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ABSTRACT 

Cross-series dependencies are crucial in obtaining accurate forecasts when forecasting a 

multivariate time series. Simultaneous Graphical Dynamic Linear Models (SGDLMs) are 

Bayesian models that elegantly capture cross-series dependencies. This study forecasts 

returns of a 40-dimensional time series of stock data from the Johannesburg Stock Exchange 

(JSE) using SGDLMs. The SGDLM approach involves constructing a customised dynamic 

linear model (DLM) for each univariate time series. At each time point, the DLMs are 

recoupled using importance sampling and decoupled using mean-field variational Bayes. 

Our results suggest that SGDLMs forecast stock data on the JSE accurately and respond to 

market gyrations effectively. 

Keywords: Bayesian forecasting; high-dimensional time series; dynamic linear models; 

importance sampling; mean-field variational Bayes 

1 Introduction  

In the stock market, the price of any stock partly depends on the changes in the prices of the other 

stocks. Gruber and West (2016) introduced Simultaneous Graphical Dynamic Linear Models 

(SGDLMs) to address the need for capturing dependencies among time series while maintaining 

the flexibility of customising models at the level of individual time series. In their study, they used 

SGDLMs to forecast returns of a multivariate time series consisting of 400 stocks of the S&P 500 

index, and their SGDLM outperformed the standard Wishart dynamic linear model. SGDLMs have 

been applied to portfolio management by Gruber and West (2017) and forecasting macroeconomic 

series by Xie (2021). Other studies on SGDLMs include Griveau-Billion and Calderhead (2019) 
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and West (2020). Many multivariate models encounter difficulties when applied to high-

dimensional time series (Gruber & West, 2016). Models becoming over-parameterised and the 

inability to scale up computationally, with increasingly high dimensions, are some of the 

difficulties (Gruber & West, 2016). SGDLMs are more parsimonious compared to traditional 

Bayesian multivariate models, e.g., the Wishart dynamic linear model, so they do not suffer heavily 

from these difficulties. However, not many studies have been conducted on these recently 

introduced models. Therefore, more research is needed, especially in elucidating further the 

structure of SGDLMs and the SGDLM algorithm. Capturing cross-series dependencies in high-

dimensional time series usually presents a challenge of computing the many calculations involved; 

this is the basis upon which Griveau-Billion and Calderhead (2019), Gruber and West (2016, 

2017), West (2020), and Xie (2021) used graphics processing units (GPUs) for their computations. 

Using the unconventional GPU-accelerated parallelisation greatly speeds up the computations in 

SGDLMs. Unlike the previous authors who worked with hundreds of time series (e.g., Gruber and 

West (2016, 2017) worked with 400 stocks and Griveau-Billion and Calderhead (2019) worked 

with 376 stocks), using the common central processing unit (CPU)-based computers should suffice 

when one has a smaller number of time series, for example, the 40 stocks of the current study. 

There is therefore a need to investigate the feasibility of applying the SGDLM in conjunction with 

CPU-based computers in situations when the dimension of the multivariate time series is low. 

    In the current study, we present the algorithm of the first version of SGDLMs in detail to make 

it easier for interested researchers to follow up. We apply a SGDLM to forecast daily log-returns 

of a multivariate time series consisting of 40 stocks from the South African Johannesburg Stock 

Exchange, which is a different market to the NYSE and NASDAQ where the SGDLM has 

exclusively been applied so far. We make a comparison between the forecasts of the dynamic 

linear model (DLM) and those of the SGDLM for a particular stock and investigate the effect of 

the number of simultaneous parents on forecast accuracy. We implement the SGDLM algorithm 

in Python and run the code on a local machine with CPU hardware. 

This paper is structured as follows: Section 2 gives an overview of state space models and 

stochastic observational variance DLMs. Section 3 describes the structure of the SGDLM.  Section 

4 presents the SGDLM algorithm. Section 5 explains our SGDLM implementation, and results of 

the analyses are given in Section 6. Finally, Section 7 concludes the study. Supplementary material 

appears in the appendices.  
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2 State space models and stochastic variance DLMs 

In this section we briefly review the notion of a Bayesian state space model for a time series. We 

also review a commonly used example of such a model (the stochastic variance dynamic linear 

model). The SGDLM is an example of this framework. 

2.1 Bayesian state space models  

Suppose we are trying to model a daily time series 𝑦𝑡 (𝑡 = 0,1,2, …). A Bayesian state space 

model  (Petris et al., 2009, Sections 2.3 and 2.4) models 𝑦𝑡 as an explicit function of an evolving 

state variable 𝛩𝑡:  

Observation equation: 𝑦𝑡 = 𝑓(𝛩𝑡) + 𝜂𝑡 (1) 

Evolution equation: 𝛩𝑡+1 = 𝑔(𝛩𝑡) + 𝜔𝑡 (2) 

Here 𝜂𝑡 and ω𝑡 are stochastic noise terms, and 𝑓 and 𝑔 are explicitly known functions. Both the 

time series 𝑦𝑡 and the state variable 𝛩𝑡 could be scalar or vector quantities, but we will write them 

in plain text for simplicity. (In our example later of the SGDLM algorithm, 𝑦𝑡 will be the vector 

of daily returns 𝑦𝑖𝑡 for all the stocks, while 𝛩𝑡 will consist of regression coefficients 𝜙𝑖𝑡, coupling 

coefficients 𝛾𝑖𝑗,𝑡 and precisions 𝜆𝑖𝑡). 

To understand how this works, imagine ourselves on the morning of day 0. The day has just 

begun, so data point 𝑦0
∗ is not yet known, as this is measured in the afternoon (say). But, we are 

given an initial probability distribution (the prior) 𝑝(𝛩0) for the state 𝛩0, allowing us to infer a 

conditional probability distribution 𝑝(𝑦0|𝛩0) using the observation equation (Equation (1)). To 

forecast the actual probability that 𝑦0 will occur, unconditional on the state vector 𝛩0 (which, after 

all, consists of some internal ‘hidden variables’ that we are using in our model but which the public, 

who we are reporting to, does not care about), we must average over all 𝛩0 using the prior 

distribution for 𝛩0: 

 𝑝(𝑦0) = ∫𝑝(𝑦0|𝛩0)𝑝(𝛩0)𝑑Θ0 (3) 

Now, time passes on day 0. We have our lunch, and then in the afternoon, we obtain our first actual 

data point 𝑦0
∗. We use this to update our prior belief about what the probability distribution for the 

state vector 𝛩0 was, given the data point 𝑦0
∗. This posterior distribution for 𝛩0 is written as 

𝑝(𝛩0|𝑦0
∗), and we compute it using Bayes’ formula: 
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   forecast 𝑦̂𝑡 

 𝑝(𝛩0|𝑦0
∗) =

𝑝(𝑦0
∗|𝛩0)𝑝(𝛩0)

𝑝(𝑦0
∗)

 (4) 

It is now time to evolve our state variable 𝛩0 to the following day, using the evolution equation 

(2). To do this, we first translate this evolution equation into a formula 𝑝(𝛩𝑡+1|𝛩𝑡) for the 

probability that 𝛩𝑡+1 will occur, given 𝛩𝑡. Using this, we can evolve our posterior probability 

distribution 𝑝(𝛩|𝑦0
∗) for the state variable 𝛩0 at the close of day 0 into our prior probability 

distribution 𝑝(𝛩1|𝑦0
∗) for 𝛩1 on the morning of day 1: 

 𝑝(𝛩1|𝑦0
∗) = ∫𝑝(𝛩1|𝛩0)𝑝(𝛩0|𝑦0

∗)  𝑑𝛩0 (5) 

So now, on the morning of day 1, we are in a similar position to the one we were in on the morning 

of day 0. We have a prior belief about the state 𝛩1, from which we can forecast what the data point 

𝑦1 will be at the end of the day. And so the cycle continues. 

