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Abstract

This paper proposes an empirical method to implement the recen-
tered influence function (RIF) regression of Firpo, Fortin and Lemieux
(2009), a relevant method to study the effect of covariates on many
statistics beyond the mean. In empirically relevant situations where
the influence function is not available or difficult to compute, we sug-
gest to use the sensitivity curve (Tukey, 1977) as a feasible alternative.
This may be computationally cumbersome when the sample size is
large. The relevance of the proposed strategy derives from the fact
that, under general conditions, the sensitivity curve converges in prob-
ability to the influence function. In order to save computational time
we propose to use a cubic splines non-parametric method for a random
subsample and then to interpolate to the rest of the cases where it was
not computed. Monte Carlo simulations show good finite sample prop-
erties. We illustrate the proposed estimator with an application to the
polarization index of Duclos, Esteban and Ray (2004).
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1 Introduction

The recentered influence function (RIF) regression, as proposed by Firpo,

Fortin and Lemieux (2009), is a powerful tool to study the impact of changes

in covariates on the unconditional distribution of a given outcome variable.

Let Y be a random variable with cumulative distribution function F, and

v(F) any ‘functional’ of interest related to F. For example, if Y is income,

v(F) can be the mean, the Gini index, a quantile, or the poverty rate. The

RIF is defined as RIF(y, v, F) = v(F) + IF(y, v, F), where IF(y, v, F) is the

influence function (IF) (Hampel, 1974) that measures the marginal impact

of a particular data point in the support of F in the value of v(F). Influence

functions play a key role in the robust statistics literature.

Firpo et al. (2009, 2018) note that since E[RIF(Y, v, F)] = v(F), by the

law of iterated expectations EX
[
EY|XRIF(Y, v, F)

]
= v(F), and show that the

effect on v(F) that arises from shifting a scalar covariate from X to X + t,

where t ↓ 0, is given by:∫
dE[RIF(Y, v, F)|X = x]

dx
dF(x).

Hence, by properly modelling E[RIF(Y, v, F)|X = x] in a regression fashion,

the effect of X on v can be recovered as an ‘average derivative’ of regressing

RIF(Y, v, F) on X. The implementation of the method requires to construct

RIF(Y, v, F) analytically for the functional of interest v and then to regress

it on X. In many relevant cases the IF required to obtain RIF(Y, v, F) is

immediately available; Fortin, Lemieux and Firpo (2011) present a useful

‘catalog’ that includes the mean, the quantiles, the variance and the Gini

index (see also Essama-Nssah and Lambert (2015) and Cowell and Flachaire

(2015)). However, there are many examples where this is not the case. Our

paper proposes an alternative in these situations.

In this paper we propose a practical computation method based on the

sensitivity curve (SC) (Tukey, 1977). This procedure consists in comparing

the full sample functional v with that computed when the j−th observation

is left out; this is the influence of this particular observation on the empirical

version of v. The relevance of the proposed strategy derives from the fact

that, under general conditions, the SC converges in probability to the IF (see

Nasser and Alam (2006) for a discussion). We provide an intuitive proof of

this result.
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The SC has some practical advantages over the IF. First, even when

analytically available, in many cases the estimation of the IF involves dealing

with the problem of selection of the meta-parameters, like bandwidths, which

may add further complications. Second, in some relevant cases the IF may

be difficult when not impossible to derive analytically. As an example of

this case we study the Duclos, Esteban, and Ray (2004) polarization index,

where for the general case there is no analytical functional form of the IF

(see Appendix A2 for a summary of the construction and motivation of

this index). Finally, many relevant examples where the IF can be easily

derived involve additive or quasi-additive measures that do not apply to

many important situations.

This paper is organized as follows. Section 2 presents the main statistical

derivations. Section 3 discusses the cubic spline method to interpolate the

SC and considerably reduce computation time. Section 4 provides finite

sample Monte Carlo simulations. Section 5 discusses an empirical exercise

that shows that the performance of the SC is close to that of the analytical

IF.

