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Abstract 

Testing for causation—defined as the preceding impact of the past value(s) of one variable on 

the current value of another one when all other pertinent information is accounted for—is 

increasingly utilized in empirical research of the time-series data in different scientific 

disciplines. A relatively recent extension of this approach has been allowing for potential 

asymmetric impacts since it is harmonious with the way reality operates in many cases (Hatemi-

J, 2012). The current paper maintains that it is also important to account for the potential change 

in the parameters when asymmetric causation tests are conducted, as there exists a number of 

reasons for changing the potential causal connection between variables across time. The current 

paper extends therefore the static asymmetric causality tests by making them dynamic via the 

usage of subsamples. An application is also provided consistent with measurable definitions of 

economic or financial bad as well as good news and their potential causal interaction across time. 
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1. Introduction 

From cradle to grave, one of the most prevalent and persistent questions in life is figuring out 

what is the cause and what is the effect when certain pertinent events that take place are observed. 

This subject must have been one of the most inspirational and important issues since the dawn 

of humankind. Throughout the history, many philosophers have devoted their pondering to 

causality as an abstraction. Yet there is no common definition of causality and above all, there is 

no common or universally accepted approach for detecting or measuring causality. Since the 

pioneer notion of Wiener (1956) and the seminal contribution of Granger (1969), testing for the 

predictability impact of a variable on another one has increasingly gained popularity and 

practical usefulness in different fields when the variables are quantified across time. This 

approach is known as Granger causality in the literature and it describes a situation in which the 

past values of one variable (i.e. the cause variable) are statistically significant in an 

autoregressive regression model of another variable (i.e. the effect variable) when all other 

relevant information is also accounted for. The null hypothesis is defined as zero restrictions 

imposed on the parameters of the cause variable in the autoregressive model when the dependent 

variable is the potential effect variable. If the null hypothesis is not accepted empirically, it is 

taken as an empirical evidence for causality in the sense of Wiener-Granger.1 There have been 

several extensions of this method especially since the discovery of unit roots and stochastic 

trends, which is a common property of many time-series variables that quantify economic or 

financial processes across time. Granger (1986, 1988) as well as Engle and Granger (1987) 

suggested testing for causality via an error correction model if the variables are integrated. Toda 

and Yamamoto (1995) proposed a modified Wald (1939) test static in order to take into account 

the impact of unit roots when causality tests are conducted within the vector autoregressive 

(VAR) model by adding additional unrestricted lags. Hacker and Hatemi-J (2006, 2012) 

suggested bootstrapping with leverage adjustments in order to generate accurate critical values 

for the modified Wald test since the asymptotical ones are not precise when the desirable 

statistical assumptions for a good model are not satisfied according to the conducted Monte Carlo 

simulations by the authors. The bootstrap corrected tests appear to have better size and power 

properties compared to the asymptotic ones, especially in the small sample sizes.  

However, there are numerous reasons for the potential causal connection between the 

variables to have an asymmetric structure. It is commonly agreed in the literature that markets 

with asymmetric information prevail (based on the seminal contributions of Akerlof, 1970; 

                                                            
1 There exists alternative designs such as Sims (1972) and Geweke (1982).   
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Spence, 1973; and Stiglitz, 1974). People frequently react stronger to a negative change in 

contrast to a comparable positive one.2 There are also natural restrictions that can lead to the 

asymmetric causation phenomenon. For instance, there is a limit on the potential price decrease 

of any normal asset or commodity since the price cannot drop below zero. However, there is no 

restriction on the amount of the potential price increase. In fact, if the price decreases by a given 

percentage point and then increases again by the same percentage point; it will not end up with 

the initial price level but at a lower level. This is true even if the process occurs in the reverse 

order. There are also moral and/or legal limitations that can lead to an asymmetric behavior. For 

example, if a company manages to increase its profit by the P% at a given period, it is feasible 

and easy to expand the business by that percentage point. However, if the mentioned company 

experiences a loss by the P%, it is not that easy to implement an immediate contraction of the 

business operation by the P%. The contraction is usually less than the P% and it can take longer 

time to be realized compared to the corresponding expansion. It is naturally easier for the 

company to hire people than firing them. In the markets for many commodities, it can also be 

observed clearly that there is an inertia effect for the price decreases compared to the price 

increases. Among others, the fuel market can be mentioned. When the oil price increases, there 

seems to be an almost immediate price increase of the fuel prices and by the same proportion if 

not more. However, when the oil price decreases there is a lag in the price decrease of the fuel 

prices and the adjustment might not be implemented fully. This indicates that the fuel prices 

adjustments are asymmetric with regard to the oil price changes under the ceteris paribus 

condition. In order to account for these kind of potential asymmetric causation in the empirical 

research based on time-series data, Hatemi-J (2012) suggests implementing asymmetric causality 

tests that the author introduces. However, these asymmetric causality tests are static by nature.  