We will follow Gruber and West (2016) and use the shorthand notation 𝒟𝑡 for the information of 

all data points up to and including time 𝑡: 

𝒟𝑡 : = {𝑦0
∗, 𝑦1

∗, … , 𝑦𝑡
∗} 

Note that 𝒟−1 = ∅, i.e., no information. In this notation, we can summarize the Bayesian state 

space model process in the following diagram: 

 prior at 𝑡  posterior at t  prior at t+1  

… (𝜃𝑡|𝒟𝑡−1)  (𝜃𝑡|𝒟𝑡)  (𝜃𝑡+1|𝒟𝑡)                                         ... 

 

 

 

 

   

 

 

 (𝑦𝑡|𝒟𝑡−1)    (𝑦𝑡+1|𝒟𝑡)  

Given the initial prior distribution 𝑝(𝜃1) = 𝑝(𝜃1|𝒟0) for the state, our task is to compute explicit 

formulas for the posterior probability distribution 𝑝(𝜃𝑡|𝒟𝑡) and its evolution to the prior 

probability distribution 𝑝(𝜃𝑡+1|𝒟𝑡) for all 𝑡 ≥ 0. In practice, we would like to set up the model in 

such a way that these distributions have conjugate forms for all 𝑡 (the probability distribution 

remains fixed, only its parameters change). We will see an example of this in the next subsection. 

update  

𝑦𝑡
∗ observed 

evolve 

    forecast 𝑦̂𝑡+1 
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2.2 The stochastic observational variance DLM with discounting 

The stochastic observational variance DLM with discounting (Prado & West, 2010, Section 4.3.7) 

is an illustrative example of a state space model. It is also an important component in the SGDLM 

algorithm. For a comprehensive review, see Kyakutwika (2022). 

In this model, we start by fixing an observational variance discount factor 𝛽 ∈ (0,1] and an 

evolution variance discount factor 𝛿 ∈ (0,1]. The model is defined as follows. 

Observation equation: 𝑦𝑡 = 𝐅𝑡
𝑇𝛉𝑡 + 𝜈𝑡 𝜈𝑡 ∼ N[0, 𝜆𝑡

−1]       (6)        

Evolution equation: 𝛉𝐭 = 𝛉𝑡−1 + 𝛚𝑡 𝛚𝑡 ∼ N[𝟎,𝐖𝑡]       (7)        

Precision equation:  𝜆𝑡 =
𝜂𝑡

𝛽
𝜆𝑡−1 𝜂𝑡 ∼ Be [

𝛽𝑛𝑡−1

2
,
(1 − 𝛽)𝑛𝑡−1

2
] 

      

(8)        

Initial prior at time 0: (𝛉0, 𝜆0) ∼ NG[𝐚0, 𝐑0, 𝑟0, 𝑐0]        (9)        

Here, 

• 𝑦𝑡 is a scalar and 𝛉𝑡 is an 𝑛-dimensional column vector, 

• the 𝑛-dimensional column vector 𝐅𝑡 and the 𝑛 × 𝑛 covariance matrix 𝐖𝑡 are explicitly known at 

each time 𝑡, 

• 𝜆𝑡 is the observational precision at time 𝑡 (i.e., the reciprocal of the variance of 𝑦𝑡|𝛉𝑡) and is itself 

a stochastic quantity, 

• 𝜂𝑡 ∈ (0,1] is a random shock independent of 𝜆𝑡−1, and governed by the beta distribution (the 

quantity 𝑛𝑡 will be known at time 𝑡, see below), and 

• the vector 𝐚0, the matrix 𝐑0, and the scalars 𝑟0 and 𝑐0 are given. 

By combining the state vector 𝛉𝑡 and the observational precision 𝜆𝑡 into a grand state vector 𝚯𝑡, 

we can view this model as an example of a state space model as in Section 2.1. The model (for 

instance the specification of the covariance matrices 𝐖𝑡) is designed in such a way that the explicit 

solution for the prior and posterior distributions remains of the same form (i.e., conjugate) for all 

𝑡: 

prior at time 𝑡: (𝜃𝑡 , 𝜆𝑡|𝒟𝑡−1) ∼ NG(𝐚𝑡, 𝐑𝑡, 𝑟𝑡, 𝑐𝑡)

posterior at time 𝑡: (𝜃𝑡, 𝜆𝑡|𝒟𝑡) ∼ NG(𝐦𝑡, 𝐂𝑡, 𝑛𝑡, 𝑠𝑡)
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Therefore, the complete solution of the model may be specified by giving explicit recursive 

formulas (the Kalman filter) for the above parameters, which are as follows. (See Kyakutwika 

(2022) and references therein for a derivation.) 

2.2.1 Updating equations  

Given the data point 𝑦𝑡
∗, we update the prior at time 𝑡 to the posterior at time 𝑡 as follows. We 

firstly compute: 

1-step ahead forecast error: 𝑒𝑡 = 𝑦𝑡
∗ − 𝐅𝑡

𝑇𝐚𝑡 

1-step ahead forecast variance factor: 𝑞𝑡 = 𝑐𝑡 + 𝐅𝑡
𝑇𝑹𝑡𝐅𝑡 

Adaptive coefficient vector: 𝑨𝑡 =
1

𝑞𝑡
𝑹𝑡𝐅𝑡 

Volatility update factor: 𝑧𝑡 = (𝑟𝑡 +
𝑒𝑡

2

𝑞𝑡
)

1

𝑟𝑡 + 1
 

Then we set: 

Posterior mean vector: 𝐦𝑡 = 𝐚𝑡 + 𝑒𝑡𝐀𝑡 

Posterior covariance matrix factor: 𝐂𝑡 = 𝑧𝑡(𝑹𝑡 − 𝑞𝑡𝐀𝑡𝐀𝑡
𝑇) 

Posterior degrees of freedom: n𝑡 = 𝑟𝑡 + 1 

Posterior observational variance estimate: 𝑠𝑡 = 𝑧𝑡𝑐𝑡 

2.2.2 Evolution equations  

We evolve the posterior at time 𝑡 to the prior at time 𝑡 + 1 as follows (note the use of the 

discount factors): 

 𝐚𝑡+1 = 𝐦𝑡 , 𝐑𝑡+1 =
1

𝛿
𝐂𝑡 , 𝑟𝑡+1 = 𝛽𝑛𝑡, 𝑐𝑡+1 = 𝑠𝑡 (10) 

2.2.3 Evolution equations with block discounting 

For later use we record a version of the evolution equations, called block discounting (Prado and 

West 2010, sec. 4.3.7), applicable when the state vector 𝛉𝑡 naturally partitions into two vectors, 

𝛉𝑡 = [
𝛉𝑡

1

𝛉𝑡
2] . 

