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Abstract

Synthetic control (SC) methods have been widely applied to estimate the
causal effect of large-scale interventions, e.g. the state-wide effect of a change
in policy. The idea of synthetic controls is to approximate one unit’s counter-
factual outcomes using a weighted combination of some other units’ observed
outcomes. The motivating question of this paper is: how does the SC strategy
lead to valid causal inferences? We address this question by re-formulating
the causal inference problem targeted by SC with a more fine-grained model,
where we change the unit of the analysis from “large units" (e.g. states) to
“small units" (e.g. individuals in states). Under this re-formulation, we derive
sufficient conditions for the non-parametric causal identification of the causal
effect. We highlight two implications of the reformulation: (1) it clarifies
where “linearity" comes from, and how it falls naturally out of the more fine-
grained and flexible model, and (2) it suggests new ways of using available
data with SC methods for valid causal inference, in particular, new ways of
selecting observations from which to estimate the counterfactual.

1 Introduction

Since their introduction [AG03; ADH10], synthetic control (SC) methods have
become commonplace for estimating causal effects from observational studies with
panel data.

Consider the following example. In 1988 California implemented a large-scale
tobacco control program, which increased the tobacco tax by 25 cents. Abadie
et al. [ADH10] uses SC to study the effect of this program on the average cigarette
consumption in California. The dataset contains the annual per-capita cigarette sales
across a number of states, where none of the states other than California implemented
a similar tobacco program. This dataset is illustrated in Table 1.

We observe that smoking in California decreased after the tobacco program. How-
ever, we do not know whether the decrease is caused by the program or by other
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California 123 121 123.5 90.1 82.4

Alabama 89.8 95.4 101.1 112.1 105.6
Arkansas 100.3 104.1 103.9 · · · 121.5 118.3
Virginia 124.3 128.4 137 129.5 122.5
Wisconsin 106.4 105.4 108.8 102.6 100.3

...
...

...
...

...
...

Wyoming 132.2 131.7 140.0 114.3 111.4

Table 1: We observe the annual per-capita cigarette sales in packs of different states
from 1970 to 1989. The blue shaded cell reports California’s per-capita sales under
a tobacco program. The remaining cells report other states’ per-capita sales without
a tobacco program.

causes. Thus, to assess this difference, our goal is to estimate California’s counter-
factual outcome. What would the 1989 smoking rate of California had been if its
tobacco program had not been implemented?

SC is a method to solve this problem. It uses the data from before 1989—when
neither California nor the other states had implemented the tobacco program—
to learn a model of California’s smoking rate as a weighted combination of the
other states’ smoking rates. SC then uses the fitted weights to estimate California’s
counterfactual smoking rate in 1989.

In the general terminology of SC, California is the target, the other states are the
donors, and the tobacco program is the intervention. A typical application of SC
involves aggregated time series data, such as in Table 1, with one target unit and a
number of donor units. These units are often “large” units, such as states [ADH10;
BLR14; CS18], counties [AG03], and districts [BRS17]. The causal question is one
about the target’s counterfactual, after the intervention.

To justify SC estimators, existing works often make parametric assumptions about
the true data generating process (DGP) of the potential outcomes of the aggregated
data. A common assumption is that the potential outcomes under control (no
tobacco program) are generated according to a linear factor model with additive noise
[Bai09]. Follow-up works develop different estimators based on this assumption
[Xu17; IKM21].

The purpose of this paper is to investigate the assumptions behind SC. When is it
suitable to assume a linear factor model, and why can we write the target outcome
as a weighted combination of the donors? We will show how to recover the SC
methodology, but without making explicit parametric assumptions about the DGP
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of the potential outcomes.

The key idea behind this analysis is to construct a more fine-grained model of
potential outcomes, one where we change the unit of analysis from a “large unit"
to a “small unit." In the example, this change means that the potential outcomes
are defined by individuals instead of states. We assume that different states index
different distributions of individuals, and the state-level outcome of interest (average
smoking rate) is an average of the individual outcomes in the state.

Under this fine-grained model, the causal effect targeted by classic SC is the sub-
population average treatment effect (SATE), averaged over the individuals. We
will derive sufficient conditions for the non-parametric causal identification of the
SATE, and we will see that it uses the SC strategy. That is, we will derive sufficient
conditions for the existence of a set of donors and weights such that their weighted
combination can be used to approximate the effect.

This identification result further suggests new settings in which to use the SC
estimators, new ways to define the donors, and good heuristics for selecting auxiliary
covariates. In more detail, there are several implications of this way of deriving the
SC methodology.

First, the SC literature usually assumes that the control potential outcomes are
generated according to a linear factor model. With the fine-grained model, we
will see that the linear factor model form needs not be assumed a priori. Rather,
the factor form is a natural consequence of invariance assumptions across groups
(states) and time; and linearity is a consequence of the fact that expectation is a
linear operator. A practical implication of this perspective is that SC can be used
even if the individual-level DGP is non-linear.

Second, the SC literature does not generally offer guidance about the selection of
the donors or how the choice of donors might affect the corresponding estimate.
When reasoning from the fine-grained model, we will see how causal identifiability
depends directly on properties of the target and selected donors; it may be possible
to write California as a weighted combination of New York and Nevada, but not as
a (non-zero) weighted combination of New York, Nevada, and Florida. Practically,
the identification results suggest how to best choose donors for good SC estimation,
and show that SC does not require that donors belong to the same type of group-level
data. For example, we may correctly use data from Chicago (a city) to approximate
the counterfactual of California (a state).