2 Influence via sensitivity curves

Let v(F) be a real-valued functional, where v : Fv → R and Fv is a class

of distribution functions such that F ∈ Fv if |v(F)| < ∞. Consider two

cumulative distribution functions (CDFs), F and G, and let Ht,F,G = tG +

(1 − t)F, t ∈ [0, 1]. Then, using the Von Mises (1947) expansion:

v(H) = v(F) + t∂v
(
Ht,F,G

)
/∂t |t=0 + r(t, F,G), (1)

with

∂v
(
Ht,F,G

)
/∂ t|t=0 = lim

t↓0

v
(
Ht,F,G

)
− v(F)

t

=

∫
ψ(y)d(G− F)(y).

(2)

When G = ∆y and ∆y is the CDF of a random variable with probability

mass of 1 at y, ψ(y) = ∂v
(
Ht,F,∆y

)
/∂ t|t=0 is the influence function (IF)

of the functional v, labeled as IF(y, v, F) (see Huber and Ronchetti (2009)

for a general discussion; here we are following the derivation in Firpo et al.

(2009, p.956)).
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Consider now the last term in eq. (1). Following Von Mises (1947):

r(t, F,G) =
t̃2

2
∂2v

(
Ht,F,∆y

)
/∂ t2

∣∣
t=0

, (3)

for some t̃ ∈ [0, t], where

∂2v
(
Ht,F,G

)
/∂t2 |t=0 =

∫∫
φ(y, z)d(G− F)(y)d(G− F)(z), (4)

with φ(y, z) a symmetric function; again, see Von Mises (1947, p. 325) for

details. Note that if v(F) = v(cF) for all c > 0 (scale invariance) then:

(i)
∫
ψ(y)dF(y) = 0

(ii)
∫∫
φ(y, z)dF(y)dF(z) = 0

The proof of (i) and (ii) follows from Jaeckel (1972).1

The recentered influence function (RIF), is defined as RIF(y, v, F) ≡
v(F) + IF(y, v, F), where, trivially, E[IF(y, v, F)] = v(F), from property (i)

above. Firpo et al. (2009) develop a RIF-regression framework that is

similar to a standard regression except that the dependent variable, Y, is

replaced by the IF of the statistic of interest, which allows to estimate the

effects of covariates X on v(F).

Unfortunately, not all indicators have an IF with a specific analytical

form and thus the RIF-regression may not be practically feasible. Our pro-

posal consists of replacing the IF by the SC.

Let {yi}
n
i=1 be an iid sample and define vn = v(Fn) as the sample coun-

terpart of v(F), and let v
(j)
n = v(F

(j)
n ) denote the case where j−th observation

is left out, then:

Fn(y) =
1

n

n∑
i=1

1 (yi 6 y)

F
(j)
n (y) =

1

n− 1

∑
i 6=j

1 (yi 6 y) .

1Let G = 2F, then H(t,F,G) = (1 + t)F = cF and then by the invariance to scale

∂v (Ht,F,G) /∂ t|t=0 = lim
t↓0

v(cF) − v(F)

t
= lim
t↓0

0

t
= 0.

Moreover,
∂2v

(
Ht,F,∆y

)
/∂ t2

∣∣
t=0

= 0.
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The sensitivity curve (SC) is defined as

SC
(
yj, vn, Fn

)
≡ n ·

[
v (Fn) − v

(
F
(j)
n

)]
. (5)

The key property that links the IF to the SC is the following:

Proposition 1. Assume that v(F) is twice continuously differentiable with

respect to F and ψ(y) and φ(y, z) exist, and that v is invariant to scale (i.e.,

v(F) = v(cF) for c > 0). Then, SC
(
yj, vn, Fn

) p→ IF
(
yj, v, F

)
as n→∞.

Proof. See the Appendix A1.