We aim to have separate evolution variance discount factors, 𝛿1 and 𝛿2, for each part of the state 

vectors. Given that the matrix 𝐑0 in the initial prior is typically block-diagonal, we strive to 

preserve this block-diagonal structure for 𝐑𝑡 at all times 𝑡. Consequently, we disregard the non-
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block-diagonal components of 𝐂𝑡 in the updated evolution equation for 𝐑𝑡+1. Thus, with block-

discounting, the evolution equations mirror Equation (10), but with a modified formula for 𝐑𝑡+1: 

 𝐚𝑡+1 = 𝐦𝑡 , 𝐑𝑡+1 =

(

 

1

𝛿1
𝑪𝑡[1,1] …

…
1

𝛿2
𝐂𝑡[2: ,2: ]

)

 ,       𝑟𝑡+1 = 𝛽𝑛𝑡 , 𝑐𝑡+1 = 𝑠𝑡 (11) 

3 The SGDLM for stock prices 

Suppose that there are 𝑚 stocks on the stock exchange. The SGDLM postulates that the closing 

return 𝑦𝑖𝑡 of stock 𝑖 on day 𝑡 is linearly related with the closing returns 

{𝑦𝑗𝑡,   𝑗 ∈ sp(𝑖)} 

of a set of other stocks sp(𝑖) ⊂ {1,2, … ,𝑚} ∖ {𝑖} on the same day 𝑡, the simultaneous parents of 

stock 𝑖. (In this paper, we follow Gruber and West 2016 and stipulate that all stocks have the same 

number 𝑘 of simultaneous parents, i.e., |sp(𝑖)| = 𝑘 for all 𝑖). Specifically, the model postulates 

that 

 𝑦𝑖𝑡 = 𝜙𝑖𝑡 + ∑ 𝛾𝑖𝑗,𝑡

𝑗∈sp(𝑖)

 𝑦𝑗,𝑡 + 𝜈𝑖,𝑡 , 𝜈𝑖𝑡 ∼ N[0, 𝜆𝑖𝑡
−1] (12) 

for some regression coefficients 𝜙𝑖,𝑡 and coupling coefficients 𝛾𝑖𝑗,𝑡. 

To describe the model further, it helps to understand it from two complementary viewpoints. 

3.1 The SGDLM as a collection of coupled DLMs 

If we write 

𝐅𝑖𝑡 = [

1
𝛾𝑖𝑗1,𝑡

⋮
𝛾𝑖𝑗𝑘,𝑡

] and 𝛉𝑖𝑡 =

[
 
 
 
𝜙𝑖𝑡

𝑦𝑗1𝑡

⋮
𝑦𝑗𝑘𝑡]

 
 
 
, 

then we can embed Equation (12) into a complete specification of the SGDLM as a collection of 

𝑚 coupled stochastic observational variance DLMs with discount factors, as in Equations (6) to 

(9): 
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𝑦𝑖𝑡 = 𝐅𝑖𝑡
𝑇𝛉𝑖𝑡 + 𝜈𝑖𝑡 , 𝜈𝑖𝑡 ∼ N[0, 𝜆𝑖𝑡

−1] (13) 

𝛉𝑖𝑡 = 𝛉𝑖,𝑡−1 + 𝛚𝑖𝑡 , 𝛚𝑖𝑡 ∼ N[𝟎,𝐖𝑖𝑡] (14) 

𝜆𝑖𝑡 =
𝜂𝑖𝑡

𝛽
𝜆𝑖,𝑡−1, 𝜂𝑡 ∼ Be [

𝛽𝑛𝑖,𝑡−1

2
,
(1 − 𝛽)𝑛𝑖,𝑡−1

2
] (15) 

(𝛉𝑖0, 𝜆𝑖0) ∼ NG[𝐚𝑖0, 𝐑𝑖0, 𝑟𝑖0, 𝑐𝑖0]  (16) 

To understand precisely what this collection of ‘coupled DLMs’ means, we need to view these 

equations from a more global point of view. 

3.2 The SGDLM as a nonlinear state space model 

The coupling between time series in Equation (13) means that a SGDLM is in fact a nonlinear 

state space model. To see this, collect all the regression coefficients 𝜙𝑖𝑡 into an 𝑚-dimensional 

vector 𝛟𝑡, and all the coupling coefficients 𝛾𝑖𝑗,𝑡 into the matrix 

𝚪𝑡 =

(

 
 

0 𝛾12,𝑡 𝛾13,𝑡 … 𝛾1𝑚,𝑡

𝛾21,𝑡 0 𝛾23,𝑡 … 𝛾2𝑚,𝑡

𝛾31,𝑡 𝛾3,2,𝑡 0 … 𝛾3𝑚,𝑡

⋮ ⋮ ⋮ ⋱ ⋮
𝛾𝑚1,𝑡 𝛾𝑚2,𝑡 𝛾𝑚3,𝑡 … 0 )

 
 

. 

Note that 𝚪𝑡 is a sparse matrix (most of the entries are zero). Using this matrix notation, we can 

rewrite Equation (13)  in column-vector form, 

𝐲𝑡 = 𝛟𝑡 + 𝚪𝑡𝐲𝑡 + 𝛎𝑡, 

where 𝛎𝑡 = (𝜈1𝑡, … , 𝜈𝑚𝑡)
𝑇. Note that 𝐲𝑡 appears on both sides of this equation. But we can solve 

for 𝐲𝑡 explicitly as 

𝐲𝑡 = 𝐀𝑡(𝛟𝑡 + 𝛎𝑡) 

where 𝐀𝑡 = (𝐈 − 𝚪𝑡)
−1. Therefore, the probability distribution for 𝐲𝑡 is 

 (𝐲𝑡|𝛉𝐭, 𝛌𝑡) ∼ N[𝐀𝑡𝛟𝐭, 𝐀𝑡𝚲𝑡
−1𝐀𝑡

𝑇], (17) 

where 

𝛌𝐭 = (𝜆1𝑡, 𝜆2𝑡, … , 𝜆𝑚𝑡)
𝑇 
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is the vector of observational precisions, 𝜦𝑡 = diag(𝜆1𝑡, … , 𝜆𝑚𝑡) is the corresponding diagonal 

matrix, and 𝛉𝑡 is shorthand for the collection of all ‘individual state vectors’ 𝛉𝑖𝑡.  

In fact, we can think of all the individual state vectors 𝛉𝑖𝑡 and observational precisions 𝜆𝑖𝑡 as 

together forming a single ‘grand state vector’ 𝚯𝑡 as we did in the stochastic variance DLM from 

Section 2.2. From this perspective, we view Equation (17) as being the observation equation 

expressing the SGDLM as a nonlinear state-space model for the stock market, where the returns 

vector 𝐲𝑡 is computed nonlinearly from a state vector 𝚯𝑡. The state of the market at time 𝑡 is 

encoded by three sets of parameters: the 𝑚 regression coefficients 𝜙𝑖,𝑡 (the ‘internal state’ of stock 

𝑖 at time t), the 𝑚𝑘 coupling coefficients 𝛾𝑖𝑗,𝑡 (the strength with which stock 𝑖 is coupled to stock 

𝑗 at time 𝑡), and the 𝑚 observational precisions 𝜆𝑖𝑡 (the precision at which the returns vector can 

be computed from the state vector). The nonlinearity arises because the inverse in (𝐈 − 𝚪𝑡)
−1 gives 

a degree 𝑚 polynomial dependence of 𝐲𝑡 on the coupling coefficients 𝛾𝑖𝑗,𝑡. 

This nonlinear dependence of the returns vector 𝐲𝑡 on the state variables makes it impossible to 

analytically evaluate the integral in Equation (5) to give a formula for evolving the state vector to 

the next day. Therefore, we will use a mean-field Monte Carlo approach (see Section 4), where 

each stock price 𝑦𝑖𝑡 is thought of as a univariate variable being acted on by the `background field’ 

of the other stock prices, but not directly affecting them (much as to a first approximation, the 

dynamics of the moon is treated as moving in the `fixed’ background field of the earth and the 

other planets). 

