂Λ̂
′Λ0

N

Σ−1

λ̂

N
. (S.10)

Combining eq. (S.9) and eq. (S.10) gives

tr(Λ′
0Λ̂Λ̂

′Λ0)
p→ tr(Λ′

0Λ0 ·NΣλ̂) = N2tr(Σλ0Σλ̂). (S.11)

Consider the following.

∥PΛ̂ − PΛ0∥
2 = tr

(
(PΛ̂ − PΛ0)

2
)

=
1

N
tr(Λ̂Λ̂′Σ−1

λ̂
+ Λ0Λ

′
0Σ

−1
λ0
)− 2

N2
tr(Λ̂Λ̂′Λ0Λ

′
0Σ

−1

λ̂
Σ−1

λ0
)

p→ 2tr(Ir)− 2tr(Ir) (Using eq. (S.11))

= 0. (S.12)

Thus, we have

1√
N

∥∥∥MΛ0Λ̂
∥∥∥ =

1√
N

∥∥∥(MΛ0 −MΛ̂)Λ̂
∥∥∥ =

1√
N

∥∥∥(PΛ0 − PΛ̂)Λ̂
∥∥∥

≤ ∥PΛ̂ − PΛ0∥
1√
N

∥∥∥Λ̂∥∥∥ = op(1)O(1) = op(1), (S.13)

where the result
∥∥∥Λ̂∥∥∥ /√N = O(1) follows the normalization condition Λ̂′Λ̂/N = Σλ̂. It

follows that

1√
N

∥∥∥MΛ0Λ̂
∥∥∥ =

1√
N

∥∥∥Λ̂− Λ0(Λ
′
0Λ0)

−1Λ′
0Λ̂
∥∥∥ =

1√
N

∥∥∥Λ̂− Λ0G
∥∥∥ = op(1),
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where G is the rotation matrix. The normalization conditions in eq. (6) and Assumption 1

suggest the factor loading can be identified, and we can ignore the rotation matrix for

simplicity purposes, and the above result becomes
∥∥∥Λ̂− Λ0

∥∥∥ /√N = op(1).

Next, we establish a similar result for the factors. Similar to eq. (S.8), we have

1√
NT

∥∥∥MF̂

(
F̂ Λ̂′ − F0Λ0

)∥∥∥ ≤ 1√
NT

∥∥∥F̂ Λ̂′ − F0Λ0

∥∥∥ = op(1). (S.14)

Because MF̂ F̂ Λ̂′ = 0, we have 1√
NT

∥MF̂F0Λ
′
0∥ = op(1), which is equivalent to

1

T
tr

(
MF̂F0

Λ′
0Λ0

N
F ′
0MF̂

)
= tr

(
Λ′

0Λ0

N

F ′
0MF̂F0

T

)
= op(1).

Given the matrix
Λ′
0Λ0

N
is diagonal, we have 1

T
∥MF̂F0∥2 = op(1). Since

F ′
0MF̂F0

T
=

F ′
0F0

T
− F ′

0F̂

T

F̂ ′F0

T
, (S.15)

and we conclude that tr(
F ′
0F̂

T
F̂ ′F0

T
)

p→ tr(
F ′
0F0

T
) = r. Using an argument similar to that in

eq. (S.12), we obtain ∥PF̂ − PF0∥ = op(1) (also see Bai (2009, p. 1265) for a similar proof).

Consequently, we have

1√
T

∥∥∥MF0F̂
∥∥∥ =

1√
T

∥∥∥(MF0 −MF̂ ) F̂
∥∥∥ =

1√
T

∥∥∥(PF0 − PF̂ ) F̂
∥∥∥

≤ ∥(PF0 − PF̂ )∥
1√
T

∥∥∥F̂∥∥∥ = op(1) ·Op(1) = op(1), (S.16)

where the result 1√
T

∥∥∥F̂∥∥∥ = Op(1) follows the normalization in eq. (6). Rewrite eq. (S.16) to

have
1√
T

∥∥∥MF0F̂
∥∥∥ =

1√
T

∥∥∥F̂ − F0 (F
′
0F0)

−1
F ′
0F̂
∥∥∥ =

1√
T

∥∥∥F̂ − F0H
∥∥∥ = op(1),

where the rotation matrix is H = (F ′
0F0)

−1 F ′
0F̂ . Since the normalization condition indicates

that factors are identifiable, similar to the approach in Ando and Bai (2020), we can omit

the rotation matrix H for simplicity purposes and have 1√
T

∥∥∥F̂ − F0

∥∥∥ = op(1).
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S.2 Proof of Theorem 1

Proof of Theorem 1. Define wNT,k =
√
NT (b̂τk − b0τk), uT,i =

√
T (λ̂i − λ0i) and vN,t =

√
N(F̂t − F0t). Ignoring the scaling factor 1

NT
, the objective function in eq. (5) can be

modified as follows:

LNT =
K∑
k=1

N∑
i=1

T∑
t=1

[
ρτk

(
εit − b0τk −

wk + u′
ivt +

√
Nu′

iF0t +
√
Tλ′

0ivt√
NT

)
− ρτk(εit − b0τk)

]
,

(S.17)

whose minimizer is {wNT,k, uT,i, vN,t}, and it can be verified by their substitution in eq. (S.17).

Using the identity in Knight (1998) gives

LNT =
K∑
k=1

1√
NT

N∑
i=1

T∑
t=1

(I(εit < τ0k)− τk)wk +
1√
NT

N∑
i=1

T∑
t=1

u′
ivt

K∑
k=1

(I(εit < τ0k)− τk)

+
N∑
i=1

u′
i

1√
T

T∑
t=1

F0t

[
K∑
k=1

I(εit < τ0k)− τk

]

+
T∑
t=1

v′t
1√
N

N∑
i=1

λ0i

[
K∑
k=1

I(εit < τ0k)− τk

]
+

K∑
k=1

BNT,k (S.18)

=
K∑
k=1

zNT,kwk +
1√
NT

N∑
i=1

T∑
t=1

u′
ivt

K∑
k=1

(I(εit < τ0k)− τk) +
N∑
i=1

u′
izT,F0

+
T∑
t=1

v′tzN,λ0 +
K∑
k=1

BNT,k, (S.19)

where

zNT,k =
1√
NT

N∑
i=1

T∑
t=1

(I(εit < τ0k)− τk) , (S.20)

zT,F0 =
1√
T

T∑
t=1

F0t [I(εit < τ0k)− τk] , (S.21)

zN,λ0 =
1√
N

N∑
i=1

λ0i [I(εit < τ0k)− τk] , (S.22)

BNT,k =
N∑
i=1

T∑
t=1

∫ wk+u′ivt+
√
Nu′iF0t+

√
Tλ′0ivt√

NT

0

(
I(εit − b0τk ≤ s)− I(εit − b0τk ≤ 0)

)
ds. (S.23)
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Under the i.i.d. error assumption and the implied moment conditions from the normalization

conditions,
{
zNT,k, z

′
T,F0

, z′N,λ0

} d→
{
zk, z

′
F0
, z′λ0

}
with a multivariate normal distribution as

N, T → ∞. The second term in eq. (S.19), 1√
NT

∑N
i=1

∑T
t=1 u

′
ivt
∑K

k=1 (I(εit < τ0k)− τk), has

a smaller probability order than, for example, the fourth term in eq. (S.19). Both ui and

vt are Op(1) since they are parameter values in optimization; λ0i is either O(1) or Op(1)

if we treat it as a random variable. With an extra
√
T on the denominator, the second

term has a smaller order in probability and can be ignored. See a related argument in our

later proof that uses the results in Lemma 2. Let u = (u′
1, · · · , u′

N)
′, v = (v′1, · · · , v′T )′ and

θ̃ = (w1, · · · , wk,u
′,v′). The value of θ̃ at (b0τk , λ0i, F0t) is θ̃0 = 0. The second-order Taylor

series expansion of E(BNT,k) at θ̃0 becomes

E (BNT,k) =
N∑
i=1

T∑
t=1

∫ wk+u′ivt+
√
Nu′iF0t+

√
Tλ′0ivt√

NT

0

(
F (b0τk + s)− F (b0τk ≤ 0)

)
ds

=
1

2
fε(b0τk)

N∑
i=1

T∑
t=1

(wk, u
′
i, v

′
t)


1

NT
1√
NT

1√
T
F ′
0t

1√
NT

λ′
0i

1√
T
F0t

1
T
F0tF

′
0t

1√
T
F0tλ

′
0i

1√
NT

1√
N
λ0i

1√
NT

λ0iF
′
0t

1
N
λ0iλ

′
0i

 (wk, u
′
i, v

′
t)

′

(S.24)

=
1

2
fε(b0τk)(wk, u

′
i, v

′
t)


1 0 0

0 Ir 0

0 0 Σλ0

 (wk, u
′
i, v

′
t)

′ + o(1), (S.25)

where the second equality holds because the first derivative of E(B(k)
NT ) w.r.t. θ̃ is 0 when

evaluated at θ̃0. The third equality follows the normalization conditions. For example, since

∥F0∥ /
√
T = Op(1), each element of F0t is Op(1) and F0t/

√
T → 0 as T → ∞.