Finally, the analysis here provides a general heuristic of deciding which auxiliary
covariates are suitable to include and which are not. We will see that alterna-
tive measurements of the target outcomes (e.g. per-capita tobacco spending mea-
sured in USD) are, in general, suitable auxiliary covariates, whereas summaries of
group-level characteristics (e.g. average age in states) may be unsuitable auxiliary
covariates.

3



Organization. The paper proceeds as follows. In Section 1.1, we briefly review
related work. In Section 2, we formulate the tobacco tax example using both clas-
sical SC and individual-level potential outcomes and introduce the corresponding
estimands. In Section 3.1, we introduce the SC estimators and review the common
assumptions made in the SC literature. In Section 3.2, we introduce the fine-grained
model. In Section 3.3, we establish sufficient conditions for causal identification of
the estimand using the SC strategy. In Section 3.4, we discuss implications of the
reformulation and the identification result, how it points to new settings in which to
use SC estimators and new ways to define donors. In Section 4, we use the identi-
fication result to reason about what are suitable auxiliary covariates. In Section 5,
we study these implications using simulation studies and the tobacco tax dataset.
Finally, in Section 6, we discuss limitations and future work.

1.1 Related Work.

This paper builds on the literature pioneered by Abadie and Gardeazabal [AG03] and
Abadie et al. [ADH10]. A large part of the literature is about novel estimators [AI11;
ADH15; Won15; DI16; Xu17; ASS18; BMFR18; AL19; Amj+19; Ark+19; Li20;
Aga+20; Ath+21; IKM21] and inference methods [ADH10; DI16; FP17; ST19;
CWZ21]. See Abadie [Aba19] for an excellent review. This paper complements the
existing work, as it interrogates the assumptions made by many of these estimators
and inference methods.

This paper contributes to the growing effort of providing causal interpretations for
synthetic controls O’Neill et al. [O’N+16] formalize and synthesize the common
assumptions in various methods for panel data inference. Bottmer et al. [Bot+21]
study SC estimators properties under a randomized experiment setup. Shi et al.
[Shi+21] develop identification and inference theory for the SC methods by drawing
insights from the proximal causal inference literature [MGTT18]. However, all of
this existing literature performs its analysis with group-level aggregates as units.
In contrast, this paper takes advantage of the nature of the group-level data and
shows how SC assumptions can arise from reasoning about individual-level potential
outcomes.

Finally, this paper contributes to the growing research on invariance and causality
[Sch+12; BP14; PBM16; Büh18; LC20; Sch+21]. In particular, a key assumption
in this paper is the independent causal mechanism principle [PJS17].

2 Data and Problem Formulation

In this section we define the observed data, the group-level potential outcomes that
underlie classical SC, and the individual-level potential outcomes that we consider
in this paper. We define the causal estimand of interest in both settings. For
expository purposes we omit the auxiliary covariates for now. We introduce them
in Section 4.
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2.1 The Observed Data

We have a dataset that contains the average smoking rate of 𝑗 = 1, ..., 𝐽 states for
𝑡 = 1, ..., 𝑇 time periods. Let 𝜇𝑜𝑏𝑠

𝑗𝑡
denote the average smoking rate of state 𝑗 and

time 𝑡. The target state is 𝑗 = 1, i.e. California. It is the only state that levied
tobacco taxes. The remaining states 𝑗 ≥ 1 are potential donors, which did not
impose tobacco taxes. The intervention (the tobacco taxes) happened at time 𝑇0. To
simplify notation, we assume one post-intervention time period, 𝑇 = 𝑇0 + 1, though
the analysis easily generalizes to more post-intervention time periods. The number
of time periods 𝑇 and the potential donors 𝐽 are fixed.

2.2 Classical SC Potential Outcomes

SC estimators are usually developed under the potential outcomes framework for
causal inference [SNDS90; Rub74]. Each state is considered a unit. The potential
outcomes for each unit at each time period are (𝜇 𝑗 𝑡 (0), 𝜇 𝑗 𝑡 (1)). These variables
are the average smoking rates of state 𝑗 at time 𝑡, one in the world where state 𝑗
increased tobacco taxes, and one in the world where state 𝑗 did not increase tobacco
taxes. We assume the treatment is well-defined and there is no interference between
the states [Rub80].

The observed outcomes are:

𝜇𝑜𝑏𝑠𝑗𝑡 =

{
𝜇 𝑗 𝑡 (1) if 𝑗 = 1 and 𝑡 = 𝑇
𝜇 𝑗 𝑡 (0) otherwise.

(1)

In other words, we observe each states’ smoking rate under no tobacco taxes except
for California at time 𝑇 , where we observe its smoking rate with the tax.

2.3 Fine-Grained Potential Outcomes

This paper considers a more fine-grained model, where we treat individuals as units
and states as distributions of individuals. The pair (𝑌𝑖 𝑗 𝑡 (1), 𝑌𝑖 𝑗 𝑡 (0)) denotes the
potential outcomes of individual 𝑖 in group 𝑗 at time 𝑡, e.g. how many packs of
cigarettes person 𝑖 in state 𝑗 consumed at time 𝑡, under increased tobacco taxes or
not. Note we never make observations at an individual level, only in aggregate, but
still we will reason about these variables.