The objective of the current paper is to extend these asymmetric causality tests to a 

dynamic context by allowing for the underlying causal parameters to vary across time, which 

can be achieved by using subsamples. There are several advantages for using this dynamic 

parameter approach. One of the advantages of the time-varying parameter approach is that it 

takes into account the well-known Lucas (1976) critique, which is an essential issue from the 

policy-making point of view. Peoples’ preferences can change across time that result in a change 

in their behavior and thereby changing the economic or financial process. There are path-

breaking technological innovations and progresses that happen with time. Major organizational 

                                                            
2 According to Longin and Solnik (2001), Ang and Chen (2002), Hong and Zhou (2008) and Alvarez-Ramirez et al. 

(2009), among others, there is indeed an asymmetric behavior by the investors in the financial markets since they 

have a tendency to respond stronger to the negative news compared to the positive ones. 
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restructuring can take place across time. Unexpected major events, such as the current COVID-

19 pandemic, can occur. All these events can result in a change in the potential causal connection 

between the underlying variables in a model. Thus, a dynamic parameter model can be more 

informative and it can better present the way things operate in reality. From a correct model 

specification perspective also, the dynamic parameter approach can be preferred to the constant 

parameter approach in addition to being more informative. Since the dynamic testing of the 

potential causation connection is more informative than the static approach, it can shed light on 

the extent of the pertinent phenomenon known as the correlation risk in the financial literature. 

According to Meissner (2014) correlation risk is defined as the potential risk that the strength of 

the relationship between financial assets varies unfavorably across time. This issue can have 

crucial ramifications for investors, institutions and the policy makers.  

The subsequent definitions are utilized in this paper.  

Definition 1. A n-dimensional stochastic process (𝑥𝑡)𝑡=1,⋯ ,𝑇 measured across time is integrated 

of degree 1, signified as I(1), if it must be differenced once for becoming a stationary process. 

That is, xt    I(1) if ∆xt    I(0), where the denotation ∆ is the first difference operator. 

Definition 2. Define (𝜀𝑡)𝑡=1,⋯ ,𝑇 as a n-dimensional stochastic process. Thus, during any time 

period  𝑡 ∈ {1,⋯ , 𝑇}, the positive and negative shocks of this random variable εt (i.e. 𝜀𝑡
+ and 

𝜀𝑡
−) are identified as the following:  

𝜀𝑡
+ ≔ 𝑚𝑎𝑥(𝜀𝑡 , 0) ≔ (𝑚𝑎𝑥(𝜀1𝑡 , 0),⋯ ,𝑚𝑎𝑥(𝜀𝑛𝑡 , 0) )    (1) 

and  

𝜀𝑡
− ≔ 𝑚𝑖𝑛(𝜀𝑡 , 0) ≔ (𝑚𝑖𝑛(𝜀1𝑡 , 0),⋯ ,𝑚𝑖𝑛(𝜀𝑛𝑡 , 0) )    (2)  

The definition of the positive and negative shocks were suggested by Granger and Yoon (2002) 

for testing for hidden cointegration.3 

The rest of the paper is organized as follows. Section 2 introduces the methodology of 

the dynamic asymmetric causality testing. Section 3 provides an application of the potential 

causal impact of the oil prices on the world’s largest stock market accounting for rising and 

falling prices using both the static and the dynamic asymmetric causality tests. Conclusions are 

offered in the final section.  