The variance of E(B
(k)
NT ) is given by

Var(BNT,k) =
N∑
i=1

T∑
t=1

E

(∫ wk+u′ivt+
√
Nu′iF0t+

√
Tλ′0ivt√

NT

0(
I(εit − b0τk ≤ s)− I(εit − b0τk ≤ 0)− Fε(b0τk + s) + Fε(b0τk)

)
ds

)2
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≤
N∑
i=1

T∑
t=1

E

(∣∣∣∣∫
wk+u′ivt+

√
Nu′iF0t+

√
Tλ′0ivt√

NT

0

(
I(εit − b0τk ≤ s)− I(εit − b0τk ≤ 0)− Fε(b0τk + s) + Fε(b0τk)

)
ds

∣∣∣∣)
× 2
∣∣∣wk + u′

ivt +
√
Nu′

iF0t +
√
Tλ′

0ivt√
NT

∣∣∣
≤ 2E(BNT,k)× 2max

i,t

∣∣∣∣ wk√
NT

+
u′
ivt√
NT

+
u′
iF0t√
T

+
λ′
0ivt√
N

∣∣∣∣→ 0 as N, T → ∞, (S.26)

and we have BNT,k converges in probability to the first term in eq. (S.25). Let C be the

constant Hessian in eq. (S.25). Combining the above results gives

LNT
d→

K∑
k=1

zkwk+
N∑
i=1

z′F0
ui+

T∑
t=1

z′λ0
vt+

1

2

K∑
k=1

fε(b0τk)
N∑
i=1

T∑
t=1

(wk, u
′
i, v

′
t)C(wk, u

′
i, v

′
t)

′, (S.27)

a quadratic form in (wk, u
′
i, v

′
t). Hence, the minimizer of LNT will also converges in distribu-

tion to the minimizer of the quadratic form in eq. (S.27), based on which we can derive the

asymptotic distribution of the minimizer {wNT,k, uT,i, vN,t}.
In the following, we work with a scaled version of eq. (S.17) and {b̂τk−b0τk , λ̂i−λ0i, F̂t−F0t}

directly to see their asymptotic distributions. Consider the following loss function

LNT =
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

[
ρτk(Yit − b̂τk − λ̂′

iF̂t)− ρτk(Yit − b0τk − λ′
0iF0t)

]
=

1

NT

K∑
k=1

N∑
i=1

T∑
t=1

[
ρτk

(
εit − b0τk −

(
b̂τk − b0τk

)
−
(
λ̂′
iF̂t − λ′

0iF0t

))
− ρτk(εit − b0τk)

]
(S.28)

Use the identity in Knight (1998) again to have

LNT =
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

[(
(b̂τk − b0τk) + (λ̂′

iF̂t − λ′
0iF0t)

)
·
(
I(εit − b0τk < 0)− τk

)
+

∫ (b̂τk−b0τk )+(λ̂′
iF̂t−λ′

0iF0t)

0

(
I(εit − b0τk ≤ s)− I(εit − b0τk ≤ 0)

)
ds
]
= I + II, (S.29)

where

I =
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

(
(b̂τk − b0τk) + (λ̂′

iF̂t − λ′
0iF0t)

)
·
(
I(εit − b0τk < 0)− τk

)
, (S.30)
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II =
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

∫ (b̂τk−b0τk )+(λ̂′
iF̂t−λ′

0iF0t)

0

(
I(εit − b0τk ≤ s)− I(εit − b0τk ≤ 0)

)
ds. (S.31)

Using λ̂′
iF̂t − λ′

0iF0t = (λ̂i − λ0i)
′(F̂t − F0t) + (λ̂i − λ0i)

′F0t + λ′
0i(F̂t − F0t), eqs. (S.30)

and (S.31) become

I =
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

(
(b̂τk − b0τk) + (λ̂i − λ0i)

′(F̂t − F0t) + (λ̂i − λ0i)
′F0t + λ′

0i(F̂t − F0t)
)
·

(
I(εit − b0τk < 0)− τk

)
, (S.32)

II =
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

∫ (b̂τk−b0τk )+(λ̂i−λ0i)
′(F̂t−F0t)+(λ̂i−λ0i)

′F0t+λ′
0i(F̂t−F0t)

0

(
I(εit − b0τk ≤ s)− I(εit − b0τk ≤ 0)

)
ds. (S.33)

It is clear that LNT in eq. (S.28) is identical to eq. (S.17) except for the scaling factor 1/NT .

As N, T → ∞, eq. (S.33) converges to some expected value. To see this, define

BNT,k =
1

NT

N∑
i=1

T∑
t=1

∫ (b̂τk−b0τk )+(λ̂i−λ0i)
′(F̂t−F0t)+(λ̂i−λ0i)

′F0t+λ′
0i(F̂t−F0t)

0

(
I(εit − b0τk ≤ s)− I(εit − b0τk ≤ 0)

)
ds, (S.34)

where BNT,k is similar to BNT,k in eq. (S.23). The result in eq. (S.24) implies the following

expectation ofBNT,k and its second-order Taylor series expansion evaluated at b̂τk = b0τk , λ̂i =

λ0i, and F̂ = F0t:

E(BNT,k) =
1

NT

N∑
i=1

T∑
t=1

∫ (b̂τk−b0τk )+(λ̂i−λ0i)
′(F̂t−F0t)+(λ̂i−λ0i)

′F0t+λ′
0i(F̂t−F0t)

0

(
Fε(b0τk + s)− Fε(b0τk)

)
ds

=
1

NT

N∑
i=1

T∑
t=1

fε(b0τk)

2


b̂τk − b0τk

λ̂i − λ0i

F̂t − F0t


′ 

1 F ′
0t λ′

0i

F0t F0tF
′
0t F0tλ

′
0i

λ0i λ0iF
′
0t λ̂iλ

′
0i



b̂τk − b0τk

λ̂i − λ0i

F̂t − F0t

+ o(1). (S.35)

Similar to eq. (S.26), we also have Var(BNT,k) → 0 as N, T → ∞. Plug eqs. (S.32), (S.33)

and (S.35) into eq. (S.29) and, similar to eq. (S.18), we have

LNT =
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

(b̂τk − b0τk)
(
I(εit − b0τk < 0)− τk

)

10



+
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

(λ̂i − λ0i)
′(F̂t − F0t)

(
I(εit − b0τk < 0)− τk

)
+

1

NT

K∑
k=1

N∑
i=1

T∑
t=1

(λ̂i − λ0i)
′F0t

(
I(εit − b0τk < 0)− τk

)
+

1

NT

K∑
k=1

N∑
i=1

T∑
t=1

λ′
0i(F̂t − F0t)

(
I(εit − b0τk < 0)− τk

)

+
1

NT

K∑
k=1

N∑
i=1

T∑
t=1

fε(b0τk)

2


b̂τk − b0τk

λ̂i − λ0i

F̂t − F0t


′ 

1 F ′
0t λ′

0i

F0t F0tF
′
0t F0tλ

′
0i

λ0i λ0iF
′
0t λ̂iλ

′
0i



b̂τk − b0τk

λ̂i − λ0i

F̂t − F0t

+ op(1). (S.36)

Based on Lemma 2, the second term involving the product (λ̂i − λ0i)
′(F̂t −F0t) in eq. (S.36)

has smaller order in probability than the third and the fourth terms in eq. (S.36), and it can

be omitted in the following analysis. Next, we take the partial derivative of eq. (S.36) w.r.t.

b̂τk − b0τk , λ̂i − λ0i, and F̂t − F0t and set the first-order conditions to zero.