We also consider the variable 𝑋𝑖 𝑗 𝑡 ∈ ℤ𝐷 . It is a vector of causes that contribute to
individual 𝑖’s outcome, such as age, education level, or income. The relationship
between the causes 𝑋𝑖 𝑗 𝑡 and potential outcomes (𝑌𝑖 𝑗 𝑡 (0), 𝑌𝑖 𝑗 𝑡 (1)) can be linear or
non-linear, and can also change across time periods. We emphasize that we will
not observe these individual-level causes, but their existence will be crucial in our
reasoning about the assumptions of SC.

We assume that interventions are made at a group-level and individuals in each
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group comply with their group-level intervention, i.e. individuals in California do
not go to Nevada to purchase tobacco and vice versa. The observed group-level
averages approximate expected individual-level potential outcomes,

𝜇𝑜𝑏𝑠𝑗𝑡 ≈
{
𝔼
[
𝑌 𝑗 𝑡 (1)

]
if 𝑗 = 1 and 𝑡 = 𝑇

𝔼
[
𝑌 𝑗 𝑡 (0)

]
otherwise.

(2)

The expectation is taken over the individuals 𝑖.

2.4 Causal Estimand

We are interested in the causal effect of the tobacco taxes on the average smoking
of individuals in California at time period 𝑇 . Using the classical SC notation, this
estimand is formally defined as the unit-specific treatment effect,

𝜏𝑇 = 𝜇1𝑇 (1) − 𝜇1𝑇 (0). (3)

Under the individual-level notation, the estimand is the sub-population average
treatment effect, averaged over individuals in the target distribution,

𝜏𝑇 = 𝔼 [𝑌1𝑇 (1) − 𝑌1𝑇 (0)] . (4)

Remark 1. Being precise about the causal estimand is important, because different
estimands require different identifying assumptions. Eq. 3 is the unit-specific treat-
ment effect (UTE). 1 In general, UTE is incredibly difficult, if not impossible, to iden-
tify [HR10]. It involves strong parametric assumptions on the data generating mech-
anism and the distribution of the noise variable. In contrast, the causal estimand in
Eq. 4 is the an average causal effect. Causal identification of the average causal effect
is easier, and in general, does not require parametric assumptions [RR83; Imb04].

3 A Fine-Grained Model for SC

In this section, we first review the classical SC approach to causally identify and
estimate the estimand. We then develop a fine-grained model for SC, one that makes
several assumptions that will eventually lead to the non-parametric identification of
the causal estimand. Finally, we discuss the practical implications of reasoning
about the fine-grained model, and the corresponding identification result.

3.1 Classical Synthetic Controls

The idea behind SC is to use the observed outcomes of the donor states, which
did not pass a tobacco tax, to help estimate the counterfactual California outcome.

1The more common name for Eq. 3 is the individual treatment effect, where the units are
individuals. To avoid potential confusion, we use UTE instead of ITE.
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Specifically, SC posits that there exists a donor set 𝐷 in the potential donor pool 𝐽
and a weight set {𝛽 𝑗 } 𝑗∈𝐷 , such that,

𝜇1𝑡 (0) =
∑︁
𝑗∈𝐷

𝛽 𝑗𝜇 𝑗 𝑡 (0) ∀𝑡 ≤ 𝑇. (5)

The validity of SC usually relies on parametric assumptions about the control
potential outcomes 𝜇 𝑗 𝑡 (0). A common assumption is that the control potential
outcomes are generated according to a linear factor model plus noise [Bai09],

𝜇 𝑗 𝑡 (0) = 𝜆𝑇𝑡 𝛾 𝑗 + 𝜖 𝑗 𝑡 . (6)

Here 𝜆𝑡 ∈ ℝ𝑅 is a time-specific vector of factors shared across different units and
𝛾 𝑗 ∈ ℝ𝑅 are unobserved unit-specific factor loadings. The factor size 𝑅 is usually
assumed to be significantly smaller than the number of potential donors 𝐽 and the
total time periods 𝑇 . The noise variable 𝜖 𝑗 𝑡 is zero centered.2

Classical SC uses group-level observations to estimate the weights in Eq. 5. Specif-
ically, it fits the regularized least squares,

𝛽 = min
𝛽 𝑗∈𝐷

𝑇0∑︁
𝑡=1

(
𝜇𝑜𝑏𝑠1𝑡 −

∑︁
𝑗∈𝐷

𝜇𝑜𝑏𝑠𝑗𝑡 · 𝛽 𝑗
)2 + Υ(𝛽), (7)

where Υ(𝛽) is a prior or regularizer. SC uses the learned weights 𝛽 to estimate the
counterfactual California at time 𝑇 .

To ensure a unique set of weights, existing works place restrictions on 𝛽. For
example, the original SC estimator [ADH10] restricts the weights to be positive and
add up to one. Doudchenko and Imbens [DI16] proposes an elastic-net regularizer.
Robbins et al. [RSK17] suggests an entropy penalty.

3.2 Invariance Assumptions for the Fine-Grained Model

We now consider the fine-grained model, where we reason about an individual 𝑖, and
treat each state 𝑗 as a distribution of individuals. We will show how to recover the SC
strategy without making an explicit parametric assumption on the data generating
process of the potential outcomes.

The target estimand is the sub-population average treatment effect in Eq. 4. Since
the expected outcome under intervention 𝔼 [𝑌1𝑇 (1)] can be trivially identified, the
goal is to causally identify the control expected outcome 𝔼 [𝑌1𝑇 (0)] from the data
distribution.

2The original SC [ADH10] for the tobacco tax example assume a variant of the factor model in
Eq. 6, which we discuss in Section 4.
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In this subsection, we discuss the invariance assumptions that will lead to causal
identification. In the next subsection, we will complete the derivation of how to
identify the expected counterfactual.