3.3 Factorization properties of the model 

Despite the complexity in evolving the state variables, updating them upon the arrival of a data 

point of a returns vector 𝐲𝑡
∗ can be done exactly due to the model’s factorization properties. The 

full multivariate normal probability distribution (Equation (17)) for (𝐲𝑡|𝛉𝑡, 𝛌𝑡) factorizes as a 

multivariate determinant multiplied by a product of univariate DLM distributions (see Kyakutwika 

(2022), Appendix C for a proof): 

 𝑝(𝐲𝑡|𝛉𝑡, 𝛌𝑡) =|𝐈 − 𝚪𝑡|  ∏𝑝

𝑚

𝑖=1

(𝑦𝑖|𝜃𝑖𝑡, 𝜆𝑖𝑡) (18) 
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Here, 𝑝(𝑦𝑖𝑡|𝜽𝑖𝑡, 𝜆𝑖𝑡) is really shorthand for 𝑝(𝑦𝑖𝑡|𝜙𝑖𝑡, {𝛾𝑖𝑗,𝑡, 𝑦𝑗𝑡}𝑗∈sp(𝑖)), that is, it is the probability 

for obtaining 𝑦𝑖𝑡 given knowledge of the other 𝑦𝑗𝑡 values, as in Equation (12). 

This implies, by Bayes’ rule, a corresponding factorization formula for how to update our 

knowledge of the state (𝛉𝑡, 𝛌𝑡) when the data point of a returns vector 𝐲𝑡
∗ arrives: 

𝑝(𝛉𝑡, 𝛌𝑡|𝐲𝑡
∗) ∝ 𝑝(𝐲∗|𝛉𝑡, 𝛌𝑡)𝑝(𝛉𝑡, 𝛌𝑡)

= |𝐈 − 𝚪𝑡|  ∏𝑝

𝑚

𝑖=1

(𝑦𝑖
∗|𝜃𝑖𝑡, 𝜆𝑖𝑡)𝑝(𝜃𝑖𝑡, 𝜆𝑖𝑡)

∴ 𝑝(𝛉𝑡, 𝛌𝑡|𝐲𝑡
∗) ∝ |𝐈 − 𝚪𝑡|∏𝑝

𝑚

𝑖=1

(𝜃𝑖𝑡, 𝜆𝑖𝑡|𝑦𝑖𝑡
∗ )

 

 ∴ 𝑝(𝛉𝑡 , 𝛌𝑡|𝐲𝑡
∗) ∝ |𝐈 − 𝚪𝑡|∏𝑝

𝑚

𝑖=1

(𝜃𝑖𝑡 , 𝜆𝑖𝑡|𝑦𝑖𝑡
∗ ) (19) 

Here, the first line is Bayes’ rule, the second line is the factorization (Equation (18)) together with 

the assumption that (𝛉𝑡, 𝛌𝑡) is a product distribution before the data point 𝐲𝑡
∗ arrives, and the third 

line is Bayes’ rule in reverse. Equation (19) is useful as it tells us that the exact Bayesian updated 

multivariate probability in the model is a product of a multivariate determinant with the product 

of the updated univariate DLM probabilities (which we have concrete formulas for, via the Kalman 

filter in Section 2.2.1). 

4 The SGDLM algorithm 

Having explained the SGDLM, we can now clearly summarise the algorithm for its numerical 

implementation. See also Griveau-Billion and Calderhead (2019), Gruber and West (2016), and 

Gruber and West (2017). 

0. Fix initial parameters 

First fix the number of simultaneous parents, 𝑘. Then fix an observational variance discount factors 

𝛽 ∈ (0,1], and two evolution variance discount factors 𝛿𝜙, 𝛿𝛾 ∈ (0,1], catering for the regression 

coefficient 𝜙𝑖 and coupling coefficients 𝛾𝑖𝑗 for all individual state vectors 𝛉𝑖𝑡 respectively. Finally, 

the initial parameters (𝐚𝑖0, 𝐑𝑖0, 𝑟𝑖0, 𝑐𝑖0), 𝑖 = 1:𝑚 must be chosen. Each 𝐚𝑖0 is a (𝑘 + 1)-

dimensional vector and each 𝐑𝑖0 is a (𝑘 + 1)-dimensional square matrix. 

1. Initial priors at time 𝒕 
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At time 𝑡, we have decoupled priors for the state variables: 

𝑝(𝛉𝑡, 𝛌𝑡|𝒟𝑡−1) = ∏NG

𝑖

[𝒂𝑖𝑡, 𝑹𝑖𝑡, 𝑟𝑖𝑡, 𝑐𝑖𝑡] 

2. Make predictions at time 𝒕 

To make predictions for 𝐲𝑡, draw 𝐾 samples {(𝛉𝑡
𝑟 , 𝛌𝑡

𝑟),  𝑟 = 1: 𝐾} from the decoupled distribution 

above (this step can be done efficiently using parallel computations). Then use Equation (17) to 

obtain a simulation sample of 𝐾 values of 𝐲𝑡. 

3. Update prior to posterior 

After the data point 𝐲𝑡
∗ of returns arrives, the exact updated posterior is computed using Equation 

(19), 

𝑝exact(𝛉𝑡, 𝛌𝑡|𝒟𝑡) ∝|𝐈 − 𝚪𝑡|∏𝑁

𝑖

𝐺[𝐦̃𝑖𝑡, 𝐂̃𝑖𝑡, 𝑟̃𝑖𝑡, 𝑐̃𝑖𝑡] 

where the parameters of the normal-gamma factors have been updated using the standard 

Kalman filter updating equations (Section 2.2.1) for a stochastic observational variance DLM. 

4. Approximate the posterior as a product 

To prepare to evolve the posterior forward, we first need to approximate it as a product. This is 

done in two steps. 

a. Approximating the exact posterior as a discrete distribution (recouple) 

We firstly approximate the continuous posterior 𝑝exact by a discrete Monte-Carlo posterior 

𝑝MC = ∑ 𝑤𝑡
𝑛

𝑁

𝑛=1

(𝛉𝑡
𝑛, 𝛌𝑡

𝑛) 

by drawing an importance sample {(𝛉𝑡
𝑛, 𝛌𝑡

𝑛), 𝑛 = 1:𝑁} efficiently in parallel from the naïve 

factorized posterior (which leaves out the determinant): 

𝑝naïve(𝛉𝑡, 𝛌𝑡|𝒟𝑡) = ∏𝑁

𝑖

𝐺[𝐦̃𝑖𝑡, 𝐂̃𝑖𝑡, 𝑟̃𝑖𝑡, 𝑐̃𝑖𝑡] 
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We calculate the weight 𝑤𝑡
𝑛 of each sample (𝛉𝑡

𝑛, 𝛌𝑡
𝑛) from the determinant |𝐈 − 𝚪𝑡|, and then 

normalize the weights so that they add to 1. 

b. Approximating the exact posterior as a product (decouple) 

We then apply a mean-field approach and seek to find the best approximation 𝑞 to the exact 

posterior as a product: 

 𝑝exact ≈ 𝑞 = ∏NG

𝑖

[𝐦𝑖𝑡 , 𝐂𝑖𝑡, 𝑟𝑖𝑡, 𝑐𝑖𝑡] (20) 

The parameters 𝐦𝑖𝑡 , 𝐂𝑖𝑡, 𝑟𝑖𝑡, 𝑐𝑖𝑡 are found by a variational Bayes approach, which minimises the 

Kullback-Leibler (KL) divergence between the exact distribution (for which we use 𝑝MC as a 

computational substitute) and the candidate product distribution. For precise formulas, see 

Appendix C. We can approximate the KL divergence of 𝑞 from 𝑝𝑀𝐶 using 

𝐾𝐿(𝑝MC||𝑞) ≈ ∑𝑤𝑖𝑡
𝑛

𝑁

𝑖=1

ln(𝑁𝑤𝑖𝑡
𝑛) 

and use this to check the accuracy of our simulation. 