Consider the partial derivative of eq. (S.36) w.r.t. b̂τk − b0τk .

∂LNT

∂(b̂τk − b0τk)
=

1

NT

N∑
i=1

T∑
t=1

(
I(εit − b0τk < 0)− τk

)
+ fε(b0τk)(b̂τk − b0τk)

+ fε(b0τk) ·
1

T

T∑
t=1

F ′
0t ·

1

N

N∑
i=1

(λ̂i − λ0i) + fε(b0τk) ·
1

N

N∑
i=1

λ′
0i ·

1

T

T∑
t=1

(F̂t − F0t)

=
1

NT

N∑
i=1

T∑
t=1

(
I(εit − b0τk < 0)− τk

)
+ fε(b0τk)(b̂τk − b0τk) + op(1), (S.37)

where the third term on the right is 0 because
∑T

i=1 F0t/T → 0 under Assumption 1 and the

fourth term is op(1) because in lemma 2 we establish the result 1√
T

∥∥∥F̂ − F0

∥∥∥ = op(1), which

implies 1
T

∑T
t=1(F̂t − F0t) = op(1). Setting eq. (S.37) to 0 gives

√
NT (b̂τk − b0τk) = −fε(b0τk)

−1 1√
NT

N∑
i=1

T∑
t=1

(
I(εit − b0τk < 0)− τk

)
. (S.38)

Consider the partial derivative of eq. (S.36) w.r.t. λ̂i − λ0i.

∂LNT

∂(λ̂i − λ0i)
=

1

N
· 1
T

T∑
t=1

F0t

K∑
k=1

(
I(εit − b0τk < 0)− τk

)
11



+
1

N

K∑
k=1

fε(b0τk)

[
1

T

T∑
t=1

F0t(b̂τk − b0τk) +
1

T

T∑
t=1

F0tF
′
0t(λ̂i − λ0i) +

1

T

T∑
t=1

F0tλ
′
0i(F̂t − F0t)

]

=
1

NT

T∑
t=1

F0t

K∑
k=1

(
I(εit − b0τk < 0)− τk

)
+

1

N

K∑
k=1

fε(b0τk)
1

T

T∑
t=1

F0tF
′
0t(λ̂i − λ0i) + op(1).

(S.39)

Under Assumption 1, we have 1
T

∑T
t=1 F0t(b̂τk−b0τk) → 0 and we will show 1

T

∑T
t=1 F0tλ0i(F̂t−

F0t) = op(1) so that eq. (S.39) holds. To see this, we write this term in a more detailed

matrix format. Let F̂t,j, F0t,j and λ0i,j be the jth element of the r× 1 vector F̂t, F0t and λ0i,

respectively.

1

T

T∑
t=1

F0tλ
′
0i(F̂t − F0t) =

1

T

T∑
t=1



F0t,1

F0t,2

...

F0t,r


[
λ0i,1, λ0i,2, · · · , λ0i,r

]


F̂t,1 − F0t,1

F̂t,2 − F0t,2

...

F̂t,r − F0t,r



=



∑r
j=1 λ0i,j

1
T

∑T
t=1 F0t,1(F̂t,j − F0t,j)∑r

j=1 λ0i,j
1
T

∑T
t=1 F0t,2(F̂t,j − F0t,j)

...∑r
j=1 λ0i,j

1
T

∑T
t=1 F0t,r(F̂t,j − F0t,j)


, (S.40)

which implies that we need to show all terms such as
∑r

j=1 λ0i,j
1
T

∑T
t=1 F0t,1(F̂t,j − F0t,j) =

op(1). From Lemma 2, we have

1

T

∥∥∥F̂ − F0

∥∥∥2 = 1

T

T∑
t=1

r∑
j=1

(F̂t,j − F0t,j)
2 = op(1),

which implies

r∑
j=1

λ0i,j
1

T

T∑
t=1

F0t,1(F̂t,j − F0t,j) ≤

∣∣∣∣∣
r∑

j=1

λ0i,j

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

F0t,1(F̂t,j − F0t,j)

∣∣∣∣∣
≤

(
r

r∑
j=1

λ2
0i,j

)1/2(
1

T

T∑
t=1

F 2
0t,1

)1/2(
1

T

T∑
t=1

(F̂t,j − F0t,j)
2

)1/2

= O(1) · 1 · op(1) = op(1),
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where the results for O(1) and 1 follow the normalization conditions, and the op(1) term is the

result of Lemma 2. More specifically, the normalization of Λ0 implies 1
N

∑N
i=1

∑r
j=1 λ

2
0i,j =

O(1). Since
∑r

j=1 λ
2
0i,j ≥ 0 for every i, we conclude

∑r
j=1 λ

2
0i,j = O(1). Hence we conclude

every element in the vector in eq. (S.40) is op(1) and eq. (S.39) holds.

Setting eq. (S.39) to 0 gives

√
T (λ̂i − λ0i) = −

( K∑
k=1

fε(b0τk)
1

T

T∑
t=1

F0tF
′
0t

)−1 1√
T

T∑
t=1

[
F0t

K∑
k=1

(
I(εit − b0τk < 0)− τk

)]
(S.41)

Next, we compute the variance of 1√
T

∑T
t=1

[
F0t

∑K
k=1

(
I(εit− b0τk < 0)− τk

)]
. Given the

result that E
(∑K

k=1(I(εit − b0τk < 0)− τk)
)
= 0, and εit is i.i.d., we obtain

Var
( 1√

T

T∑
t=1

[
F0t

K∑
k=1

(
I(εit − b0τk < 0)− τk

)])

=
1

T

T∑
1

Var



F0t,1 ·

∑K
k=1

(
I(εit − b0τk < 0)− τk

)
...

F0t,r ·
∑K

k=1

(
I(εit − b0τk < 0)− τk

)



= ΣF0

K∑
k1=1

K∑
k2=2

min(τk1 , τk2)(1−max(τk1 , τk2)). (S.42)

As N, T → ∞, eqs. (S.41) and (S.42) lead to the following asymptotic distribution:

√
T (λ̂i − λ0i) ∼ N(0,ΣCQFA,λ), (S.43)

where

ΣCQFA,λ =

∑K
k1=1

∑K
k2=1min(τk1 , τk2)(1−max(τk1 , τk2)(∑K

k=1 fε(b0τk)
)2 Σ−1

F0
.

Consider the partial derivative of eq. (S.36) w.r.t. F̂t − F0t.

13



∂LNT

∂(F̂t − F0t)
=

1

NT

N∑
i=1

λ0i

K∑
k=1

(
I(εit − b0τk < 0)− τk

)
+

1

T

K∑
k=1

fε(b0τk)

[
1

N

N∑
i=1

λ0i(b̂τk − b0τk) +
1

N

N∑
i=1

λ0iF
′
0t(λ̂i − λ0i) +

1

N

N∑
i=1

λ0iλ
′
0i(F̂t − F0t)

]

=
1

NT

N∑
i=1

λ0i

K∑
k=1

(
I(εit − b0τk < 0)− τk

)
+

1

T

K∑
k=1

fε(b0τk)
1

N

N∑
i=1

λ0iλ
′
0i(F̂t − F0t) + op(1).