The first assumption is that of an independent causal mechanism (ICM) [Sch+12;
Sch+21]. ICM is a principle that the conditional distribution of each variable given
its causes (i.e. its “mechanism") does not inform or influence the other conditional
distributions [Sch+12].

In this context, the assumption means that the causal mechanism of an individual’s
tobacco consumption 𝑌𝑖 𝑗 𝑡 (0) is independent of the distribution of their causes 𝑋𝑖 𝑗 𝑡 .
If we know all the potential causes of an individual’s tobacco consumption, then the
distribution of the control potential outcome is independent of which distribution
(i.e. state) the individual is from.

A1. (Independent Causal Mechanism) Conditional on the causes 𝑋 , the potential
outcome 𝑌 (0) is independent of the population distribution 𝑗 . For population
distribution 𝑗 at time 𝑡 ≤ 𝑇 , the joint distribution of 𝑌 (0) and 𝑋 is

𝑃 𝑗 𝑡 (𝑋,𝑌 (0)) = 𝑃 𝑗 𝑡 (𝑋)𝑃𝑡 (𝑌 (0) | 𝑋). (8)

The assumption says that the distribution of individual causes 𝑋 can vary across
states and time, but the conditional outcome 𝑌 (0) | 𝑋 only varies by time. For each
time point 𝑡, if we know all the potential causes of an individual’s smoking behavior,
which state they are from does not provide any additional information about the
distribution of their control potential outcome.

Using Eq. 8, we rewrite the expected counterfactual as

𝔼
[
𝑌 𝑗 𝑡 (0)

]
=
∑︁
𝑥

𝔼𝑡 [𝑌 (0) | 𝑋 = 𝑥]︸               ︷︷               ︸
𝜆𝑡

𝑃 𝑗 𝑡 (𝑋 = 𝑥), (9)

where 𝔼𝑡 denotes the expectation with respect to 𝑃𝑡 (𝑌 (0) |𝑋 = 𝑥), a distribution that
is invariant across states.

Eq. 9 is similar to the factor model in Eq. 6, where the vector of factors 𝜆𝑡 is the
vector of conditional expected outcomes, but notice we did not make any assump-
tions about the relationship between the causes 𝑋𝑖 𝑗 𝑡 and potential outcomes 𝑌𝑖 𝑗 𝑡 (0).
Rather, the linearity in Eq. 9 comes from the independent causal mechanism and
iterated expectation — the group-level outcomes are the averages of individual-level
outcomes.

The second assumption is one of stable distributions. Given the target and the
selected donors, i.e. donors that will be used to construct the SC, we can further
decompose the causes 𝑋 into causes that differentiate the target and the selected
donors, and causes that are invariant.
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A2. (Stable Distributions) Decompose the causes into two subsets 𝑋 = {𝑈, 𝑆}.
Let 𝑆 denote the subset that differentiates the target from the selected donors, i.e.,
its distribution in the target group is different from its distribution in the selected
donor groups. We assume that, for all groups, the distribution of 𝑆 does not change
for all time periods 𝑡 ≤ 𝑇 ,

𝑃 𝑗 𝑡 (𝑋) = 𝑃 𝑗 (𝑆)𝑃𝑡 (𝑈 | 𝑆). (10)

In other words, The subset 𝑆 contains causes that vary across states, but are invariant
across time. The conditional distribution of𝑈 varies by time but is invariant across
states. We call 𝑆 the minimal invariant set.

Remark 2. The minimal invariant set 𝑆 is determined by the choice of the selected
donors. For example, if we choose New Zealand as a donor to California, then the
set 𝑆 may be the same as 𝑋 , because these two groups are very different. If the
donor is a “twin California," then the minimal invariant set 𝑆 is an empty set.

With these assumptions in hand, we use Eq. 9 and Eq. 10 to rewrite the expected
counterfactual,

𝔼
[
𝑌 𝑗 𝑡 (0)

]
=
∑︁
𝑠

𝔼𝑡 [𝑌 (0) | 𝑆 = 𝑠]︸              ︷︷              ︸
𝜆𝑡

𝑃 𝑗 (𝑆 = 𝑠)︸      ︷︷      ︸
𝛾 𝑗

. (11)

Comparing Eq. 11 with the factor model in Eq. 6, we can see that the conditional
expectations are analogous to the time varying factors 𝜆𝑡 . The probabilities are
analogous to the state specific factor loadings 𝛾 𝑗 . What this equation shows is that
with the two invariance assumptions, the expected outcome is naturally expressed
as a factor model. Using the fine-grained model, we discover that the “linearity"
in SC comes from aggregation, and the factor model arises from the invariance
assumptions A1 & A2.

3.3 Causal Identifiability

While Eq. 11 is similar to the factor model in Eq. 6, it does not guarantee causal
identifiability. The reason is that the cardinality of the minimal invariant set 𝑆 can
be very large. In particular, if the cardinality of 𝑆 is larger than the number of donors
then we cannot write the target as a weighted combination of the donors.

Here, we establish sufficient conditions for the causal identifiability of the causal
estimand using the SC strategy. Causal identifiability is about whether we can
express a causal estimand as a parameter of the observed distributions [Pea00]. In
classical SC, causal identifiability is assumed in Eq. 5, that is, there exist a set of
donors and weights, such that the target’s counterfactual can be approximated as a
weighted combination of the donors’ observed outcomes.3

3Note, that causal identifiability is different from model identifiability, which is about whether
we can recover a unique set of parameters from data.
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To establish causal identifiability, we need to make two more assumptions about the
data distribution.