Consequently, if the functional v is smooth enough, the SC can be used

instead of the analytical IF. Nasser and Alam (2006) show that Fréchet

differentiability is sufficient for consistency. Of course smoothness may be

considered a strong requirement. For example, for the case of quantiles

IF(y,Qτ, F) = (y − 1[y 6 Qτ(F)])/fy(Qτ(F)), where 1[.] is an indicator

function, fy(Qτ(F)) is the density of the marginal distribution of y evaluated

at the τ-quantile, andQτ(F) is the population τ-quantile of the unconditional

distribution of y. The indicator function makes it non twice differentiable.

The recentered sensitivity curve (RSC) is defined as:

RSC(yj, vn, Fn) ≡ vn + SC(yj, vn, Fn)

Trivially RSC
p→ RIF. Hence, our proposal is to replace RIF with RSC. An

then, to apply regression models to approximate distributional effects as in

Firpo et al. (2009) RIF regression method.

3 Computation of the SC via cubic splines

The RSC method described above requires to compute the functional v

n+1 times, that is, the original using the entire sample plus all of the leave-

one-out cases (i.e. n). This may be computationally cumbersome when

the sample size is large. In order to save computational time we propose to

compute the SC for a random sub-sample and then to interpolate to the rest

of the domain of y. A widely used method to perform this type of adjustment

is splines since they are implemented through a flexible functional form that

is linear in parameters. In particular we use the restricted cubic splines
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method to interpolate for the value of the RSC for the cases where it was

not computed.

Cubic splines are piecewise-polynomial line segments whose function val-

ues and first and second derivatives agree at the boundaries where they join.

The boundaries of these segments are called knots, and the fitted curve is

continuous and smooth at the knot boundaries (see Smith, 1979; Wegman

and Wright, 1983; Harrell, 2001, ch. 2). Let kj, i = 1, ...,K, be the knot

values defined in the support of y, then the equation of the cubic spline is

J(y) = β0 + β1y+ β2y
2 + β3y

3 +

K∑
j=1

γj(y− kj)
3
+,

where u+ := max(u, 0). A common problem with cubic spline is that it

fits poorly in the tails. One way to deal with this is by restricting J(y)

to be linear for y < k1 and y > kK. This requirement is satisfied when

β2 = β3 = 0,
∑K
j=1 γj = 0 and

∑K
j=1 γjkj = 0. Replacing this in the J(y)

equation, Durrleman and Simon (1989) show that the restricted cubic spline

is then

JR(y) = β0 + β1y+

K−2∑
j=1

γjhj(y),

where

hj(y) = (y− kj)
3
+ +

kK − kj
kK − kK−1

(y− kK−1)
3
+ +

kK−1 − kj
kK − kK−1

(y− kj)
3
+

for j = 1, ..,K − 2. Note that JR(y) is linear in parameters and therefore

can be estimated by ordinary least-squares (OLS) methods using y and the

{hj}
K−2
j=1 auxiliary variables.

The interpolation of the RSC function proceeds in three steps.

In the first step, we select the knots on the full sample of {yi}
n
i=1 and

create the auxiliar variables {h1i, ...,h(K−2)i}
n
i=1 that corresponds to the

restricted cubic spline method.

In the second step, we consider a random sample without replacement of

{yi,h1i, ...,h(K−2)i}
n
i=1 denoted by {yi∗ ,h1i∗ , ...,h(K−2)i∗}

n∗
i∗=1, where n∗ <

n. For this random sample we compute the RSC for each of the n∗ ob-

servations, say {S̃Ci∗}
n∗
i∗=1. This is the step that significantly reduces the
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computation time (see the simulations in the Monte Carlo section). More-

over, we estimate the parameters (β0,β1,γ1, ...,γK−2) by fitting an OLS

regression of S̃Ci∗ as a function of yi∗ ,h1i∗ , ...,h∗(K−2)i.

Finally, in the third step, we apply the estimated linear regression coef-

ficients to compute the cubic spline interpolation for the full sample,

ŜCi = β̂0 + β̂1yi + γ̂1h1i + ... + γ̂K−2h(K−2)i.

The ŜCi interpolated values are then used in the RSC method to compute

the effect of covariates on the given functional v(F) (see Orsini and Green-

land, 2011, and Newson, 2012, for a discussion of how this interpolation

works).