(S.44)

To obtain eq. (S.44), we note that 1
N

∑N
i=1 λ0i(b̂τk−b0τk) = op(1) since b̂τk−b0τk = Op(1/

√
NT )

in eq. (S.38) and each element of the vector 1
N

∑N
i=1 λ0i is O(1) due to the normalization in

Assumption 1. For the term 1
N

∑N
i=1 λ0iF

′
0t(λ̂i − λ0i), we have

1

N

N∑
i=1

λ0iF
′
0t(λ̂i − λ0i) =



∑r
j=1 F0t,j

1
N

∑N
i=1 λ0i,1(λ̂i,j − λ0i,j)∑r

j=1 F0t,j
1
N

∑N
i=1 λ0i,2(λ̂i,j − λ0i,j)

...∑r
j=1 F0t,j

1
N

∑N
i=1 λ0i,r(λ̂i,j − λ0i,j)


, (S.45)

The first element in eq. (S.45) is

r∑
j=1

F0t,j
1

N

N∑
i=1

λ0i,1(λ̂i,j − λ0i,j) ≤

∣∣∣∣∣
r∑

j=1

F0t,j

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
i=1

λ0i,1(λ̂i,j − λ0i,j)

∣∣∣∣∣
≤

(
r

r∑
j=1

F 2
0t,j

)1/2(
1

N

N∑
i=1

λ2
0i,1

)1/2(
1

N

N∑
i=1

(λ̂i,j − λ0i,j)
2

)1/2

= Op(1) ·O(1) · op(1) = op(1),

where the Op(1) and O(1) results follow the normalization conditions for F0 and Λ0 and the

op(1) term is the result of Lemma 2. Thus we conclude that 1
N

∑N
i=1 λ0iF

′
0t(λ̂i − λ0i) = op(1)

and eq. (S.44) holds. Setting eq. (S.44) to 0 gives

√
N(F̂t − F0t) = −

( K∑
k=1

fε(b0τk)
1

T

N∑
t=1

λ0iλ
′
0i

)−1 1√
N

N∑
i=1

[
λ0i

K∑
k=1

(
I(εit − b0τk < 0)− τk

)]
.

(S.46)
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The asymptotic distribution is given by

√
N(F̂t − F0t) ∼ N(0,ΣCQFA,F ), (S.47)

where

ΣCQFA,F =

∑K
k1=1

∑K
k2=1min(τk1 , τk2)(1−max(τk1 , τk2)(∑K

k=1 fε(b0τk)
)2 Σ−1

λ0
,

and the derivation of ΣCQFA,F is similar to that for ΣCQFA,λ in eq. (S.43).

S.3 Proof of Theorem 2

In the following proof, let r be the estimated number of factors and r0 be the true number of

factors. Write the estimated factor and factor loading as F̂t(r) and λ̂i(r) when the estimated

number of factor is r.

Proof of Theorem 2. We consider two cases. When r > r0, we use a similar method in

Lemma 4 in Bai and Ng (2002). Let Hr be an r0× r matrix with rank(Hr) = min(r, r0), and

an example Hr can be found in Bai and Ng (2002, Theorem 1). Let H+
r be the generalized

inverse of Hr so that HrH
+
r = Ir0 . Define the following transformed factor and factor loading

vectors in the r-dimensional space

F0t(r) = H ′
rF0t and λ0i(r) = H+

r λ0i. (S.48)

Since λ0i(r)
′F0t(r) = λ0iF0t, the transform in eq. (S.48) can be viewed as a representation of

the true factor and factor loading in the r-dimensional space.

Define

V (r) =
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

ρτk(Yit − b0τk − λ̂i(r)
′F̂t(r)), (S.49)

V (r0) =
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

ρτk(Yit − b0τk − λ′
0iF0t)

=
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

ρτk(Yit − b0τk − λ0i(r)
′F0t(r)). (S.50)

Apply the Knight’s equality to eq. (S.49) and we have
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V (r) =
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

ρτk(εit − b0τk − (b̂τk − b0τk)− (λ̂i(r)
′F̂t(r)− λ0i(r)

′F0t(r)))

=
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

{
ρτk(εit − b0τk) +

[
(b̂τk − b0τk) + (λ̂i(r)

′F̂t(r)− λ0i(r)
′F0t(r))

]
×
(
I(εit − b0τk < 0)− τk

)
+

∫ (b̂τk−b0τk )+λ̂i(r)
′F̂t(r)−λ0i(r)

′F0t(r)

0

[
I(εit − b0τk < s)− I(εit − b0τk < 0)

]
ds
}

=
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

ρτk(εit − b0τk)

+
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

[
(b̂τk − b0τk) + (λ̂i(r)− λ0i(r))

′(F̂t(r)− F0t(r)) + (λ̂i(r)− λ0i(r))
′F0t(r)

+ λ0i(r)
′(F̂t(r)− F0t(r))

]
×
(
I(εit − b0τk < 0)− τk

)
+

1

NT

N∑
i=1

T∑
t=1

K∑
k=1

∫ (b̂τk−b0τk )+λ̂i(r)
′F̂t(r)−λ0i(r)

′F0t(r)

0

[
I(εit − b0τk < s)− I(εit − b0τk < 0)

]
ds

= V (r0) + I + II. (S.51)

Consider I. From Theorem 1, the implication of eq. (S.38) that b̂τk − b0τk is an Op(1/
√
NT )

term, and the fact that εit is i.i.d. and independent of F0t and λ0i, we have

I =
1

NT

N∑
i=1

T∑
t=1

K∑
k=1

[
Op

(
1√
NT

)
+Op(

1√
N
)Op(

1√
T
) +Op

(
1√
T

)
+Op

(
1√
N

)]
·Op

(
1√
NT

)
= Op

(
1

CNT

)
.

Although the true number of factors is r0, eq. (S.48) represents the r0 factors in an r-

dimensional space. Consequently, we can use r as the number of factors in eq. (2) for

estimation, and apply results in Lemma 2 to the terms in I.

For term II, using the similar argument in eqs. (S.35) and (S.36), we can show II converges

to the following quadratic form
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II → fε(b0τk)

2NT

K∑
k=1

N∑
i=1

T∑
t=1


b̂τk(r)− b0τk(r)

λ̂i(r)− λ0i(r)

F̂t(r)− F0t(r)


′ 

1 F0t(r)
′ λ0i(r)

′

F0t(r) F0t(r)F0t(r)
′ F0t(r)λ0i(r)

′

λ0i(r) λ0i(r)F0t(r)
′ λ̂i(r)λ0i(r)

′



b̂τk(r)− b0τk(r)

λ̂i(r)− λ0i(r)

F̂t(r)− F0t(r)


= Op

(
1√
NT

)
+Op

(
1√
T

)
+Op

(
1√
N

)
+Op

(
1

N
√
T

)
+Op

(
1

T
√
N

)
= Op

(
1

CNT

)
.

Combining the results for the terms I and II, we conclude that V (r)− V (r0) = Op (1/CNT ),

which implies V (r)/V (r0) = 1+Op(1/CNT ) and log(V (r)/V (r0)) = Op(1/CNT ). As a result,

we have

P (IC(r)− IC(r0) < 0) ≤ P (Op(1/CNT ) + q(N, T ) < 0) → 0,

which proves the probability for IC(r) in eq. (11) to select r > r0 is 0 when N, T → ∞.

Next, consider the case r < r0. Replace r with r0 in eq. (S.50). By the law of large

numbers, we know both eqs. (S.49) and (S.50) will converge to some expectations. While

λ0i and F0t will minimize eq. (S.50) as N, T → ∞, λ̂i(r) and F̂t(r) will not attain the

same minimum value when plugged into eq. (S.49) since λ̂i(r) and F̂t(r) cannot span the

space spanned by λ0i and F0t when r < r0. Hence, we conclude that V (r) − V (r0) > 0 as

N, T → ∞. This is similar to the proof in Ando and Bai (2020, supplement page 29). Hence,

we have V (r)/V (r0) > 1 and log(V (r)/V (r0)) > c for some positive constant c. Finally, as

N, T → ∞, we have

P (IC(r)− IC(r0) < 0) ≤ P (c+ (r − r0)g(N, T ) < 0) → 0,

where we use the result that g(N, T ) → 0 as N, T → 0.

The analysis for the two cases, r > r0 and r < r0 proves that IC(r) will select the correct

number of factor r0 asymptotically because the value of the information criterion at r is

always lager than or equal to the value of information criterion at r0.