A3. (Sufficiently Similar Donors) Let 𝐷 be the set of donors used to construct the
synthetic control and 𝑆 be the minimal invariant set for the target and the selected
donors. The donors are sufficiently similar if the cardinality of the donor set is
greater than or equal to the cardinality of the minimal invariant set,

|𝐷 | ≥ |𝑆 |. (12)

As discussed in Remark 2, the cardinality of the minimal invariant set 𝑆 is determined
by the selected donors. If the selected donors are very different from the target, the
cardinality of 𝑆 is large. If they are similar, the cardinality of 𝑆 is small.

A4. (Target Donors Overlap) Let {𝑠1, ..., 𝑠𝑅} be the support of 𝑆. There exists at
least one donor distribution 𝑗 in the selected donor set 𝐷, where 𝑃 𝑗 (𝑆 = 𝑠) > 0.

A4 implies that every type of individual living in California with characteristics
𝑆 = 𝑠 might also live in one of the selected donor states.

A3 and A4 are two assumptions on the distribution of the minimal invariant set 𝑆.
While we do not directly observe 𝑆 in practice, we can still use it to reason about the
differences among the population distributions, and discuss its influence on causal
identifiability.

Finally, we derive sufficient conditions for non-parametric identification of the causal
estimand using the SC strategy.

Theorem 1. (Causal Identifiability) Assume the causal mechanism is independent
(A1), the target and the selected donors are stable during the periods of investigation
(A2), the selected donors are sufficiently similar to each other (A3), and there is
overlap between the target and the selected donors (A4). Then there exists a set of
weights {𝛽 𝑗 } 𝑗∈𝐷 , such that across all time periods, the target’s counterfactual can
be written as a weighted combination of the donors’ outcomes,

𝔼 [𝑌1𝑡 (0)] =
∑︁
𝑗∈𝐷

𝛽 𝑗𝔼
[
𝑌 𝑗 𝑡 (0)

]
∀𝑡 ≤ 𝑇. (13)

The proof is in Appendix A.

The conditions in Theorem 1 lead to the assumption (Eq. 5) commonly made in
the literature: the existence of synthetic controls. Note that we have arrived at
Eq. 5 without making any parametric assumptions about the mechanism generating
individual-level outcomes.

3.4 Implications

We have presented a set of causal assumptions that justify the SC methodology.
What are the implications of these results?
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Mixing types of donors. The fine-grained potential outcomes model in Section 2.3
provides insights about what can be treated as a donor. Classical SC typically treats
a state as a unit, and chooses donors as other states. For example, Abadie et al.
[ADH10] excluded the District of Columbia as a possible donor. The fine-grained
model implies that each donor need only be a group of individuals, and does not
need to be the same type of group as the target. A donor’s influence on the SC
estimator has to do with how different it is to the target and other donors, i.e., the
cardinality of the minimally invariant set. For example, in Section 5, we will see
that we can use districts or regions as potential donors to a target state.

SC with non-linear DGPs. Previous work on SC begins with a linear factor model
assumption, such as the one in Eq. 6 [Xu17]. However, it is unclear whether the
role of the parametric model is for causal identification, for statistical necessity,
or for notational convenience. As discussed in Remark 1, because the estimand is
the unit-specific treatment effect, a natural interpretation of Eq. 6 is that it is an
assumption on the data generating mechanism. Assuming the true mechanism is
linear can be an unrealistic assumption.

In contrast, using the fine-grained model, we explained why, fundamentally, linearity
can be a reasonable assumption in SC. We cast the estimand as an average effect
over sub-populations, and SC as a population re-weighting algorithm. It make clear
that the linear factor model in Eq. 6 encodes invariance assumptions for causal
identifiability, and that the linearity in Eq. 6 arises from expectation being a linear
operator. A practical implication of this perspective is that the causal identification
result holds even if the fine-grained model involves a nonlinear mechanism. Thus SC
estimators are valid in settings where the individual-level DGPs are nonlinear.

The Role of 𝑆 and its relations to the donors. Classical SC assumes the latent
factors 𝜆𝑡 in Eq. 6 are fixed and low rank [Aba19]. Consequentially, we may be
tempted to use information from all the donors. We show that different donors can
lead to different latent factors. Specifically, in Eq. 11, we draw the analogy between
the size of the factors and the cardinality of the minimal invariant set 𝑆. We show
that the minimal invariant set 𝑆 is determined by the donors used to construct the
synthetic control. Different donor sets can lead to different minimal invariant sets
and naively including additional donors may lead to the non-existence of synthetic
controls. Whether the assumption in Eq. 5 holds is a property of the target and the
selected donors.

4 Auxiliary Covariates

So far, we have discussed how to analyze panel data as in Table 1. In many practical
settings, we may observe additional state-specific covariates. For example, we may
observe the percentage of teenagers in each state.

Previous work incorporates the auxiliary covariates into the linear factor model
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[ADH15]. For example, Abadie et al. [ADH10] posits the following model,

𝜇 𝑗 𝑡 (0) = 𝛿𝑡 + 𝜆𝑇𝑡 𝛾 𝑗 + 𝜃𝑇𝑡 𝐴 𝑗 + 𝜖 𝑗 𝑡 , (14)

where 𝜃𝑡 ∈ ℝ𝑅 and 𝛿𝑡 ∈ ℝ𝑅 are time-specific vectors of factors shared across
different units and 𝐴 𝑗 ∈ ℝ𝑘 is a vector of 𝐾 observed state-specific covariates.