5. Evolution to time 𝒕 + 𝟏 

We then evolve each factor in the product posterior 𝑞 from Equation (20) forward one time step, 

using the evolution equations (11) for a stochastic variance DLM with block-discounting. This 

gives the prior at time 𝑡 + 1. 

5 Implementation of the SGDLM algorithm 

5.1 Data set 

Our data set is the daily log-returns of 40 JSE stocks that were selected from the Top 100 JSE 

index. The stocks, and their sector categorisations, are given in Appendix A. We downloaded the 

daily closing prices of all the stocks from Yahoo! Finance for the period 01/01/2014 to 

30/06/2022 and calculated the log-returns. For the entire period, the total number of observations 

(the daily-log returns) is 2161 for each stock. 
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We implemented the SGLDM algorithm in Python. The data set was divided into the training 

set and the test set. The training set was further divided into two subsets, one for selecting 

simultaneous parents and the other for selecting discount factors. The data from 01/01/2014 to 

31/12/2016 (782 observations) was used to select simultaneous parents; the data from 

01/01/2017 to 31/12/2018 (506 observations) was used to select discount factors and obtain 

starting values for the test data analysis; and the data from 01/01/2019 to 30/06/2022 (873 

observations) is the test set. Therefore, we divided the implementation into three phases: phase 1 

(selection of simultaneous parents); phase 2 (selection of discount factors and initial priors for 

phase 3); and phase 3 (stock return forecasting). 

5.2 Selection of simultaneous parents 

Here, we ran the Kalman filter equations, stock by stock, for each of the 40 stocks. This phase 

entails implementing steps 0, 1, 3, and 5 of the SGDLM algorithm. Note that step 4 is not included 

in this phase, rather the analysis involves simply running the Kalman filter for each of the 

decoupled series. We adopted the initial priors of Gruber and West (2016) for this phase; these are 

𝐚𝑖0 = (0,… , 0)𝑇, 𝐑𝑖0 = diag(0.0001, 0.01,… , 0.01), 𝑟𝑖0 = 5, and 𝑐𝑖0 = 0.001, where 𝐚𝑖0 is a 

40 × 1 vector and 𝐑𝑖0 is a 40 × 40 diagonal matrix whose first diagonal entry is 0.0001 but the 

rest are 0.01. All the stocks used the same initial prior. In this phase, every stock had all the 

remaining 39 stocks as simultaneous parents. We specified the evolution variance 𝐖𝑖𝑡 using two 

discount factors, via standard block discounting. Therefore, we defined 𝐖𝑖𝑡 as follows, 

𝐖𝑖𝑡 =

(

 
 

1 − 𝛿𝜙

𝛿𝜙
𝐂̃𝑖𝑡[1,1] 𝟎

𝟎
1 − 𝛿𝛾

𝛿𝛾
𝐂̃𝑖𝑡[2: ,2: ]

)

 
 

, 

where 𝐂̃𝑖𝑡[1,1] is the first diagonal element of 𝐂̃𝑖𝑡 and 𝐂̃𝑖𝑡[2: ,2: ] is the matrix that remains after 

deleting the first row and the first column of 𝐂̃𝑖𝑡. The upper-left block 𝐂̃𝑖𝑡[1,1] is the local-level 

component whereas the lower-right block 𝐂̃𝑖𝑡[2: ,2: ] is the simultaneous parents component. 

With the current dimension of 40 stocks, we found out that the SGDLM analysis is most 

accurate if every stock has just one simultaneous parent (see Section 6.5). On the last day of the 

period 01/01/2014 to 31/12/2016, for each stock 𝑖, we chose a stock’s simultaneous parent 

from the other 39 stocks, depending on the absolute values of the posterior means of the vector 
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𝛄𝑖𝑡. As it can be seen from Equation (12), the numbers γ𝑖𝑗𝑡 are a measure of the effect of each of 

the other 39 stocks on stock 𝑖 (effect size). The simultaneous parent to stock 𝑖 is the stock that 

corresponds to the biggest effect size. 

In Table 1, we give some selected stocks together with their simultaneous parents as generated 

by our analysis. We have underlined the simultaneous parent if it falls in the same sector with the 

stock it predicts. We notice that some of the simultaneous parents fall in the same sector with the 

stock being predicted – this causal relationship is expected. However, in some situations, the 

predictor and the stock being predicted fall in different sectors. This is still fine because 

dependencies in an economy can cut across sectors. 

Table 1: Simultaneous parents for some selected stocks. 

Stock  Simultaneous parent 

FirstRand Limited  Standard Bank Group 

Standard Bank Group  Nedbank Group Limited 

MTN Group Limited  ABSA Group Limited 

British American Tobacco  Investec Limited 

Compagnie Fin Richemont  Mr Price Group 

Naspers  Aspen Pharmacare Holdings Limited 

Truworths International Limited  Mr Price Group 

Shoprite Holdings Limited  Nedbank Group Limited 

Glencore plc  Anglo American plc 

Anglo American plc  Clicks Group Limited 

5.3 Selection of discount factors and obtaining initial priors for phase 𝟑 

The discount factors to be selected are (i) 𝛽 (for learning the stochastic variance) and (ii) 𝛿𝜙 and 

𝛿𝛾 (for specifying the evolution variance). Phase 2 involves running all the steps of the SGDLM 

algorithm save for step 2. The discount factors are selected using the decoupled DLMs by 

maximising the log-likelihood function series by series, e.g., Prado and West, 2010, Section 4.3.6. 

The initial priors are like those used in phase 1, but since the analysis of the current phase uses 

only one simultaneous parent, 𝐚𝑖0 = (0, 0)𝑇 and 𝐑𝑖0 = diag(0.0001, 0.01). The evolution 

variance is now of the form 

𝐖𝑖𝑡 =

(

 
 

1 − 𝛿𝜙

𝛿𝜙
𝑐1,1,𝑖,𝑡 0

0
1 − 𝛿𝛾

𝛿𝛾
𝑐2,2,𝑖,𝑡

)

 
 

, 
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where the scalars 𝑐1,1,𝑖,𝑡 and 𝑐2,2,𝑖,𝑡 are the diagonal entries of the covariance matrix 𝐂𝑖𝑡 of the exact 

posterior obtained in step 4 of the algorithm. 

We explain how we determined 𝛿𝛾. The other two discount factors were determined in a similar 

way. The predictive distribution of each of the decoupled time series is represented as 

(𝑦𝑖𝑡|𝒟𝑖,𝑡−1) ∼ 𝑇𝑟𝑖𝑡
[𝑓𝑖𝑡, 𝑞𝑖𝑡]. The log-likelihood for stock 𝑖, for the period 𝑡 = 783 to 𝑡 = 1288, is 

then defined as 

 log𝑒𝑝(𝑦𝑖,783:1288|𝒟𝑖,782, 𝛿𝛾𝑖) = log𝑒 ∏ 𝑝

1288

𝑡=783

(𝑦𝑖𝑡|𝒟𝑖,𝑡−1, 𝛿𝛾𝑖) (21) 

We kept 𝛽𝑖 and 𝛿𝜙𝑖 constant and varied 𝛿𝛾𝑖. (The values of 𝛽𝑖 and 𝛿𝜙𝑖 were uniform across all 

stocks.) For different values of 𝛿𝛾𝑖, we obtained the log-likelihood using Equation (21) at the level 

of individual stocks. For the running example, after inspection, we observed that most of the values 

of 𝛿𝛾𝑖 were on the interval [0.859,0.999]. So, we varied 𝛿𝛾𝑖 on this interval for each stock.  