S.4 Additional tables
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S.4.1 Table S.1: Table 2 with additional adjusted R2s of the PCA method under asymmetric errors

Table S.1: Adj. R2 of regressing 3 true factors on the estimated factors – Table 2 with the PCA results

(T,N)
R2

1,RTS R2
2,RTS R2

3,RTS R2
1,QFM R2

2,QFM R2
3,QFM R2

1,CQFM R2
2,CQFM R2

3,CQFM R2
1,PCA R2

2,PCA R2
3,PCA

εit ∼ skewed normal

(50,100) 0.9950 0.9914 0.9893 0.9915 0.9857 0.9821 0.9951 0.9917 0.9898 0.9950 0.9914 0.9893

(100,50) 0.9909 0.9828 0.9786 0.9847 0.9712 0.9645 0.9911 0.9832 0.9790 0.9909 0.9828 0.9787

(100,200) 0.9978 0.9961 0.9949 0.9960 0.9928 0.9908 0.9979 0.9962 0.9952 0.9978 0.9961 0.9949

(200,100) 0.9959 0.9921 0.9898 0.9926 0.9856 0.9816 0.9961 0.9924 0.9903 0.9959 0.9921 0.9899

(300,300) 0.9986 0.9975 0.9967 0.9974 0.9953 0.9938 0.9987 0.9976 0.9969 0.9986 0.9975 0.9967

εit ∼ skewed t

(50,100) 0.9950 0.9916 0.9895 0.9936 0.9895 0.9866 0.9954 0.9923 0.9903 0.9951 0.9916 0.9896

(100,50) 0.9908 0.9828 0.9790 0.9885 0.9783 0.9737 0.9914 0.9840 0.9804 0.9908 0.9828 0.9790

(100,200) 0.9978 0.9960 0.9949 0.9972 0.9950 0.9936 0.9981 0.9964 0.9954 0.9978 0.9960 0.9950

(200,100) 0.9959 0.9921 0.9899 0.9947 0.9900 0.9871 0.9962 0.9928 0.9908 0.9959 0.9921 0.9899

(300,300) 0.9986 0.9975 0.9967 0.9983 0.9968 0.9958 0.9988 0.9978 0.9971 0.9986 0.9975 0.9967

εit ∼ asymmetric Laplace

(50,100) 0.9569 0.9254 0.9085 0.9482 0.9108 0.8682 0.9759 0.9590 0.9518 0.9566 0.9255 0.9070
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(T,N) FRTS
1 FRTS

2 FRTS
3 F̂QFM

1 FQFM
2 FQFM

3 F̂CQFM
1 FCQFM

2 FCQFM
3 F̂PCA

1 FPCA
2 FPCA

3

(100,50) 0.9277 0.8698 0.8438 0.9151 0.8443 0.8062 0.9573 0.9221 0.9057 0.9274 0.8683 0.8417

(100,200) 0.9826 0.9673 0.9577 0.9777 0.9566 0.9341 0.9911 0.9834 0.9784 0.9827 0.9673 0.9577

(200,100) 0.9664 0.9375 0.9204 0.9571 0.9143 0.8900 0.9823 0.9663 0.9572 0.9664 0.9375 0.9202

(300,300) 0.9891 0.9797 0.9739 0.9843 0.9704 0.9613 0.9946 0.9900 0.9874 0.9891 0.9797 0.9739

εit ∼ log-normal

(50,100) 0.5958 0.3578 0.2543 0.9541 0.8272 0.6834 0.9889 0.9823 0.9769 0.3050 0.1109 0.0874

(100,50) 0.5637 0.3286 0.2245 0.9216 0.7739 0.5421 0.9781 0.9598 0.9512 0.2241 0.0787 0.0600

(100,200) 0.8045 0.5902 0.4469 0.9754 0.8402 0.5698 0.9964 0.9932 0.9914 0.4009 0.0976 0.0648

(200,100) 0.7470 0.5382 0.4320 0.9687 0.8033 0.4895 0.9931 0.9863 0.9826 0.3668 0.0642 0.0389

(300,300) 0.8950 0.7967 0.7229 0.9881 0.8448 0.4473 0.9980 0.9963 0.9952 0.6190 0.1077 0.0449

εit ∼ mixture of skewed normal

(50,100) 0.9908 0.9851 0.9807 0.9899 0.9835 0.9788 0.9937 0.9900 0.9870 0.9909 0.9851 0.9810

(100,50) 0.9829 0.9694 0.9609 0.9816 0.9670 0.9586 0.9880 0.9785 0.9731 0.9829 0.9693 0.9609

(100,200) 0.9960 0.9929 0.9908 0.9954 0.9920 0.9893 0.9974 0.9954 0.9941 0.9960 0.9929 0.9908

(200,100) 0.9926 0.9858 0.9818 0.9914 0.9837 0.9789 0.9952 0.9908 0.9880 0.9926 0.9858 0.9818

(300,300) 0.9976 0.9955 0.9941 0.9971 0.9946 0.9929 0.9985 0.9972 0.9964 0.9976 0.9955 0.9941

Notes: Every number is the average of adjusted R2 over 100 replications of regressing one of the three true factors on the estimated factors based

on the RTS, QFM(0.5), CQFM, and PCA method, respectively. We choose τ = 0.5 for the QFM method and K = 5 for the CQFM method. This

table is the same as Table 2 except for the addition of the PCA results.
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S.4.2 Table S.2: Adjusted R2 under symmetric errors

Table S.2: Adj. R2 of regressing 3 true factors on the estimated factors under symmetric errors

(T,N)
FRTS
1 FRTS

2 FRTS
3 FQFM

1 FQFM
2 FQFM

3 FCQFM
1 FCQFM

2 FCQFM
3 FPCA

1 FPCA
2 FPCA

3

εit ∼ N(0, 1)

(50,100) 0.9950 0.9916 0.9895 0.9936 0.9895 0.9866 0.9954 0.9923 0.9903 0.9951 0.9916 0.9896

(100,50) 0.9908 0.9828 0.9790 0.9885 0.9783 0.9737 0.9914 0.9840 0.9804 0.9908 0.9828 0.9790

(100,200) 0.9978 0.9960 0.9949 0.9972 0.9950 0.9936 0.9981 0.9964 0.9954 0.9978 0.9960 0.9950

(200,100) 0.9959 0.9921 0.9899 0.9947 0.9900 0.9871 0.9962 0.9928 0.9908 0.9959 0.9921 0.9899

(300,300) 0.9986 0.9975 0.9967 0.9983 0.9968 0.9958 0.9988 0.9978 0.9971 0.9986 0.9975 0.9967

εit ∼ t1

(50,100) 0.0530 0.0415 0.0436 0.9821 0.9689 0.9609 0.9777 0.9623 0.9523 0.0439 0.0383 0.0404

(100,50) 0.0483 0.0326 0.0290 0.9662 0.9391 0.9258 0.9577 0.9226 0.8980 0.0167 0.0213 0.0191

(100,200) 0.0212 0.0181 0.0193 0.9937 0.9883 0.9849 0.9919 0.9853 0.9808 0.0189 0.0185 0.0230

(200,100) 0.0223 0.0136 0.0105 0.9877 0.9764 0.9697 0.9839 0.9695 0.9617 0.0097 0.0103 0.0124

(300,300) 0.0106 0.0069 0.0057 0.9964 0.9932 0.9912 0.9953 0.9912 0.9885 0.0074 0.0069 0.0069

εit ∼ Laplace, location = 0, scale = 1

(50,100) 0.9896 0.9831 0.9794 0.9919 0.9864 0.9837 0.9920 0.9868 0.9842 0.9896 0.9833 0.9797
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(T,N) FRTS
1 FRTS

2 FRTS
3 FQFM

1 FQFM
2 FQFM

3 FCQFM
1 FCQFM

2 FCQFM
3 FPCA

1 FPCA
2 FPCA

3

(100,50) 0.9813 0.9662 0.9587 0.9851 0.9730 0.9670 0.9854 0.9736 0.9678 0.9813 0.9661 0.9587

(100,200) 0.9958 0.9921 0.9897 0.9970 0.9945 0.9929 0.9969 0.9941 0.9923 0.9958 0.9921 0.9897

(200,100) 0.9916 0.9840 0.9796 0.9941 0.9887 0.9855 0.9938 0.9880 0.9848 0.9916 0.9840 0.9796

(300,300) 0.9973 0.9950 0.9935 0.9983 0.9968 0.9959 0.9981 0.9964 0.9954 0.9973 0.9950 0.9935

εit ∼ 0.9N(0, 1) + 0.1N(0, 9)