Specifically, Abadie et al. [ADH10] assumes that is there exists a set of weights,
such that,

𝐴1𝑘 =
∑︁
𝑗∈𝐷

𝛽 𝑗 𝐴 𝑗 𝑘 ∀𝑘 ≤ 𝐾 and 𝜇1𝑡 (0) =
∑︁
𝑗∈𝐷

𝛽 𝑗𝜇 𝑗 𝑡 (0) ∀𝑡 ≤ 𝑇. (15)

Consequentially, one approach to using auxiliary covariates is to analyze them in
parallel with the outcomes to solve for the SC weights [ADH10; ADH15; BMFR18;
BF19].

This use of auxiliary covariates requires us to assume Eq. 14, that the underlying
data generating process is linear. A natural question is whether we can still use
auxiliary covariates to construct the SC weights without assuming the underlying
DGP is linear. Here, we will use the fine-grained model to reason about suitable
auxiliary covariates, those that inherently satisfy Eq. 15.

Using Eq. 11, we can reason about several types of suitable auxiliary covariates.
The first type are the state-specific probabilities of the variables in the minimal
invariant set 𝑆: 𝑃 𝑗 (𝑆 = 𝑠). We observe that in Eq. 11, the relationships between
the probabilities and the outcomes are linear. Therefore, the probabilities have the
same relationship with one another that the outcomes have with each other. For
example, suppose we know that the variable “age” differentiates the target and the
donor distributions, i.e. “age" is in 𝑆, then the “percentage of young adults" can be
a suitable covariate.

Note that some group-level summaries of individual-level characteristics may not be
suitable auxiliary covariates. For example, consider the average age (within a state).
Since we do not assume a linear relationship between the individual-level charac-
teristics and the individual-level outcomes, we can not expect linear relationships
between the group-level summaries and the group-level outcomes.

The second type of suitable auxiliary covariates are different measurements of the
target outcomes. With a bit of algebra, we can see that the SC weights in Eq. 13
are combinations of the state-specific probabilities on the minimal invariant set:
𝑃 𝑗 (𝑆 = 𝑠). Recall that the minimal invariant set 𝑆 is solely determined by the target
and the selected donor and that they are not influenced by the outcome measurements.
Therefore, the SC weights should be invariant to different measurements of the
outcome variable 𝑌 . For example, per-capita tobacco spending measured in USD
would be a suitable auxiliary covariate to the target outcome: average cigarette
consumption measured in packs.

12



Similarly, variables that share the same causes as the target outcomes and satisfy
assumption A1 are suitable auxiliary covariates. For example, if we believe that
the same set of causes influence “drinking” and “smoking”, and none of the states
implemented any policy for alcohol consumption during the periods of consideration
(A1 holds), then “annual average beer consumption" would be a suitable auxiliary
covariate to average cigarette consumption.

5 Empirical Studies

We use simulations and tobacco-program data to study this perspective on SC
and the implications of the theory around the fine-grained model.4 We find the
following.

1. There is no reason the donors need to come from the same type of group as the
target. We can still recover meaningful causal estimates when using donors
from a different type.

2. The SC estimators are valid even when the individual-level causal mechanisms
are nonlinear.

3. The cardinality of the minimal invariant set 𝑆 is dependent on the donor and
target choices and is crucial to whether the weights can be generalized to the
counterfactual.

4. We may improve SC estimates when we include suitable auxiliary covariates
in the analysis. However, unsuitable covariates will bias the estimates.

Simulations. Following the fine-grained model in Section 3, we first generate
individual-level data, then construct group-level summaries. The individual-level
covariates 𝑋 take 𝐾 = 12 values. Individual-level outcomes are derived from a set
of non-linear and time-varying functions. We create one target group and 5 donor
groups. Each group has a different composition of individuals. The compositions
do not change over time.

We consider 𝑇 time periods. For each group, at each time period, we sample 2000
individuals according to its population composition. The group-level summaries,
𝜇𝑜𝑏𝑠
𝑗𝑡

, are the average outcomes of individuals in group 𝑗 at time point 𝑡. The
randomness is on an individual level, instead of a group level.5

We create two knobs in the simulation, 𝑆 and 𝑇 . The variable 𝑇 denotes the
number of time periods, corresponding to the number of data points when fitting
and evaluating the SC estimator. The set 𝑆 is the minimal invariant set. We use
|𝑆 | to denote the cardinality of 𝑆, and specifically how much the target and selected
donor distributions differ from each other. |𝑆 | ranges from 0 to 𝐾 . If the donors are

4code is available at github.com/claudiashi57/fine-grained-SC
5More simulation details are in Appendix B
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Figure 1: Donors are not required to be of the same type: we use a linear combi-
nation of divisions to capture the outcome trends of California (a state) with high
fidelity.

identical to the target |𝑆 | = 0. If the donors are very different in all aspects of the
population composition |𝑆 | = 𝐾 . We do not observe the minimal invariant set 𝑆 and
its cardinality. The SC estimators do not use 𝑆 or |𝑆 |.

Prop 99. Following Abadie et al. [ADH10], we analyze data about the Prop 99
tobacco program. We use the state-level data for the period 1970–2000. We exclude
states that also implemented large tobacco programs during the time frame and
the states that raised tobacco tax by more than 50 cents, resulting in 39 potential
donors. The outcome measurement is the per-capita cigarette sales in packs. The
main distinctions to Abadie et al. [ADH10] are that (1) we include Washington DC
in the donor pool, and (2) exclude the state-level covariates.