Table 2:  Log-likelihood values at different values of 𝛿𝛾𝑖. 

𝛿𝛾𝑖 
Log-likelihood 

Standard Bank MTN Group 

0.859 1480 1280 

0.894 1495 1285 

0.929 1480 1288 

0.964 1471 1292 

0.999 1404 1287 

In Table 2, we show the log-likelihood values that correspond to the different values of 𝛿𝛾𝑖 for two 

companies, Standard Bank and MTN Group. The optimal value of the discount factor is the one 

that corresponds to the maximum log-likelihood. Therefore, for Standard Bank, 𝛿𝛾 = 0.894 and 

for MTN Group, 𝛿𝛾 = 0.964. We obtained the value of 𝛿𝛾 for the remaining stocks in a similar 

way and computed the average across all stocks. This average now serves as the discount factor 

for each stock. With the current example, this average is 0.953. Thus, 𝛿𝛾 = 0.953, which is taken 

uniform across all stocks. In a similar way, by keeping 𝛿𝛾 and 𝛽 constant, we obtained 𝛿𝜙 as 0.993. 

And by keeping 𝛿𝛾 and 𝛿𝜙 constant, we obtained 𝛽 as 0.922. Then, using these optimal values of 

the discount factors and the same initial priors, steps 0, 1, 3, 4, and 5 were re-run to obtain starting 

values for phase 3. The size of the importance sample (𝑁) in this phase was kept at 𝑁 = 2,000. 
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5.4 Stock return forecasting 

In the test phase, we ran the all the six steps of the SGDLM algorithm for the last three and half 

years of our study period. This phase used the discount factors and initial priors obtained in 

phase 2. The analysis used 𝐾 = 𝑁 = 2,000. 

6 Results from the test data analysis 

6.1 Coverage of prediction intervals 

In the context of time series forecasting, a prediction interval, aka forecast interval, is the interval 

which is constructed around the forecast, within which the observation is expected to lie with a 

specified probability (Hyndman and Athanasopoulos, 2018, Section 3.5). For example, the 95% 

prediction interval [𝑎, 𝑏] (constructed around the forecast 𝑦̂𝑖𝑡) means that, according to the 

predicting model, there is a 95% probability that the observation 𝑦𝑖𝑡 will lie within the interval 

[𝑎, 𝑏]. We calculated prediction intervals at the level of individual stocks using the large sample 

formula (e.g., Ramachandran and Tsokos, 2014, Section 14.5) 

𝑦̂𝑖𝑡 ± 𝑧𝛼/2√𝛴𝑖,𝑖,𝑡√1 +
1

𝐾
, 

where: 𝑦̂𝑖𝑡 is the forecast that corresponds to the observation 𝑦𝑖𝑡; 𝑧𝛼/2 is the critical value of the 

standard normal distribution and 1 − 𝛼 is the degree of confidence; 𝛴𝑖,𝑖,𝑡, the 𝑖th diagonal element 

of the covariance matrix 𝚺𝑡 = 𝐀𝑡𝚲𝑡
−1𝐀𝑡

𝑇, is the variance of 𝑦̂𝑖𝑡; and 𝐾 is the forecasting simulation 

sample size. 

For a perfect model, empirical coverage is equal to theoretical coverage. But because of the 

noise in the data and sometimes errors in the model, empirical coverage is not always equal to 

theoretical coverage. In practice, outputs of models portray under-coverage or over-coverage of 

intervals. The closer the output of the model to the theoretical coverage, the more accurate is the 

model. Over-coverage is preferred to under-coverage of the same magnitude because the former 

is coverage that is more than what is enough. We calculated the interval coverages at different 

levels of confidence for all the stocks throughout the entire test period. From 𝐲𝑡 ∼ 𝑁[𝐀𝑡𝛟𝐭, 𝚺𝑡], 

each 𝑦𝑖𝑡 ∼ 𝑁[𝑦̂𝑖𝑡, 𝛴𝑖,𝑖,𝑡]. Using this result, we calculated the prediction intervals for all the stocks 

at the following levels of confidence: 99% (𝑧𝛼/2 = 2.58), 95% (𝑧𝛼/2 = 1.96), 90% 

(𝑧𝛼/2 = 1.64), 80% (𝑧𝛼/2 = 1.28), 50% (𝑧𝛼/2 = 0.67), 20% (𝑧𝛼/2 = 0.25), and 10% 
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(𝑧𝛼/2 = 0.13). In Table 3, we give the average interval coverages across all stocks and the interval 

coverages for eight of the forty stocks, for the entire test period. We also include the aggregate 

interval coverages of Gruber and West (2016) as benchmark values. 

Table 3: Average interval coverage across all stocks/aggregate interval coverage and 

interval coverage for some selected stocks, for the entire test period. 

 

Prediction interval (%) 99 95 90 80 50 20 10 

  

Aggregate interval coverage 

Coverage (%) 98.4 95.7 92.6 86.0 60.4 26.5 14.4 

 

Benchmark aggregate interval coverage 

Coverage (%) 98.4 95.6 92.4 85.5 59.7 27.2 

 

Standard Bank Group 

14.4 

Coverage (%) 98.9 95.5 92.3 85.9 60.5 27.1 

 

FirstRand Limited 

14.2 

Coverage (%) 99.2 96.3 93.4 86.3 59.8 25.0 

 

Glencore plc 

14.0 

Coverage (%) 99.2 96.0 92.1 84.4 58.2 22.6 

 

Anglo American plc 

11.5 

Coverage (%) 98.7 95.0 92.6 85.8 58.8 24.5 

 

British American Tobacco 

12.5 

Coverage (%) 98.5 95.0 92.1 84.3 59.6 27.6 

 

MTN Group Limited 

14.1 

Coverage (%) 97.7 96.0 94.3 86.8 63.0 28.3 

 

Naspers 

16.0 

Coverage (%) 97.9 95.0 90.8 84.8 61.1 26.6 

 

Shoprite Holdings Limited 

14.5 

Coverage (%) 97.7 95.5 93.1 87.5 62.0 27.8 15.9 

According to Table 3, the aggregate interval coverages from 10% to 95% are bigger than the 

theoretical values. Nevertheless, these interval coverages are more precise compared to outputs of 

other multivariate models, e.g., see Gruber and West (2016). The 99% prediction interval is under-
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estimated in both the aggregate analysis and for most of the individual stocks, but empirical 

coverage remains close to the nominal one. We also observe that the interval coverages for each 

of the eight stocks are like those of the aggregate analysis. These realised SGDLM interval 

coverages are therefore literally tolerable. Finally, our aggregate interval coverage estimates 

compare nicely with those of the benchmark study (Gruber and West (2016)). 