(50,100) 0.9905 0.9841 0.9802 0.9909 0.9843 0.9795 0.9928 0.9875 0.9841 0.9905 0.9841 0.9803

(100,50) 0.9836 0.9695 0.9615 0.9834 0.9696 0.9622 0.9870 0.9757 0.9700 0.9836 0.9695 0.9615

(100,200) 0.9961 0.9928 0.9908 0.9962 0.9928 0.9910 0.9970 0.9945 0.9929 0.9961 0.9928 0.9909

(200,100) 0.9926 0.9859 0.9812 0.9926 0.9859 0.9814 0.9942 0.9891 0.9856 0.9926 0.9859 0.9812

(300,300) 0.9976 0.9954 0.9940 0.9976 0.9955 0.9941 0.9981 0.9965 0.9955 0.9976 0.9954 0.9940

εit ∼ 0.9N(0, 1) + 0.1N(0, 100)

(50,100) 0.9334 0.8849 0.8556 0.9900 0.9828 0.9782 0.9918 0.9858 0.9820 0.9319 0.8740 0.8321

(100,50) 0.9035 0.8233 0.7819 0.9819 0.9670 0.9586 0.9850 0.9719 0.9653 0.9001 0.8076 0.7609

(100,200) 0.9756 0.9537 0.9418 0.9960 0.9924 0.9905 0.9967 0.9938 0.9919 0.9755 0.9529 0.9403

(200,100) 0.9561 0.9165 0.8908 0.9922 0.9850 0.9802 0.9935 0.9878 0.9838 0.9558 0.9152 0.8886

(300,300) 0.9853 0.9722 0.9638 0.9974 0.9952 0.9938 0.9979 0.9961 0.9950 0.9853 0.9721 0.9637

Notes: Each number is the average of adjusted R2 over 100 replications of regressing one of the three true factors on the estimated factors

based on the RTS, QFM(0.5), CQFM, and PCA method, respectively. We choose τ = 0.5 for the QFM method and K = 5 for the CQFM

method.
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S.4.3 Table S.3: MSE under symmetric errors

Table S.3: MSE under symmetric errors

(T,N)
εit ∼ N(0, 1) εit ∼ t1

RTS QFM CQFM PCA RTS QFM CQFM PCA

(50,100) 0.098 0.135 0.110 0.088 16980540.454 0.333 0.443 19809797.706

(100,50) 0.091 0.135 0.102 0.088 15105565.250 0.330 0.493 19809805.496

(100,200) 0.048 0.070 0.055 0.045 473589.065 0.135 0.178 5497608.996

(200,100) 0.046 0.070 0.052 0.045 147530.806 0.135 0.176 5497659.458

(300,300) 0.021 0.031 0.024 0.020 58500.884 0.054 0.072 5569166.347

εit ∼ Laplace(0,1) εit ∼ 0.9N(0, 1) + 0.1N(0, 9)

(50,100) 0.196 0.143 0.152 0.180 0.180 0.165 0.141 0.165

(100,50) 0.185 0.141 0.142 0.181 0.167 0.162 0.129 0.164

(100,200) 0.096 0.063 0.075 0.090 0.086 0.081 0.068 0.082

(200,100) 0.093 0.064 0.068 0.091 0.083 0.081 0.063 0.082

(300,300) 0.041 0.025 0.030 0.040 0.037 0.036 0.028 0.036

εit ∼ 0.9N(0, 1) + 0.1N(0, 100)

(50,100) 1.231 0.179 0.158 1.310

(100,50) 1.114 0.177 0.149 1.266

(100,200) 0.536 0.086 0.078 0.545

(200,100) 0.520 0.087 0.071 0.542

(300,300) 0.224 0.038 0.034 0.226

Notes : Every number is the average MSE over 100 replications for the RTS, QFM(0.5),
CQFM, and PCA method, respectively. We choose τ = 0.5 for the QFM method and K = 5
for the CQFM method.

S.4.4 Table S.4: Factor number estimation under symmetric errors
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Table S.4: Estimated factor number and frequency of correct estimation for symmetric errors

(T,N) QFM CQFM PCA QFM CQFM PCA

avg. r̂ Prob(r̂ = 3)

εit ∼ N(0, 1)

(50,100) 2.5 3 3 0.59 1 1

(100,50) 2.58 3 3 0.63 1 1

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.93 3 3 0.93 1 1

(300,300) 3 3 3 1 1 1

εit ∼ t1

(50,100) 2.43 2.67 5.99 0.52 0.68 0

(100,50) 2.7 2.6 5.96 0.66 0.37 0

(100,200) 2.95 2.99 6 0.96 0.99 0

(200,100) 2.93 3.44 6 0.93 0.61 0

(300,300) 3 3 6 1 1 0

εit ∼ Laplace

(50,100) 2.53 3 3 0.6 1 1

(100,50) 2.63 3 3 0.66 1 1

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.92 3 3 0.92 1 1

(300,300) 3 3 3 1 1 1

εit ∼ 0.9N(0, 1) + 0.1N(0, 9)

(50,100) 2.54 3 3 0.62 1 1

(100,50) 2.59 3 3 0.62 1 1

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.93 3 3 0.93 1 1

(300,300) 3 3 3 1 1 1

εit ∼ 0.9N(0, 1) + 0.1N(0, 100)

(50,100) 2.55 2.8 2.58 0.64 0.81 0.62

(100,50) 2.59 2.86 2.6 0.63 0.86 0.61

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.92 3 3 0.92 1 1

(300,300) 3 3 3 1 1 1

Notes : Same as that in Table 4. Results for CQFM with t1 error are obtained by standard-
izing the data, using eq. (13) in eq. (11), and letting K = 25 in CQFM.
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S.4.5 Table S.5: Adjusted R2 under asymmetric errors with heteroskedasticity

Table S.5: Adj. R2 of regressing 3 true factors on the estimated factors under asymmetric errors and heteroskedasticity

(T,N)
FRTS
1 FRTS

2 FRTS
3 F̂QFM

1 FQFM
2 FQFM

3 F̂CQFM
1 FCQFM

2 FCQFM
3 F̂PCA

1 FPCA
2 FPCA

3

εit ∼ skewed normal

(50,100) 0.9727 0.9527 0.9397 0.9632 0.9289 0.9168 0.9755 0.9579 0.9468 0.9727 0.9527 0.9397

(100,50) 0.9508 0.9128 0.8909 0.9363 0.8842 0.8488 0.9545 0.9191 0.8987 0.9510 0.9122 0.8906

(100,200) 0.9887 0.9791 0.9726 0.9846 0.9710 0.9615 0.9898 0.9813 0.9754 0.9887 0.9790 0.9725

(200,100) 0.9789 0.9587 0.9479 0.9712 0.9431 0.9288 0.9808 0.9624 0.9526 0.9789 0.9586 0.9478

(300,300) 0.9930 0.9870 0.9831 0.9901 0.9814 0.9761 0.9938 0.9883 0.9848 0.9930 0.9870 0.9831

εit ∼ skewed t

(50,100) 0.9727 0.9521 0.9376 0.9738 0.9552 0.9388 0.9780 0.9627 0.9507 0.9728 0.9521 0.9369

(100,50) 0.9517 0.9112 0.8912 0.9513 0.9104 0.8868 0.9597 0.9267 0.9104 0.9517 0.9104 0.8902

(100,200) 0.9889 0.9790 0.9725 0.9890 0.9795 0.9736 0.9910 0.9832 0.9791 0.9889 0.9789 0.9723

(200,100) 0.9789 0.9592 0.9476 0.9792 0.9600 0.9481 0.9829 0.9673 0.9578 0.9789 0.9591 0.9474

(300,300) 0.9931 0.9870 0.9830 0.9933 0.9874 0.9835 0.9946 0.9899 0.9867 0.9931 0.9870 0.9829

εit ∼ asymmetric Laplace

(50,100) 0.7231 0.5082 0.3845 0.7540 0.5467 0.3553 0.8388 0.7039 0.5807 0.7155 0.4372 0.3184
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(T,N) FRTS
1 FRTS