Methods and evaluation. For the Prop 99 example, we use the original SC
estimator, with positive weights that sum up to one. Since we cannot observe
counterfactuals, we evaluate the estimation quality by plotting out the estimated
counterfactuals.

For the simulation studies, we use ordinary least squares (OLS) as the SC estimator.
We use 75% of the data to fit the estimator and 25% of the data for out-of-sample
evaluation. The evaluation metric is the mean squared error averaged over data (time)
points. For expository purposes, when discussing the estimation quality, we use
“observed" and “counterfactual" instead of “in-sample" and “out-of-sample".

(1) Mixing types of donors. As discussed in Section 3.4, there is no reason
to restrict donors to be of the same type as the target. To study this possibility
empirically, we consider a type of donor that is different from states. Since 1950,
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Figure 2: SC estimators are valid even when the causal mechanisms generating
individual-level outcomes are nonlinear. The figure reports the observed and coun-
terfactual prediction loss, in settings where the group-level measurements are the
“mean” or the “median” of the individuals in the groups.

the United States Census Bureau has defined nine statistical divisions based on
geographical location, e.g. New England, Mountain. Each division contains several
states. We construct divisional-level donors using the United States census of 1990.
The average smoking rate of each division is a weighted combination of the smoking
rate in its corresponding states, weighted by their population.

We use the original SC estimator to construct a synthetic California using these
divisional-level data. We compare the counterfactual prediction of the divisional-
level SC estimator with the original SC estimator. As shown in Fig. 1, the synthetic
California constructed by divisional-level data can capture the outcome trends of
California with high-fidelity. We interpret the weights of the SC estimator in
Appendix C.

(2) SC with no-linear DGPs. Section 3.2 argues that the linearity in SC comes
from aggregation, rather than a linear individual-level data generating process. We
study this claim empirically using the nonlinear data simulation described above.
We have data from six groups, one is the target and the other groups are the donors.
We set the cardinality of 𝑆 to 5 and consider a range of time periods for the data,
from 𝑇 = 20 to 𝑇 = 90.

For a given number of time periods, we construct two panel datasets. The first dataset
contains the average outcomes of individuals in groups. The second includes the
median outcomes of individuals in groups. Note that the “mean” is linear, where
the “median” is nonlinear.

We apply the SC estimator to both panel datasets and evaluate the predictive per-
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Figure 3: The more different the donors are, the worse the SC counterfactual
estimates become. The red dotted line denotes the number of donors used for
constructing the synthetic controls.

formance on the observed and counterfactual data. As shown in Fig. 2, when the
individual-level DGP is nonlinear, the SC estimator can still produce valid counter-
factual estimates for the average outcomes. Of course, linearity does not come for
free. SC estimates are valid in this example because the “mean" is a linear function,
and the cardinality of the set 𝑆 is not greater than the number of available donors. In
contrast, when the measurement is the “median", the SC estimator fails at predicting
the counterfactual, because the median is a nonlinear function. Thus, we cannot
expect a linear relationship between the median of the target group and the median
of the donor groups.

(3) The minimal invariant set 𝑆 is critical to causal identification. As discussed
in Section 3.3, the minimal invariant set 𝑆 and whether Eq. 5 holds are properties
of the target and the donors. If we choose donors that are drastically different from
the target, the SC weights learned with the observed data may not generalize to the
counterfactual data. We use nonlinear simulations to study the relationship between
the donor choice and the quality of the counterfactual estimates. We fix the number
of the donors to 5, the number of time periods to 20, and increase the cardinality of
𝑆 from 2 to 11.

As shown in Figure 3, once the cardinality of 𝑆 surpasses the number of available
donors, the counterfactual estimation error increases significantly. Importantly,
it is increasing at a significantly faster rate than the observed error. We cannot
determine whether the SC estimator can produce valid counterfactual estimates
from the observed dataset alone.

16



Table 2: Using suitable covariates improves the estimation quality, whereas unsuit-
able covariates hurt the estimation quality. The table reports the mean squared error
and standard error over 100 simulations.

MSE ± SE Observed Counterfactual

Outcome Only .07 ± .03 .14 ± .05

Suitable Covariates .06 ± .02 .13 ± .05

Unsuitable Covariates .06 ± .02 .24 ± .13

(4) Auxiliary Covariates. Finally, we study what happens to the counterfactual
estimates when we include auxiliary covariates. Using the simulations, we construct
10 suitable auxiliary covariates and 10 unsuitable auxiliary covariates. The suitable
covariates are the averages of the sine transformation of individual-level outcomes.
The unsuitable covariates are averages of the individual-level covariates. We fix the
number of the donors to 5, the cardinality of the minimal invariant set to 5, and the
number of time periods to 15. We examine the observed and counterfactual estima-
tion quality when including suitable covariates and including unsuitable covariates.
As shown in Table 2, incorporating suitable covariates may improve the counter-
factual estimation, whereas including unsuitable covariates hurts the counterfactual
estimation. Notably, we may not infer whether an auxiliary covariate is suitable by
looking only at the SC estimator’s fit to the observed data.

6 Discussion & Future Work

In this paper, we develop a fined-grained model for synthetic controls. Using the
tobacco example, we show that the “linearity" in SC comes from aggregation:
the group-level outcomes are averages of individual-level outcomes. We further
establish sufficient conditions for the non-parametric identification of the causal
estimand and discuss several practical implications.