4 Monte Carlo experiments

In this section we run some numerical simulation exercises to evaluate the

computational and statistical performance of the proposed method. Through-

out this section we use the following baseline model,

Y = 20 + X+W,

where X ∼ Uniform(0, 1) is the observable covariate and W is the unob-

servable variable. Then we use the two alternative models:

1. Location-scale model: W = (1 + X)U, with U ∼ N(0, 1).

2. Location-bimodal model: W = (D(−4+U(2−X))+ (1−D)(4+Z(2−

X)))/5, with (U,Z,D) independent and with distributions U ∼ N(0, 1),

Z ∼ N(0, 1) and D Bernoulli with Pr(D = 1) = 0.50.

In all the exercises in this section we use STATA version 14.1 MP (64-bit)

installed on a computer with 16 GB of RAM, an Intel Core i7 processor and

Windows 10 operating system.

4.1 Finite sample performance

We use 1000 Monte Carlo simulations to evaluate the estimators’ perfor-

mance and compute Bias, Variance and MSE (mean-squared error). We

consider two sample sizes of n = 500 and n = 5000. To compute the
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Table 1: Variance

n = 500 n = 5000

RIF RSC RSC(sp) RIF RSC RSC(sp)

(i): location-scale model

Population 3.003 3.003 3.003 3.003 3.003 3.003
Mean 2.999 3.017 3.189 2.995 2.997 2.981
Bias -0.003 0.015 0.187 -0.008 -0.006 -0.021
Var 0.369 0.374 0.460 0.035 0.035 0.035

MSE 0.369 0.374 0.494 0.035 0.035 0.036

(ii): location-bimodal model

Population -0.120 -0.120 -0.120 -0.120 -0.120 -0.120
Mean -0.117 -0.118 -0.224 -0.119 -0.120 -0.131
Bias 0.003 0.002 -0.104 0.000 0.000 -0.011
Var 0.012 0.012 0.014 0.001 0.001 0.001

MSE 0.012 0.012 0.025 0.001 0.001 0.001
Note: own calculations using 1000 Monte Carlo simulations.

population parameter we use the DGPs with 10 million observations and

where we compute the numerical derivative of a change x ′ = x + ε, that

is, v(F)−v(F
′)

ε where F and F ′ are the induced distribution functions of the

corresponding DGP with X and X+ ε, respectively, and with ε = 0.0001.

We evaluate 3 different functionals: variance (Table 1), Gini coefficient

(Table 2) and DER polarization index with α = 0.5 (Tables 3 and 4). For

the variance and Gini we have an analytical formula of the IF. As such we

compute the RIF effect together with the RSC proposed method. For the

DER polarization we can only report the RSC effect (see the Appendix A2

for a description of this index). In all cases, for the RSC computation we re-

port the full sample RSC method and the splines approximation (RSC(sp)).

For the latter we use 100 points for n = 500 and 1000 for n = 5000.

Table 1 shows the performance of the proposed method for computing

the marginal effect on the variance. The simulations show that the proposed

RSC method has a similar performance to that of RIF, which is close to the

population parameter in terms of Bias and MSE. The spline approximation

has a weaker performance of n = 500 but it is similar to the full sample

RSC for n = 5000.

Table 2 shows the performance of the proposed method for computing
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Table 2: Gini

n = 500 n = 5000

RIF RSC RSC(sp) RIF RSC RSC(sp)

(i): location-scale model

Population 2.473 2.473 2.473 2.473 2.473 2.473
Mean 2.517 2.521 2.430 2.512 2.512 2.550
Bias 0.044 0.048 -0.043 0.039 0.039 0.077
Var 0.252 0.254 0.277 0.023 0.023 0.024

MSE 0.254 0.257 0.278 0.025 0.025 0.030

(ii): location-bimodal model

Population -0.322 -0.322 -0.322 -0.322 -0.322 -0.322
Mean -0.355 -0.358 -0.479 -0.359 -0.360 -0.342
Bias -0.033 -0.035 -0.156 -0.037 -0.037 -0.020
Var 0.031 0.031 0.036 0.003 0.003 0.003

MSE 0.032 0.032 0.061 0.004 0.004 0.003
Note: own calculations using 1000 Monte Carlo simulations.

the marginal effect on the Gini coefficient. The results are in line with those

for the variance: the RSC has a good performance relative to the RIF. For

this case, however, the RSP(sp) approximation is much closer to the full

sample RSC, and as such there is a minimum loss in efficiency for using the

Spline interpolation.