2 FRTS
3 F̂QFM

1 FQFM
2 FQFM

3 F̂CQFM
1 FCQFM

2 FCQFM
3 F̂PCA

1 FPCA
2 FPCA

3

(100,50) 0.6480 0.3788 0.2830 0.6732 0.3722 0.3023 0.7710 0.5818 0.4495 0.6370 0.3283 0.2338

(100,200) 0.8950 0.7946 0.7178 0.8961 0.6998 0.4305 0.9447 0.8925 0.8592 0.8893 0.7679 0.6646

(200,100) 0.8381 0.6849 0.5925 0.8629 0.6080 0.3442 0.9063 0.8201 0.7776 0.8337 0.6648 0.5502

(300,300) 0.9415 0.8916 0.8588 0.9474 0.7450 0.3809 0.9686 0.9415 0.9237 0.9409 0.8892 0.8538

εit ∼ log-normal

(50,100) 0.1306 0.0610 0.0693 0.8032 0.5195 0.3900 0.8513 0.6820 0.5406 0.0560 0.0409 0.0464

(100,50) 0.1112 0.0465 0.0307 0.7475 0.4645 0.2602 0.7924 0.6177 0.4502 0.0263 0.0247 0.0191

(100,200) 0.2022 0.0496 0.0437 0.9347 0.7346 0.2576 0.9580 0.9157 0.8825 0.0305 0.0223 0.0212

(200,100) 0.2361 0.0447 0.0297 0.8943 0.6118 0.2963 0.9291 0.8581 0.8060 0.0164 0.0137 0.0112

(300,300) 0.4625 0.0969 0.0385 0.9636 0.7342 0.2566 0.9762 0.9520 0.9360 0.0134 0.0079 0.0081

εit ∼ mixture of skewed normal

(50,100) 0.9473 0.9091 0.8905 0.9579 0.9222 0.8970 0.9693 0.9452 0.9336 0.9458 0.9028 0.8738

(100,50) 0.9096 0.8406 0.8051 0.9260 0.8605 0.8222 0.9430 0.8969 0.8750 0.9079 0.8338 0.7901

(100,200) 0.9792 0.9609 0.9501 0.9820 0.9661 0.9554 0.9876 0.9767 0.9699 0.9792 0.9604 0.9489

(200,100) 0.9620 0.9285 0.9066 0.9664 0.9360 0.9192 0.9766 0.9549 0.9421 0.9618 0.9278 0.9053

(300,300) 0.9874 0.9764 0.9689 0.9887 0.9787 0.9722 0.9925 0.9858 0.9815 0.9874 0.9763 0.9688

Notes: Every number is the average of adjusted R2 over 100 replications of regressing one of the three true factors on the estimated factors

based on the RTS, QFM(0.5), and CQFM method, respectively. We choose τ = 0.5 for the QFM method and K = 5 for the CQFM method.

The DGP is described in eq. (14).
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S.4.6 Table S.6: MSE under asymmetric errors with heteroskedasticity

Table S.6: MSE under asymmetric errors with heteroskedasticity

(T,N)
εit ∼ skewed normal εit ∼ skewed t

RTS QFM CQFM PCA RTS QFM CQFM PCA

(50,100) 0.534 0.711 0.480 0.506 0.533 0.502 0.426 0.507

(100,50) 0.514 0.712 0.467 0.511 0.512 0.518 0.413 0.514

(100,200) 0.246 0.349 0.220 0.240 0.246 0.240 0.193 0.241

(200,100) 0.242 0.349 0.219 0.241 0.241 0.239 0.191 0.241

(300,300) 0.105 0.159 0.094 0.104 0.105 0.104 0.082 0.104

εit ∼ asymmetric Laplace εit ∼ log-normal

(50,100) 6.904 6.542 3.892 7.508 131.320 16.924 10.504 196.980

(100,50) 6.824 6.687 3.874 7.526 101.513 17.118 15.258 205.817

(100,200) 2.580 4.798 1.302 2.849 71.079 16.400 1.013 147.965

(200,100) 2.630 4.794 1.278 2.884 54.737 16.315 1.001 132.482

(300,300) 0.970 4.156 0.505 1.006 29.903 16.143 0.405 92.768

εit ∼ mixture of skewed normal

(50,100) 1.010 0.857 0.621 1.044

(100,50) 0.987 0.853 0.595 1.058

(100,200) 0.451 0.405 0.273 0.455

(200,100) 0.444 0.405 0.269 0.454

(300,300) 0.191 0.183 0.114 0.193

Notes : Every number is the average MSE over 100 replications for the RTS,
QFM(0.5), CQFM, and PCA method, respectively. We choose τ = 0.5 for the
QFM method and K = 5 for the CQFM method. The DGP is described in eq. (14).

S.4.7 Table S.7: Factor number estimation under asymmetric errors with het-

eroskedasticity
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Table S.7: Estimated factor number and frequency of correct estimation under heteroskedas-
ticity

(T,N) QFM CQFM PCA QFM CQFM PCA

avg. r̂ Prob(r̂ = 3)

εit ∼ skewed normal

(50,100) 2.64 3.07 2.99 0.69 0.96 0.99

(100,50) 2.73 3.14 3 0.76 0.95 1

(100,200) 2.95 3 3 0.96 1 1

(200,100) 2.94 3 3 0.94 1 1

(300,300) 3 3 3 1 1 1

εit ∼ skewed t

(50,100) 2.62 3.11 3.01 0.66 0.92 0.99

(100,50) 2.73 3.07 3 0.76 0.97 1

(100,200) 2.95 3 3 0.96 1 1

(200,100) 2.94 3 3 0.94 1 1

(300,300) 3 3 3 1 1 1

εit ∼ asymmetric Laplace

(50,100) 5.36 1.98 1 0.07 0.13 0

(100,50) 5.6 1.84 1 0.02 0.13 0

(100,200) 4.86 2.89 1.02 0.02 0.73 0

(200,100) 4.97 2.81 1.03 0.02 0.78 0

(300,300) 4.01 3 2.14 0 1 0.24

εit ∼ log-normal

(50,100) 1.35 1.64 3.91 0 0.07 0.16

(100,50) 1.43 1.64 3.6 0 0.07 0.19

(100,200) 1.21 2.12 3.36 0 0.3 0.17

(200,100) 1.28 2.2 3.54 0 0.27 0.2

(300,300) 1.51 3.09 3.45 0 0.91 0.16

εit ∼ mixture of skewed normal

(50,100) 2.65 3.22 2.82 0.7 0.81 0.82

(100,50) 2.72 3.25 2.77 0.71 0.83 0.77

(100,200) 2.95 3 3 0.96 1 1

(200,100) 2.97 3.03 3 0.97 0.97 1

(300,300) 3 3 3 1 1 1

Notes : Same as Table 4. Results for CQFM are obtained based on the IC with eq. (13).
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S.4.8 Table S.8: Adjusted R2 under asymmetric and AR(1) errors

Table S.8: Adj. R2 of regressing 3 true factors on the estimated factors under asymmetric and AR(1) errors

(T,N)
FRTS
1 FRTS

2 FRTS
3 F̂QFM

1 FQFM
2 FQFM

3 F̂CQFM
1 FCQFM

2 FCQFM
3 F̂PCA

1 FPCA
2 FPCA

3

εit ∼ skewed normal

(50,100) 0.9936 0.9891 0.9861 0.9899 0.9830 0.9776 0.9934 0.9886 0.9852 0.9937 0.9892 0.9863

(100,50) 0.9885 0.9773 0.9726 0.9816 0.9650 0.9575 0.9876 0.9759 0.9710 0.9885 0.9774 0.9726

(100,200) 0.9972 0.9949 0.9933 0.9954 0.9917 0.9892 0.9971 0.9948 0.9931 0.9972 0.9950 0.9933

(200,100) 0.9948 0.9896 0.9865 0.9914 0.9833 0.9783 0.9945 0.9891 0.9859 0.9948 0.9896 0.9865

(300,300) 0.9982 0.9966 0.9956 0.9970 0.9943 0.9927 0.9981 0.9965 0.9954 0.9982 0.9966 0.9956

εit ∼ skewed t

(50,100) 0.9938 0.9886 0.9857 0.9916 0.9851 0.9814 0.9939 0.9888 0.9864 0.9938 0.9887 0.9858