 

                                                            
3 Hatemi-J (2020a) has extended this method for testing for hidden panel cointegration. For asymmetric panel 

causality tests see Hatemi-J (2020b). 
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2. Dynamic Asymmetric Causality Testing 

The implementation of the causality tests in the sense of Wiener-Granger is operational within 

the vector autoregressive (VAR) model of Sims (1980). The asymmetric version of this test 

method is introduced by Hatemi-J (2012).4 Consider the following two I(1) variables with 

deterministic trend parts:5 

 

𝑥1𝑡 = 𝑎 + 𝑏𝑡 + 𝑥1𝑡−1 + ε1𝑡 ,      (3) 

and 

𝑥2𝑡 = 𝑐 + 𝑑𝑡 + 𝑥2𝑡−1 + ε2𝑡 ,      (4) 

 

where a, b, c and d are parametric constants and t is the deterministic trend term. The positive 

and negative partial sums of the two variables can be recursively defined as the following based 

on the definitions of shocks presented in equations (1) and (2): 

 

𝑥1𝑡
+ : =

𝑎𝑡 + [
𝑡(𝑡 + 1)
2

] 𝑏 + 𝑥10

2
+∑ε1𝑖

+

𝑡

𝑖=1

 

          (5) 

𝑥1𝑡
− : =

𝑎𝑡 + [
𝑡(𝑡 + 1)
2

] 𝑏 + 𝑥10

2
+∑ε1𝑖

−

𝑡

𝑖=1

 

          (6) 

𝑥2𝑡
+ : =

𝑐𝑡 + [
𝑡(𝑡 + 1)
2

] 𝑑 + 𝑥20

2
+∑ε2𝑖

+

𝑡

𝑖=1

 

          (7) 

𝑥2𝑡
− : =

𝑐𝑡 + [
𝑡(𝑡 + 1)
2

] 𝑑 + 𝑥20

2
+∑ε2𝑖

−

𝑡

𝑖=1

 

          (8) 

                                                            
4 Bahmani-Oskooee et al. (2016) extend the test to the frequency domain. 
5 For the simplicity of expression we assume that n=2. However, it is straightforward to generalize the results. 
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Where x10 and x20 are the initial values. Note that the required conditions of having 𝑥1𝑡 = 𝑥1𝑡
+ +

𝑥1𝑡
−  and 𝑥2𝑡 = 𝑥2𝑡

+ + 𝑥2𝑡
−  are fulfilled.6 Interestingly, the values expressed in equations (5)-(8) 

have also economic or financial implications in terms of measuring good or bad news that can 

affect the markets. It should be mentioned that the issue of whether to have the deterministic 

trend parts in the data generating process for a given variable is an empirical issue. In some cases, 

there might be need for both a drift and a trend and in other cases, it might be sufficient with a 

drift without any trend. It is also possible to have no drift and no trend.  For the selection of the 

deterministic trend components, the procedure suggested by Hacker and Hatemi-J (2010) can be 

useful. 

  The asymmetric causality tests can be implemented via the vector autoregressive model 

of order p as introduced originally by Sims (1980), i.e. the VAR(p). Let us consider testing for 

the potential causality between the positive components of these two variables. Then, the vector 

consisting of the dependent variables is defined as 𝑥𝑡
+ = (𝑥1𝑡

+ , 𝑥2𝑡
+ ) and the following VAR(p) 

can be estimated based on this vector: 

 

𝑥𝑡
+ = 𝐵0

+ + 𝐵1
+𝑥𝑡−1

+ +⋯+ 𝐵𝑝
+𝑥𝑡−𝑝

+ + 𝐵𝑝+1
+ 𝑥𝑡−𝑝−1

+ + 𝑣𝑡
+      (9) 

 

where 𝐵0
+ is the 2×1 vector of intercepts, 𝐵𝑟

+ is a 2×2 matrix of parameters to be estimated for 

lag length r (r 1,..., p) and 𝑣𝑡
+ is a 2×1 vector of the error terms. An important issue before 

using the VAR(p) for drawing inference is to determine the optimal lag order p. This can be 

achieved, among others, by minimizing the information criterion suggested by Hatemi-J (2003), 

which is expressed as the following: 

 

𝐻𝐽𝐶 = ln (|Π̂𝑝
+
|) + 𝑝 (

𝑛2𝑙𝑛𝑇 + 2𝑛2 ln(𝑙𝑛𝑇)

2𝑇
) ,   𝑝 =  1, … , 𝑝max.                      (10) 

 