6.2 Comparison between the SGDLM and the DLM 

In addition to predicting the daily log-returns using the SGDLM, we independently predicted the 

returns of each of the eight stocks in Table 3 using the stochastic volatility local-level DLM. In the 

DLM analysis, we partitioned the data in a way that is like that of the SGDLM analysis. We used 

the data from 01/01/2017 to 31/12/2018 (506 observations) to select the discount factors 𝛽𝑖 

and 𝛿𝑖, and to get the initial values for the testing phase. The initial values of this training period 

were taken as 𝑎 = 0, 𝑅 = 0.0001, 𝑐 = 0.001, and 𝑟 = 5. The test data is from 01/01/2019 to 

30/06/2022 (873 observations). We never used the data from 01/01/2014 to 31/12/2016 

(782 observations) as this was purposely for selecting simultaneous parents in the SGDLM case. 

If, for example, we are interested in forecasting the price of Standard Bank on a daily basis, we 

can use either the SGDLM where Standard Bank will be modelled together with other stocks or 

the DLM that will focus on Standard Bank alone. So, in the SGDLM we track Standard Bank and 

the compare results with those from the DLM of Standard Bank. Using the out-of-sample forecasts, 

we computed two measures of forecast accuracy, root mean square error (RMSE) and mean 

absolute deviation (MAD), for each of the stocks, in the SGDLM case and the DLM case, and 

made comparisons. Table 4 summaries the results. For each stock, we bold the smaller value of 

the error to indicate the better model. 
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Table 4: Comparison of measures of forecast accuracy (RMSE and MAD) between the SGDLM 

and the DLM. 

Standard Bank Group FirstRand Limited 

 SGDLM DLM  SGDLM DLM 

RMSE 0.023407 0.023458 RMSE 0.023118 0.023196 

MAD 0.016465 0.016469 MAD 0.016520 0.016498 

Glencore plc Anglo American plc 

 SGDLM DLM  SGDLM DLM 

RMSE 0.024470 0.024327 RMSE 0.025138 0.024914 

MAD 0.018218 0.018070 MAD 0.017994 0.017843 

British American Tobacco MTN Group Limited 

 SGDLM DLM  SGDLM DLM 

RMSE 0.017620 0.017631 RMSE 0.031298 0.031227 

MAD 0.012833 0.012857 MAD 0.020034 0.019918 

Naspers Shoprite Holdings Limited 

 SGDLM DLM  SGDLM DLM 

RMSE 0.026554 0.026510 RMSE 0.021877 0.021982 

MAD 0.018132 0.018137 MAD 0.015506 0.015559 

According to Table 4, none of the two models outperforms the other in all cases. The SGDLM 

performs better than the DLM in the case of Standard Bank, British American Tobacco and 

Shoprite Holdings Limited given that it gives smaller values of both the RMSE and the MAD, but 

the exact opposite occurs for Glencore plc, Anglo American plc and MTN Group Limited. For 

FirstRand, the SGDLM produces a smaller value of RMSE than that produced by the DLM, but 

the exact opposite occurs with the value of MAD; a similar thing occurs with Naspers. For these 

selected stocks, we observe a tie between the two models. It can be seen that the differences 

between the errors of the SGDLM and the DLM are very small. The values in Table 4 are run-

dependent; they keep changing slightly each time you run the analysis, but the comparison between 

the two models generally remains the same. 

In principle, we expect the SGDLM to outperform the DLM because, unlike the DLM, the 

SGDLM is a model framework that captures dependencies among stocks. So, for all the stocks, 

we expected the SGDLM to give more accurate forecasts. This is not the case in the current 

example. We propose that, to make the SGDLM perform better universally than the DLM, there 

is a need to improve the formulation of the SGDLM. One aspect here is the selection of 
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simultaneous parents. In the current study, we picked the simultaneous parent of each of the stocks 

at 𝑡 = 782 and maintained it to the end of the analysis. This is unrealistic because the market is 

dynamic; a good simultaneous parent to Standard Bank today may not remain good to Standard 

Bank after, say, one year. So, there is a need to use a method of selecting simultaneous parents that 

involves refreshing the parents as the analysis proceeds, e.g., Gruber and West (2017). 

6.3 Comparison of the empirical returns trend with the SGDLM trend 

We calculated the empirical/observed 100-day simple moving averages for the returns and 

compared the resultant trend with that of the SGDLM, for each of the eight stocks. Figure 1 

summarises the outcomes. 

For any model that fits the data well, the observed trend of the data and the trend of the model 

forecasts should follow each other closely, if there is no stock market stress. Up to around March 

2020 the observed trend and the SGDLM trend follow each other closely for almost all the eight 

stocks; only British American Tobacco shows a clear discrepancy between the two trends during 

this period. This discrepancy reflects the up and down movements of the price of British American 

Tobacco in 2019 (see Figure 2e). The SGDLM overestimates the returns during the market crash 

that started in March 2020 for all the stocks that were hit hard by the crash. This overestimation 

is literally visible in the case of Standard Bank, FirstRand, Glencore plc, Anglo American plc and 

MTN Group Limited, and reflects the profuse drop in the prices in March 2020 (see Figure 2). 

The observed trend generally trails below the SGDLM trend just after the period of the intense 

market stress – this is expected because the formula for calculating the 100-moving averages 

carries along the radically below zero values of the returns for a couple of months after the market 

crash. Generally, the two trends track each other closely after the impact of the intense market 

crash. 
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Figure 1: Comparison of the observed trend of the returns with the SGDLM trend.  
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Figure 2: Closing prices of some stocks over the test data period. 
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6.4 Efficiency of importance sampling and MFVB 

In Figure 3, we illustrate the evaluation of the efficiency of the importance sample-based 

approximation of the exact posterior. The efficiency of the MFVB approach to obtaining the 

decoupled conjugate forms from the approximated posterior is also evaluated. It can be seen in 

Figure 3a that for the bigger part of the test period, the effective sample size is above 1,900, which 

means that the importance sample-based approximation of the posterior is more than 95% 

effective. The most worrying period starts towards the end of February 2020 up to around mid-

April 2020, during which the effective sample size nosedives to 1325 or so (about 66% effective). 

It should be noted that the first case of COVID-19 was announced in South Africa in early March 

2020, and as Figure 2 shows, the result of this announcement was a plunge in the prices of most 

of the stocks, which subsequently caused a temporary breakdown of the SGDLM and hence the 

drastic fall in the effective sample size. The other quite radical unexpected fall of the effective 

sample size is seen in late November 2021 due to the outbreak of the Omicron variant. The 

SGDLM however recovers from both short-term breakdowns and the importance sample-based 

posterior approximation is generally good throughout the test period. Correspondingly, Figure 3b 

shows the KL divergence as a measure of the effectiveness of MFVB. In the SGDLM framework, 

KL divergence is approximated by the entropy of the importance sample, and because of this, it is 

expected that whenever ESS is high, KL divergence is low and vice versa. So, the periods when 

the ESS drops are the very periods when KL divergence goes up. Generally, KL divergence 

remains small throughout the test period. It is interesting to see that the realised KL divergence 

does not exceed its theoretical upper bound at any point of the test period. 
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(a) 

 

(b) 

Figure 3: (a) Measurement of the efficacy of the importance sample (IS) and (b) measurement of 

the efficacy of the MFVB approximation. 

6.5 Effect of the number of simultaneous parents on forecast accuracy 

We re-ran the full SGDLM analysis with a bigger number of simultaneous parents. We ran the 

analysis with two and five simultaneous parents. With two simultaneous parents, we found out that 

the optimal values of discount factors are 𝛽 = 0.919, 𝛿𝜙 = 0.990, and 𝛿𝛾 = 0.970. With five 

simultaneous parents, we obtained 𝛽 = 0.909, 𝛿𝜙 = 0.983, and 𝛿𝛾 = 0.984. In both situations, 

𝐾 = 𝑁 = 2,000. In Table 5, we present the aggregate coverage of prediction intervals for the 

different numbers of simultaneous parents. In Table 6, we compare the RMSE and MAD values 

for three stocks, for the different parental sizes. 