Finally we consider the analysis of the DER polarization index with

α = 0.5. As discussed above there is no analytical IF for this model, and

therefore the use of the RSC is the only alternative to evaluate the effect of

the covariates on the DER index. For this case, we also evaluate alternative

models for the RSC regression models. Given that we will not be able to

derive the functional form of the conditional model of the IF conditional

on X, we compute three different alternatives: linear (a + bX), quadratic

(a + bX + cX2) and cubic polynomials (a + bX + cX2 + dX3). Then we

compute the average partial effects, that is, b for the linear case, b + 2cX̄

for quadratic and b+ 2cX̄+ 3dX̄2 for the cubic polynomial case.

Table 3 shows the simulation results for the full-sample RSC compu-

tation and Table 4 for the Spline interpolation. The location-scale model

works similarly across methods, with large reduction in Bias and MSE when

the largest sample size is used. The location-bimodal model, however, shows
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Table 3: DER(α = 0.5) - RSC

n = 500 n = 5000

Linear Quadratic Cubic Linear Quadratic Cubic

(i): location-scale model

Population 2.153 2.153 2.153 2.153 2.153 2.153
Mean 2.249 2.249 2.193 2.226 2.226 2.146
Bias 0.096 0.096 0.040 0.073 0.073 -0.007
Var 0.217 0.219 0.687 0.020 0.019 0.066

MSE 0.226 0.228 0.689 0.025 0.025 0.066

(ii): location-bimodal model

Population 0.291 0.291 0.291 0.291 0.291 0.291
Mean 0.441 0.443 0.106 0.657 0.657 0.229
Bias 0.149 0.151 -0.186 0.366 0.366 -0.063
Var 0.190 0.186 0.605 0.024 0.023 0.082

MSE 0.212 0.209 0.640 0.158 0.157 0.086
Note: own calculations using 1000 Monte Carlo simulations.

considerable heterogeneity across models. In most cases the quadratic ap-

proximation seems to correctly capture the effect of a marginal effect of X

on the DER index. For the Splines, the sample size requirement seems to

be more demanding than in previous models.

4.2 Computing time

We analyze the goodness of fit of the spline interpolation by simulating

a random realization of n = 1000 using the location-scale model. Figure 1

shows the RSC computed with the complete sample together with the spline

interpolation RSC(sp) using a random 10% of the original sample. Although

the RSC of the DER(0.5) seems to be quite complicated to approximate

compared to those of Gini and variance, the adjustment of the spline seems

to be reasonable for the three indicators analyzed.

Table 5 shows the average computation time of the RSC and RSC(sp)

with different sample sizes. For this exercise we use 50 random samples

generated with the location-scale model. In all cases, a subsample of 10%

of the original sample was considered for the RSC(sp) interpolation.

As expected, for all sample sizes, the fastest RSC to compute is for the

variance, while the slowest is the DER(0.5) index, since it involves a non-
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Table 4: DER(α = 0.5) - RSC (sp)

n = 500 n = 5000

Linear Quadratic Cubic Linear Quadratic Cubic

(i): location-scale model

Population 2.153 2.153 2.153 2.153 2.153 2.153
Mean 2.004 2.004 1.970 2.271 2.271 2.202
Bias -0.149 -0.149 -0.183 0.118 0.119 0.049
Var 0.270 0.271 0.798 0.019 0.019 0.067

MSE 0.292 0.293 0.832 0.033 0.033 0.069

(ii): location-bimodal model

Population 0.291 0.291 0.291 0.291 0.291 0.291
Mean -0.971 -0.970 -1.152 0.343 0.343 0.084
Bias -1.263 -1.262 -1.443 0.052 0.052 -0.208
Var 0.162 0.161 0.484 0.027 0.026 0.076

MSE 1.756 1.753 2.568 0.029 0.029 0.119
Note: own calculations using 1000 Monte Carlo simulations.