Where |Π̂𝑝
+
| is the determinant of the variance–covariance matrix of the error terms in the VAR 

model that is estimated based on the lag length p, ln is natural logarithm, n is the number of time-

series included in the VAR model and T is the full sample size used for estimating the parameters 

in that model.7 The lag order that results in the minimum value of the information criterion is to 

                                                            
6 For the proof of these results and for the transformation of I(2) and I(3) variables into the cumulative partial sums 

of negative and positive components see Hatemi-J and El-Khatib (2016). 
7 The Monte Carlo simulations conducted by Hatemi-J (2008) demonstrate clearly that the information criterion 

expressed in equation (10) is successful in selecting the optimal lag order when the VAR model is used for 
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be selected as the optimal lag order. It is also important that the off diagonal elements in the 

variance-covariance matrix are zero. Therefore, tests for multivariate autocorrelation need to be 

performed in order to verify this issue. The null hypothesis that the jth element of 𝑥𝑡
+ does not 

cause the kth element of 𝑥𝑡
+ can be tested via a Wald (1939) test statistic.8 The null hypothesis 

of non-causality can be formulated as the following: 

 

H0: The row k, column j element in 𝐵𝑟
+ equals zero for r  = 1,…, p.  (11) 

 

For a densely representation of the Wald test statistic, we need to make use of the following 

denotations:9 

𝑋+ : = (𝑥1
+, … . , 𝑥𝑇

+) as a (n×T) matrix, 𝐷+ : = (𝐵0
+, 𝐵1

+, … , 𝐵𝑝+1
+  ) as a (n×(1+n×(p+1))) matrix, 

𝑍𝑡
+: = [1, 𝑥𝑡

+, 𝑥𝑡−1
+ , … . , 𝑥𝑡−𝑝

+   ]
′
 as a ((1+n×(p+1))×1) matrix, 𝑍+ : = (𝑍0

+, … . , 𝑍𝑇−1
+ ) as a 

((1+n×((p+1)+1))×T) matrix and 𝑉+ = (𝑣1
+, … , 𝑣𝑇

+ as a (n×T) matrix. Via these denotations, we 

can express the VAR model and the Wald test statistic compactly as the following: 

𝑋+ = 𝐷+𝑍+ + 𝑉+                        (12) 

𝑊𝑎𝑙𝑑+ = (𝐶𝛽+)′ [𝐶 ((𝑍+
′
𝑍+)

−1
⊗ Π̂𝑢

+
) 𝐶′]

−1

(𝐶𝛽+)                                                       (13) 

The parameter matrix 𝐷+  is estimated via the multivariate least squares as the following: 

 

𝐷̂+ = 𝑋+𝑍+
′
(𝑍+𝑍+

′
)
−1
                                                                                                               (14)  

 

Note that 𝛽+ = 𝑣𝑒𝑐(𝐷̂+) and vec is the column-stacking operator. That is 

 

𝛽+ = 𝑣𝑒𝑐(𝐷̂+) = ((𝑍+𝑍+
′
)
−1
⊗ 𝐼𝑛) 𝑣𝑒𝑐(𝑋

+)                                                                   (15) 

 

The denotation ⊗ is the Kronecker product operator and C is a ((p+1)×n)×(1+n×(p+1)) 

indicator matrix that includes 1 elements for restricted parameters and 0 elements for the 

                                                            
forecasting purposes. In addition, the simulations show that this information criterion is robust to the ARCH effects 

and performs well when the variables in the VAR model are integrated. See also Mustafa and Hatemi-J (2021) for 

more information on this information criterion.  
8 It should be mentioned that the additional unrestricted lag has been added to the VAR model for taking into account 

the impact of one unit root consistent with the results of Toda and Yamamoto (1995). Multivariate tests for 

autocorrelation needs also to be implemented to make sure that the off diagonal elements in the variance and 

covariance matrix are zero. See Hatemi-J (2004) regarding multivariate tests for autocorrelation.  
9 It should be pointed out that this formulation requires that the p initial values for each variable in the VAR model 

are accessible. For the particulars on this requirement, see Lutkepohl (2005). 
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unrestricted ones under the null hypothesis. 𝐼𝑛 is a (n×n) identity matrix. Π̂𝑢
+

 represents the 

variance-covariance matrix of the unrestricted VAR model as expressed by equation (12), which 

can be estimated as the following: 

 

Π̂𝑢
+
=
𝑉𝑢
+̂′𝑉𝑢

+̂

𝑇 − 𝑞
                                                                                                                     (16) 

 

Note that the constant q represents the number of parameters that are estimated in each equation 

of the VAR model. By using the presented denotations, the null hypothesis of no causation might 

also be formulated as the following expression: 

.   