While this paper points to new ways of applying SC methods, the validity rests on
the strong assumptions that an analyst must carefully consider. For future work,
we plan to establish uncertainty quantification methods that are compatible with the
fine-grained model. We also plan to develop sensitivity analyses that show how
violations of the assumptions change the estimated effects.
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A Proof For Thm 1

Theorem 1. Assume the target and the selected donors are stable during the periods
of investigation (A2), the donors are sufficiently similar to each other (A3), and there
is overlap between the target and the donors (A4). Then there exists a set of weights
{𝛽𝑑}𝑑∈𝐷 , such that across all time periods, the target’s counterfactual can be written
as a weighted combination of the donors’ outcomes,

𝔼 [𝑌1𝑡 (0)] =
∑︁
𝑑∈𝐷

𝛽𝑑𝔼 [𝑌𝑑𝑡 (0)] ∀𝑡 ≤ 𝑇. (16)

Proof. We first show that for a fixed time point 𝑡, there exist a set of weights such
that the target can be written as a weighted combination of the donors. We then
show that there exists a set of weights that is invariant across time periods.

Fixing a time point 𝑡, we can write out Eq. 11, 𝔼
[
𝑌 𝑗 𝑡 (0)

]
=
∑
𝑠 𝔼𝑡𝑌 (0) | 𝑆 = 𝑠𝑃 𝑗 (𝑆 =

𝑠), for the target 𝑗 = 1 and the selected donors 𝐷. Conceptually, we can think of
the set expanded expectations as a system of linear equations, where the conditional
expectations are the unknowns, and the probabilities are the scalars. A4 says that
the unknowns in the target equation are also in at least one of the donor equations.
A3 says that there are at least as many independent equations as the number of
unknowns. Combining A3 & A4, we can “solve" the unknowns. Consequentially,
we can write the target as a weighted combination of the donors, where the weights
are functions of the probabilities.

A2 implies the probabilities are the same across time periods. Since the weights are
functions of the probabilities, and the probabilities are invariant across time periods,
the weights are also invariant across time periods. �
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B Simulation Details.

We discuss the details of the simulation studies. Recall, the individual-level covari-
ates take 𝐾 = 12 values. There are 6 groups. Each group has a different composition
of individuals, denoted by 𝑃𝑃𝑃 𝑗 . The sparsity of the probabilities is determined by the
cardinality of the minimal invariant set 𝑆.

Group-level parameters

𝛼𝑠𝑘 ∼ 𝐵𝑖𝑛(1, 1 − |𝑆 |
𝐾

)

𝛼𝛼𝛼𝑠 = (𝛼𝑠1, ..., 𝛼𝑠𝑘 )
𝑃𝑃𝑃 𝑗 ∼ 𝐷𝑖𝑟 (𝐾,𝛼𝛼𝛼𝑠)

Individual-level data
𝑋𝑖 𝑗 𝑡 ∼ 𝐶𝑎𝑡 (𝐾, 𝑃𝑃𝑃 𝑗 )
𝑌𝑖 𝑗 𝑡 = 𝑓 𝑡 (𝑋𝑖 𝑗 𝑡) + 𝑁 (0, 1)

𝜇 𝑗 𝑡 =
1
𝑁 𝑗

∑︁
𝑌𝑖 𝑗 𝑡

Individual-level outcomes are derived from a set of non-linear and time-varying
functions. The exact functions are in the supplementary material. The individual-
level covariates take 𝐾 = 12 values. At each point 𝑡 and for each group 𝑗 , we sample
𝑁 𝑗 = 1000 individuals. The group-level summaries, 𝜇𝑜𝑏𝑠

𝑗𝑡
, are the average outcomes

of individuals in group 𝑗 at time point 𝑡.
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C Prop 99 Experiment Details.

In Fig. 1, we show that the synthetic California constructed by divisional level donors
can capture the outcome trends of California with high fidelity. Here we describe
how the donors are constructed.

Since 1950, the United States Census Bureau divided the United States into nine
divisions: New England, Mid-Atlantic, East North Central, West North Central,
South Atlantic, East South Central, West South Central, Mountain, and Pacific.
Each division consists of several states. Following Abadie et al. [ADH10], we
exclude states that also implemented large tobacco programs during the time frame
and the states that raised tobacco tax by more than 50 cents: Massachusetts, Arizona,
Oregon, Florida, Alaska, Hawaii, Maryland, Michigan, New Jersey, New York, and
Washington.

We construct divisional-level donors according to the United States census of 1990.
Each divisional donor is a weighted (by population) combination of its corresponding
states that were not excluded for implementing similar policies. We drop the Pacific
division because all states in the division have been excluded. We use the original SC
estimator to construct a synthetic California using these divisional-level data.

Division Weight

New England .05

Mid-Atlantic 0

East North Central 0

West North Central 0

South Atlantic 0

East South Central 0

West South Central 0

Mountain .95

Pacific -

Table 3: Divisional-level weights used to construct the synthetic California.

As shown in Table 3, the synthetic California uses only two donors: Mountain
division and New England division. This is not surprising because California is
geographically close to the Mountain division. Table 3 is also consistent with the
result in Abadie et al. [ADH10], where the chosen state-level donors come from
either the Mountain division or the New England division.

Changing the unit of analysis does not necessarily harm interpretability. California is
a state with a high population density. According to the 1990 census, the population
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in California is around 30 million. The total population in the Mountain division
used to construct the control is around 10 million. In contrast, the population in
Montana, a donor used in Abadie et al. [ADH10] with 0.2 weights, is only around
0.8 million. Taking population level into consideration, it is as interpretable, if not
more, to treat divisions as potential donors to California.
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