Figure 1: Comparison of RSC and RSC(sp) fit

Notes: own calculations using a random draw with sample size n = 1000, n∗ = 100,
STATA 14.1 MP (64-bit), 16 GB of RAM, an Intel Core i7 processor and Windows 10

operating system.
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Table 5: Average computing time (seconds)

Index Sample RSC RSC(sp) RSC(sp)/RSC

500 6 n 6 1100 0.17 0.03 19.7%
Variance 1100 < n 6 1800 0.43 0.04 9.4%

1800 < n 6 2500 0.85 0.06 6.8%

500 6 n 6 1100 6.14 0.61 9.9%
Gini 1100 < n 6 1800 12.11 1.13 9.3%

1800 < n 6 2500 18.4 1.69 9.2%

500 6 n 6 1100 20.2 0.66 3.3%
DER(0.5) 1100 < n 6 1800 63 1.42 2.3%

1800 < n 6 2500 128 2.49 1.9%
Note: own calculations using 50 random draws with STATA 14.1 MP (64-bit), 16 GB of

RAM, an Intel Core i7 processor and Windows 10 operating system.

parametric estimate of a density. The time required to compute the complete

RSC increases markedly with the sample size; however, the estimate based

on the spline RSC(sp) increases only slightly. For example, for samples

between 500 and 1100 observations, computing the RSC of the variance using

splines represents 19.7% of the time it takes with the complete sample, while

with larger sample sizes this percentage represents just under 10%. This

saving in computational time is similar for the Gini index (9.5% average)

and definitely more noticeable for the DER (2.5% average). Figure 2 clearly

shows the relative computational advantage of using spline interpolation as

larger samples are used.

5 Empirical illustration

This section presents empirical applications. We first compare the empirical

performance of RIF and RSC for the variance and the Gini index, for which

the IF can be obtained analytically. Then we add the DER polarization

index (Duclos, Esteban, and Ray, 2004) where an explicit analytical closed-

form solution for IF is not available (see the Appendix A2 for a description

of this index).

We use an extract from the Merged Outgoing Rotation Group of the

Current Population Survey of 1983, 1984 and 1985 for males only. More

details about the data can be found in Lemieux (2006). The variable of in-
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Figure 2: Comparison of computing times

Note: own calculations using 50 random draws with STATA 14.1 MP (64-bit), 16 GB of
RAM, an Intel Core i7 processor and Windows 10 operating system.
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Table 6: Wage Inequality

Variance Gini
RIF RSC RSC(sp) RIF RSC RSC(sp)

Union -15.51*** -15.51*** -16.42*** -6.62*** -6.62*** -6.89***
(0.189) (0.162) (0.157) (0.055) (0.046) (0.046)

Education 1.48*** 1.48*** 1.22*** -0.49*** -0.49*** -0.56***
(0.030) (0.037) (0.035) (0.009) (0.010) (0.010)

Experience 0.15*** 0.15*** 0.10*** -0.10*** -0.10*** -0.11***
(0.007) (0.008) (0.008) (0.002) (0.002) (0.002)

Married -10.13*** -10.13*** -10.98*** -5.24*** -5.24*** -5.44***
(0.190) (0.185) (0.181) (0.056) (0.057) (0.057)

Non-white 0.91*** 0.91*** 1.33*** 1.53*** 1.53*** 1.65***
(0.262) (0.248) (0.246) (0.077) (0.079) (0.080)

Observations 266,956 266,956 266,956 266,956 266,953 266,956
Source: Extract from the Merged Outgoing Rotation Group of the Current Population Survey of

1983, 1984 and 1985. Notes: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, *
p < 0.1; (sp) indicates that the RSC was estimated using a cubic spline with a random

subsample of 1000 points; all estimates are multiplied by 100.

terest is Y, the hourly wage, and the covariates X are an indicator of whether

the individual is unionized, years of education, whether he is married, non-

white, his experience. We use a linear specification in all regressions but,

given the results of the previous section, in the case of the polarization in-

dex we add a more flexible specification that incorporates the squares and

non-trivial interactions of all the covariates.