𝐻0: 𝐶𝛽
+ = 0                                                                                                                    (17) 

 

The Wald test statistic expressed in (13) that is used for testing the null hypothesis of 

non-causality as defined in (11) based on the estimated VAR model in equation (12) has the 

following distribution asymptotically:   

 

𝑊𝑎𝑙𝑑+
        𝑑           
→       𝜒𝑝

2                                                                                                         (18)  

 

This is the case if the assumption of normality is fulfilled. Thus, the Wald test statistic for testing 

for potential asymmetric causal impacts has a 𝜒2  distribution with the number of degrees of 

freedom equal to the number of restrictions under the null hypothesis of non-causality, which is 

equal to p in this particular case. This result holds for a corresponding VAR model for negative 

components or any other combinations also. For the proof, see Proposition 1 in Hatemi-J and El-

Khatib (2016).  

However, if the assumption of the normal distribution of the underlying data set is not 

fulfilled, the asymptotical critical values are not accurate and bootstrap simulations need to be 

performed in order to obtain accurate critical values. If the variance is not constant or if the 

ARCH effects prevail than the bootstrap simulations need to be conducted with leverage 

adjustments. The size and power properties of the test statistics based on the bootstrap simulation 

approach with leverage corrections has been investigated by Hacker and Hatemi-J (2006, 2012) 

via the Monte Carlo simulations. The simulation results provided by the mentioned authors show 

that the causality test statistic based on the leveraged bootstrapping has correct size and higher 
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power compared to a causality test based on the asymptotic distributions, especially when the 

sample size is small or when the assumption of normal distribution and constant variance of the 

error terms are not fulfilled.  

The bootstrap simulations can be conducted as the following. First, estimate the restricted 

model based on regression equation (12). The restricted model imposes the restrictions under the 

null hypothesis of non-causality. Second, generate the bootstrap data, i.e. 𝑋+
∗
, via the estimated 

parameters from the regression, the original data and the bootstrapped residuals. This means 

generating 𝑋+
∗
= 𝐷̂+𝑍+ + 𝑉+

∗
. Note that the bootstrapped residuals (i.e. 𝑉+

∗
) are created by T 

random draws with replacement from the modified residuals of the regression. Each of this 

random draw with replacement has the same likelihood, which is equal a probability of 1/T. The 

bootstrapped residuals need to be mean-adjusted in order to ensure that the residuals have zero 

expected value in each bootstrap sample. This is accomplished via subtracting the mean value of 

the bootstrap sample from each residual in that sample. Note that the residuals need to be adjusted 

by leverages in order to make sure that the variance is constant in each bootstrap sample. Next, 

repeat the bootstrap simulations 10000 times and estimate the Wald test each time.10 Use these 

test values in order to generate the bootstrap distribution of the test. The critical value at the  

significance level via the bootstrapping (denoted by *

c ) can be acquired by taking the ()th 

upper quantile of the distribution of the Wald test that is generated via the bootstrapping. The 

final step is to estimate the Wald test value based on the original data and compare it to the 

bootstrap critical value at the  level of significance. The null hypothesis of non-causation is 

rejected at the α significance level if the estimated Wald test value is higher than the *

c  (i.e. the 

bootstrap critical value at  level).  

In order to account for the possibility of the potential change in the asymmetric causal 

connection between the variables, these tests can be conducted using subsamples. A crucial issue 

within this context is to determine the minimum subsample size that is required for testing for 

the dynamic asymmetric causality. The following formula that is developed by Phillips et al. 

(2015) can be used for determining the smallest subsample size (S): 

 

𝑆 = [𝑇 (0.01 +
1.8

√𝑇
)]                                                                                                        (19) 

                                                            
10 For more information on leverage adjustments in the univariate cases see Davison and Hinkley (1999) and in the 

multivariate cases see Hacker and Hatemi-J (2006). For asymmetric panel causality tests see Hatemi-J (2020).  
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Where T is the original full sample size. Note that S needs to be rounded up.  