Table 5: Aggregate interval coverage for different parental sizes. 

Prediction interval (%) 99 95 90 80 50 20 10 

  

One simultaneous parent 

Coverage (%) 98.4 95.7 92.6 86.0 60.4 26.5 
 

Two simultaneous parents 

14.4 

Coverage (%) 98.5 96.0 93.0 86.5 61.3 27.5 
 

Five simultaneous parents 

15.1 

Coverage (%) 98.6 96.2 93.3 87.0 62.0 28.1 15.7 
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Table 6: Comparison of RMSE and MAD across different parental sizes for the SGDLM. 

Standard Bank Group 

 1 SP 2 SP 5 SP 

RMSE 0.0234 0.0236 0.0308 

MAD 0.0165 0.0166 0.0179 

British American Tobacco 

 1 SP 2 SP 5 SP 

RMSE 0.0176 0.0192 0.0220 

MAD 0.0128 0.0132 0.0139 

MTN Group Limited 

 1 SP 2 SP 5 SP 

RMSE 0.0313 0.0316 0.0334 

MAD 0.0200 0.0202 0.0209 

In Table 5, we observe that the SGDLM of one simultaneous parent produces the most concise 

prediction intervals, followed by the one with two, and the one of five comes last. The percentages 

in the table are the averages across all stocks; the percentages for individual stocks across the 

different parental sizes are expected to be similar to those in the aggregate. In Table 6, the SGDLM 

of one simultaneous parent gives the smallest errors. The errors produced by the SGDLM of two 

simultaneous parents are bigger than those of the SGDLM of one simultaneous parent but smaller 

than those of the SGDLM of five simultaneous parents. Results from both tables suggest that the 

SGDLM with one simultaneous parent is the most accurate, followed by the one with two, and the 

one of five comes last. This supports our use of one simultaneous parent in the analyses of the 

preceding sections. Thus, with the current dimension of 40 stocks, using one simultaneous parent 

produces the most accurate results. The results of the table also suggest that accuracy reduces as 

the number of simultaneous parents increases. However, it should be noted that, in higher 

dimensions, the most accurate results may be obtained when using more than one simultaneous 

parent, e.g., Gruber and West (2016, 2017).  

7 Conclusion 

Our study has shown that the SGDLM forecasts the returns of the stock data accurately. With a 

dimension of 40 stocks or less, our results suggest that the most accurate forecasts are obtained 

with one simultaneous parent. Our insights into the efficiency of the recoupling/decoupling 

techniques indicate that the techniques perform well generally and that the SGDLM responds well 
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to changes in the market. As a possible direction for future research, by adopting the approach of 

refreshing simultaneous parents depending on the prevailing market conditions, e.g., Gruber and 

West (2017), we recommend re-doing the comparison of RMSE and MAD between the DLM and 

the SGDLM. This will potentially make the SGDLM to outperform the DLM universally. 
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Appendix A: The JSE stocks used 

Table 7: The selected 40 JSE companies and their sector categorisations. 

Financials Basic materials  

FirstRand Limited Glencore plc  

Standard Bank Group Anglo American plc  

Capitec Bank Holdings Anglo American Platinum Limited  

ABSA Group Limited Sasol Limited  

Nedbank Group Limited Kumba Iron Ore  

Discovery Limited Impala Platinum Holdings Limited  

Remgro Limited AngloGold Ashanti  

PSG Group Limited Exxaro Resources Limited  

Nepi Rockcastle plc African Rainbow Minerals  

Santam Limited Sappi Limited  

Transaction Capital Limited   

Investec Limited   

   

Consumer services Consumer goods  

Shoprite Holdings Limited British American Tobacco  

Clicks Group Limited Compagnie Fin Richemont  

Woolworths Holdings Limited Tiger Brands Limited  

Mr Price Group AVI Limited  

Pick n Pay Stores Limited   

Spar Group Limited   

Truworths International Limited   

   

Telecommunications Industrials  

MTN Group Limited Bidvest Group  

Vodacom Group Limited Barloworld Limited  

Telkom SA Limited   

   

Technology Health care  

Naspers Aspen Pharmacare Holdings Limited  

Appendix B: Computation time  

The runtimes for the SGDLM analysis, for the different parental sizes, are presented here. We did all 

analyses using a 2017 desktop computer with a CPU of 3.20 GHz, four cores, and 8 GB RAM. In all 



28 
 

analyses, 𝐾 = 𝑁 = 2,000. Phase 1 of the SGDLM implementation took about 9 seconds. However, phases 

2 and 3 had much longer runtimes. Table 8 shows the approximate number of hours taken for the analysis 

to execute. It should be noted that we took less time than what is shown in the table because we could run 

three Jupyter Notebooks at once to select the discount factors; for example, for the analysis that involves 

using one simultaneous parent, the total runtime for phases 2 and 3 was 19 + 4 + 14 = 37 hours. This 

computation time is much higher than that realised when using GPU-accelerated computing, e.g., Gruber 

and West (2016). 

Table 8: Runtime (in hours) of the SGDLM implementation for the different parental sizes.      

 1 SP 2 SP 5 SP 

Phase 2 
Selection of discount factors 19 × 3 23 × 3 29 × 3 

Obtaining initial priors 4 5 6 

Phase 3 14 15 19 

Total 75 89 112 

 

Appendix C: Formulae for mean-field posterior  

By denoting 𝐸[⋅] as the expectation with respect to the importance sample probability measure 𝑝MC, the 

formulae (whose proofs can be found in Kyakutwika (2022), Xie (2021), and Gruber (2015)) for 

obtaining the parameters of the mean-field variational Bayes posteriors are as follows. Firstly, compute: 

𝐦𝑖𝑡 =
𝐸[𝜆𝑖𝑡𝛉𝑖𝑡]

𝐸[𝜆𝑖𝑡]

𝐕𝑖𝑡 = 𝐸[𝜆𝑖𝑡(𝛉𝑖𝑡 − 𝐦𝑖𝑡)(𝛉𝑖𝑡 − 𝐦𝑖𝑡)
𝑇]

𝑑𝑖𝑡 = 𝐸[𝜆𝑖𝑡(𝛉𝑖𝑡 − 𝐦𝑖𝑡)
𝑇𝐕𝑖𝑡

−1(𝛉𝑖𝑡 − 𝐦𝑖𝑡)]

 

Then, 𝑛𝑖𝑡 is the unique solution to 

ln(𝑛𝑖𝑡 + 𝑝𝑖 − 𝑑𝑖𝑡) − 𝜓 (
𝑛𝑖𝑡

2
) −

(𝑝𝑖 − 𝑑𝑖𝑡)

𝑛𝑖𝑡
− ln(2𝐸[𝜆𝑖𝑡]) + 𝐸[𝜆𝑖𝑡] = 0 

where 𝜓 is the digamma function. Finally, we set: 

𝑠𝑖𝑡 =
𝑛𝑖𝑡 + 𝑝𝑖 − 𝑑𝑖𝑡)

𝑛𝑖𝑡𝐸[𝜆𝑖𝑡]
𝐂𝑖𝑡 = 𝑠𝑖𝑡𝐕𝑖𝑡

 

Appendix D: Our Python code for the SGDLM implementation 

All Python codes for the analyses in this study are available on the GitHub page: 

github.com/nelsonkyakutwika/SGDLM 

https://github.com/nelsonkyakutwika/SGDLM