Obtaining the RSC for each observation using the leave-one-out method

can be computationally intensive if n is too large since it requires a separate

calculation for each observation. Therefore, we also consider computing the

RSC by interpolating an estimated spline using 1000 random points in the

distribution of Y (this is denoted as RSC(sp)).

Table 6 shows results for the variance and the Gini index. Remarkably,

the differences between the RIF and RSC regressions are negligible. Inter-

estingly, the approximation obtained through the spline intrapolation seems

to be accurate, suggesting that it is a convenient computational strategy

relative to the leave-one-out method.

Table 7 also shows results for the DER polarization indexes, for which

the Gini columns correspond to a particular case (α = 0), and for proper

polarization we set α = 0.5 following Duclos et al. (2004). We stress the fact

that the IF function is not available for this case, hence we obtain results

based on the RSC solely. Note that in this case the coefficients of the linear
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Table 7: Wage Polarization: DER(α = 0.50)

RSC RSC(sp)
Linear Quad. Form. Linear Quad. Form.

Union -3.38*** -3.43*** -3.43*** -3.45***
(0.027) (0.030) (0.025) (0.027)

Education -0.35*** -0.35*** -0.40*** -0.39***
(0.006) (0.006) (0.005) (0.005)

Experience -0.07*** -0.06*** -0.08*** -0.06***
(0.001) (0.001) (0.001) (0.001)

Married -3.28*** -2.42*** -3.10*** -2.36***
(0.034) (0.035) (0.031) (0.033)

Non-white 0.99*** 1.04*** 0.96*** 1.01***
(0.050) (0.049) (0.044) (0.043)

Observations 266,956 266,956 266,956 266,956
Source: Extract from the Merged Outgoing Rotation Group of the Current Population Survey of

1983, 1984 and 1985. Notes: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, *
p < 0.1; (sp) indicates that the RSC was estimated using a cubic spline with a random

subsample of 1000 points; all estimates are multiplied by 100.

model give similar results to the average partial effects of the more flexible

model. Considering the results of the simulations in the previous section,

this is probably due to the large sample size since the RSC approximation to

the RIF is more precise. Again, the computationally convenient spline ap-

proximation produces similar results than when RSC is computed directly.

Even though a detailed study of the effects on inequality and polarization

exceeds the scope of this note, we remark that all factors reduce both mea-

sures (i.e., higher levels education predict less unconditionally inequality and

polarization), and that effects are stronger for inequality.
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Appendix A1

Proof of Proposition 1.

Using eq. (1) with Fn and F
(j)
n for the case of t = 1:

v (Fn) = v
(
F
(j)
n

)
+

∫
ψn(y)d

(
Fn − F

(j)
n

)
(y) + r

(
t̃, Fn, F

(j)
n

)
, (6)

for some t̃ ∈ [0, 1]. Note that ψn(y) = IF (y, v, Fn)
p→ ψ(y) by continuity of

the probability limit.

Now note that n
[
Fn − F

(j)
n

]
= 1

(
yj < y

)
+Op(1) because

Fn(y) =
1
n1
(
yj 6 y

)
+ n−1

n F
(j)
n (y),

Fn(y) − F
(j)
n (y) = 1

n1
(
yj 6 y

)
+ n−1

n F
(j)
n (y) − F

(j)
n (y),

Fn(y) − F
(j)
n (y) = 1

n1
(
yj 6 y

)
− 1
nF

(j)
n (y).

That is,

n
[
Fn(y) − F

(j)
n

]
= 1

(
yj 6 y

)
− an, (7)

with an = F
(j)
n (y)

p→ F(y) by the Law of Large Numbers.