(100,50) 0.9880 0.9780 0.9726 0.9841 0.9702 0.9628 0.9878 0.9776 0.9724 0.9880 0.9781 0.9726

(100,200) 0.9971 0.9950 0.9931 0.9962 0.9931 0.9908 0.9973 0.9951 0.9933 0.9972 0.9950 0.9931

(200,100) 0.9947 0.9894 0.9865 0.9927 0.9858 0.9816 0.9948 0.9896 0.9866 0.9947 0.9894 0.9865

(300,300) 0.9982 0.9966 0.9956 0.9976 0.9954 0.9941 0.9983 0.9968 0.9957 0.9982 0.9966 0.9956

εit ∼ asymmetric Laplace

(50,100) 0.9340 0.8576 0.7759 0.9150 0.8158 0.7174 0.9497 0.8967 0.8489 0.9357 0.8618 0.7769
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(T,N) FRTS
1 FRTS

2 FRTS
3 F̂QFM

1 FQFM
2 FQFM

3 F̂CQFM
1 FCQFM

2 FCQFM
3 F̂PCA

1 FPCA
2 FPCA

3

(100,50) 0.9047 0.8094 0.7557 0.8785 0.7469 0.6797 0.9223 0.8487 0.8081 0.9042 0.8058 0.7503

(100,200) 0.9749 0.9500 0.9257 0.9670 0.9327 0.8887 0.9810 0.9624 0.9478 0.9752 0.9505 0.9267

(200,100) 0.9569 0.9154 0.8875 0.9426 0.8869 0.8406 0.9662 0.9336 0.9139 0.9569 0.9152 0.8870

(300,300) 0.9854 0.9719 0.9626 0.9795 0.9591 0.9387 0.9889 0.9790 0.9720 0.9854 0.9719 0.9626

εit ∼ log-normal

(50,100) 0.4852 0.2127 0.0983 0.8541 0.6070 0.4188 0.8798 0.6945 0.4976 0.3534 0.1521 0.0813

(100,50) 0.4321 0.1520 0.0877 0.8060 0.5435 0.3568 0.8752 0.7186 0.6046 0.2429 0.0880 0.0444

(100,200) 0.6285 0.2365 0.0705 0.9441 0.7487 0.3854 0.9767 0.9481 0.9243 0.3646 0.0980 0.0423

(200,100) 0.6333 0.2390 0.0867 0.9230 0.7252 0.3104 0.9606 0.9217 0.8941 0.2885 0.0525 0.0279

(300,300) 0.8357 0.5227 0.1730 0.9724 0.7799 0.3441 0.9881 0.9769 0.9693 0.4888 0.0831 0.0216

εit ∼ mixture of skewed normal

(50,100) 0.9878 0.9791 0.9732 0.9869 0.9774 0.9707 0.9902 0.9841 0.9789 0.9881 0.9793 0.9736

(100,50) 0.9782 0.9597 0.9492 0.9759 0.9546 0.9448 0.9819 0.9661 0.9585 0.9783 0.9597 0.9490

(100,200) 0.9949 0.9902 0.9876 0.9943 0.9890 0.9853 0.9959 0.9922 0.9901 0.9949 0.9902 0.9877

(200,100) 0.9905 0.9806 0.9755 0.9889 0.9777 0.9719 0.9923 0.9843 0.9802 0.9906 0.9806 0.9755

(300,300) 0.9968 0.9939 0.9923 0.9962 0.9928 0.9908 0.9974 0.9952 0.9938 0.9968 0.9939 0.9923

Notes: Each number is the average of adjusted R2 over 100 replications of regressing one of the three true factors on the estimated factors

based on the RTS, QFM(0.5), and CQFM method, respectively. We choose τ = 0.5 for the QFM method and K = 5 for the CQFM method.

The DGP is described in eq. (15).
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S.4.9 Table S.9: MSE under asymmetric and AR(1) errors

Table S.9: MSE under asymmetric and AR(1) errors

(T,N)
εit ∼ skewed normal εit ∼ skewed t

RTS QFM CQFM PCA RTS QFM CQFM PCA

(50,100) 0.186 0.245 0.184 0.173 0.187 0.213 0.175 0.176

(100,50) 0.152 0.219 0.156 0.147 0.151 0.188 0.147 0.148

(100,200) 0.091 0.128 0.091 0.087 0.092 0.108 0.087 0.087

(200,100) 0.076 0.114 0.077 0.074 0.077 0.096 0.073 0.075

(300,300) 0.038 0.056 0.039 0.036 0.038 0.046 0.037 0.036

εit ∼ asymmetric Laplace εit ∼ log-normal

(50,100) 1.981 2.324 1.466 1.947 42.800 10.486 12.697 49.761

(100,50) 1.519 1.982 1.156 1.551 37.263 7.648 5.144 48.708

(100,200) 0.824 1.175 0.618 0.811 28.682 7.136 0.898 36.477

(200,100) 0.672 0.988 0.510 0.670 23.374 6.964 0.662 37.015

(300,300) 0.312 0.510 0.235 0.309 13.940 6.830 0.280 24.307

εit ∼ mixture of skewed normal

(50,100) 0.344 0.339 0.275 0.326

(100,50) 0.280 0.296 0.226 0.276

(100,200) 0.167 0.172 0.131 0.161

(200,100) 0.138 0.151 0.110 0.135

(300,300) 0.068 0.073 0.054 0.066

Notes : Every number is the average MSE over 100 replications for the RTS,
QFM(0.5), CQFM, and PCA method, respectively. We choose τ = 0.5 for the
QFM method and K = 5 for the CQFM method. The DGP is described in
eq. (15).

S.4.10 Table S.10: Factor number estimation under asymmetric AR(1) errors

S.5 Additional figures

S.5.1 Figure S.1: Scree plot of the macroeconomic data set

S.5.2 Figure S.2: Time series plot of the 3rd, 4th, and 5th CQFM and PCA

factors
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Table S.10: Estimated factor number and frequency of correct estimation under asymmetric
AR(1) errors

(T,N) QFM CQFM PCA QFM CQFM PCA

avg. r̂ Prob(r̂ = 3)

εit ∼ skewed normal

(50,100) 2.54 3 3.24 0.61 1 0.79

(100,50) 2.61 3 3 0.66 1 1

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.92 3 3 0.92 1 1

(300,300) 3 3 3 1 1 1

εit ∼ skewed t

(50,100) 2.5 3 3.27 0.58 1 0.8

(100,50) 2.6 3 3 0.63 1 1

(100,200) 2.94 3 3.01 0.95 1 0.99

(200,100) 2.93 3 3 0.93 1 1

(300,300) 3 3 3 1 1 1

εit ∼ asymmetric Laplace

(50,100) 3.21 1.23 3.13 0.44 0 0.68

(100,50) 3.1 1.13 2.81 0.57 0.01 0.81

(100,200) 3.34 2.43 3 0.62 0.48 1

(200,100) 3.24 2.38 3 0.72 0.41 1

(300,300) 3.87 3 3 0.13 1 1

εit ∼ log-normal

(50,100) 3.9 5.96 5.5 0.21 0 0.04

(100,50) 3.68 5.45 4.4 0.32 0.04 0.09

(100,200) 3.37 5.49 4.87 0.51 0.01 0.13

(200,100) 3.35 4.91 4.03 0.53 0.06 0.17

(300,300) 3.96 3.77 4.6 0.04 0.41 0.12

εit ∼ mixture of skewed normal

(50,100) 2.58 3 3.34 0.65 1 0.72

(100,50) 2.62 3 3 0.68 1 1

(100,200) 2.94 3 3 0.95 1 1

(200,100) 2.94 3 3 0.94 1 1

(300,300) 3 3 3 1 1 1

Notes : Same as Table 4. Results for CQFM under log-normal error are obtained using the
IC with eq. (13); all other CQFM results are obtained using the IC with eq. (12).
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Scree plot of the quarterly macroeconomic data with 246 variables

the first 10 eigenvalues
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Figure S.1: Scree plot of the first ten eigenvalues of the standardized data matrix Y Y ′/T ,
where Y is a 255× 246 matrix.
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4th factor
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Figure S.2: The 4th, 5th, and 6th CQFM and PCA factors from 1959/3/1 to 2023/3/1
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