Then,

n ·
[
v (Fn) − v

(
F
(j)
n

)]
=
∫
ψn(y)d

(
1
(
yj 6 y

)
− an

)
(y) + n · r

(
t̃, Fn, F

(j)
n

)
n ·
[
v (Fn) − v

(
F
(j)
n

)]
=
∫
ψn(y)d

(
1
(
yj 6 y

))
(y) −

∫
ψn(y)d (an) (y) + n · r

(
t̃, Fn, F

(j)
n

)
(8)

Using the fact that 1
(
yj 6 y

)
is the Dirac function, the first term of eq.

(8) is ∫
ψn(y)d

(
1
(
yj 6 y

))
(y) = ψn

(
yj
) p→ ψ

(
yj
)

.

Noting that an
p→ F(y) and ψn(y)

p→ ψ(y), by continuity of the proba-

bility limit, the second term of (8) becomes

plim

∫
ψn(y)d (an) (y) =

∫
ψ(y)dF(y) = 0,

because of property (i). Then,

plim

∫
ψ(y)d

(
1
(
yj 6 y

)
+ an

)
(y) =

∫
ψ(y)d

(
1
(
yj 6 y

))
(y) = ψ(y).
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It remains to study the third term in (8). From (3),

n · r
(
t̃, Fn, F

(j)
n

)
= n · t̃22

∫∫
ψ(y, z)d

(
Fn − F

(j)
n

)
(y)d

(
Fn − F

(j)
n

)
(z)

n · r
(
t̃, Fn, F

(j)
n

)
= 1
n ·

t̃2

2

∫∫
ψ(y, z)d

[
n
(
Fn − F

(j)
n

)]
(y)d

[
n
(
Fn − F

(j)
n

)]
(z)

for some t̃ ∈ [0, 1]. Then using (7) and property (ii),

plim

∫∫
φ(y, z)d

[
n
(
Fn − F

(j)
n

)]
(y)d

[
n
(
Fn − F

(j)
n

)]
(z) = φ

(
yj,yj

)
.

Then it follows that

plim
{
n · r

(
t̃, Fn, F

(j)
n

)}
=

(
plim

1

n

)
· t̃

2

2
φ
(
yj,yj

)
= 0.

Then, the result follows,

plim
v (Fn) − v

(
F
(j)
n

)
1/n

= ψ
(
yj
)
= IF

(
yj, v, F

)
. QED

Appendix A2: Polarization index

We motivate the case of a model where the IF is not available: the DER

polarization index (Duclos, Esteban, and Ray, 2004).

Polarization is an important welfare concept in economics and political

science. Intuitively, it measures the tension between individuals in a soci-

ety, that depends positively on how distant individuals are between groups

(alienation) and how close they are within a group (identification). From

this perspective, a standard measure of inequality like the Gini index focuses

on just the first component. Duclos et al. (2004) provide a full axiomatic

framework that leads to a logically coherent measure of polarization. For a

detailed empirical study on polarization for the case of Latin America and

the Caribbean, see Gasparini et al. (2008).

Let y1,y2, . . . ,yn be and iid sample of incomes, ordered from lowest to

highest. Duclos et al. (2004) propose the following empirical measure of

polarization:
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Pα =
1

n

n∑
i=1

f̂(yi)
αâ(yi)

where â(yi) = µ̂ + yi
(
n−1(2i− 1) − 1

)
− n−1

(
2
∑i−1
j=1 yj + yi

)
, µ̂ is the

sample mean and f̂(yi) is an estimate of the density of incomes. The param-

eter α is set exogenously and plays a key role in characterizing polarization.

As a matter of fact, when α = 0 polarization reduces to the Gini index (note

that for this particular case the IF is available). Larger values of α result

in the index giving relatively more importance to identification, that is, to

how close individuals are ‘surrounded’ by others of similar income. The ax-

iomatic approach of Duclos et al. (2004) imposes lower and upper bounds

to the values α may take in practice.
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