Two different approaches regarding the subsamples can be implemented for this purpose. 

The first one is the rolling window approach, which is based on repeated estimation of the model 

with subsample size of S each time and the window is moved forward by one observation each 

time. That is, we need to estimate the time varying causality for the following subsamples, where 

each number represents a point in the time: 

 

1, 2, 3,⋯ , 𝑆  

2, 3,4,⋯ , (𝑆 + 1)  

 3, 4, 5,⋯ , (𝑆 + 1), (𝑆 + 2) 

4, 5, 6,⋯ , (𝑆 + 1), (𝑆 + 2), ( 𝑆 + 3) 

⋮ 

(𝑇 − 𝑆 + 1), ( 𝑇 − 𝑆 + 2), (𝑇 − 𝑆 + 3),⋯ , (𝑇 − 𝑆 + 𝑆) 

 

This means that the first subsample consists of the range covering the first observation to the S 

observation. The next subsample removes the first observation from S and adds the one after S. 

This process continues until the full range is covered. For example, assume that T=10 and then 

we have S=6 based on equation (19) when S is rounded up.11 Thus, we have the following 

subsamples (where each number represents the corresponding time): 

 

1, 2, 3,⋯ , 𝑆 = 1, 2, 3, 4, 5, 6  

2, 3, 4,⋯ , (𝑆 + 1) = 2, 3, 4, 5, 6, 7  

3, 4, 5,⋯ , (𝑆 + 1), (𝑆 + 2) = 3, 4, 5, 6, 7, 8 

4, 5, 6,⋯ , (𝑆 + 1), (𝑆 + 2), (𝑆 + 3) = 4, 5, 6, 7, 8, 9 

                            (𝑇 − 𝑆 + 1), ( 𝑇 − 𝑆 + 2), (𝑇 − 𝑆 + 3),⋯ , (𝑇 − 𝑆 + 𝑆) = (10 − 6 +

1), ( 10 − 6 + 2), (10 − 6 + 3), (10 − 6 + 4), (10 − 6 + 5), (10 − 6 + 6) = 5, 6, 7, 8, 9, 10. 

 

The second method for determining the multiple subsamples is to start with S and 

recursively add an observation to S each time for obtaining the next subsample without removing 

any observation from the beginning. In this approach, the sample size increases by one 

                                                            
11 Obviously, the sample size needs to be bigger normally than 10 observations in the empirical analysis. Here a 

very small sample size is assumed for the sake of simplicity of the expression. 
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observation in each subsample until it covers the full range. That is, the size of the first subsample 

is equal to S and the size of the last one is equal to T. 

The next step is to calculate the Wald test statistic for each subsample and produce its 

bootstrap critical value at a given significance level. Then following ratio can be calculate for 

each subsample: 

 

𝑇𝑉𝑝𝐶𝑉 =
𝑊𝑎𝑙𝑑 𝑇𝑒𝑠𝑡 𝑉𝑎𝑙𝑢𝑒 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝐺𝑖𝑣𝑒𝑛 𝑆𝑢𝑏s𝑎𝑚𝑝𝑙𝑒

𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝐺𝑖𝑣𝑒𝑛 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 𝑎𝑛𝑑 𝑆𝑢𝑏s𝑎𝑚𝑝𝑙𝑒
 

                                                                                                                                                        (20) 

 

Where TVpCV signifies the test value per the critical value at a given significance level using a 

particular subsample. If this ratio is higher than one, it implies that the null hypothesis of no 

causality is rejected at the given significance level for that subsample. The 5% and the 10% 

significance levels can be considered. A graphical illustration of (20) for different subsamples 

can be informative to the investigator in order to detect the potential change of the asymmetric 

causal connection between the underlying variables in the model.  

 

An alternative method for estimating and testing the time-varying asymmetric causality tests is 

to make use of the Kalman (1960) filter within a multivariate setting. However, this method 

might not be operational if the dimension of the model is rather high and/or the lag order is large.   

 

3. An Application 

An application is provided for detecting the change of the potential causal impact of oil prices 

and the world’s largest financial market. Two indexes are used for this purpose. The first one is 

the total share prices for all shares for the US. The second index is the global price of Brent crude 

in US dollars per barrel. The frequency of the data is yearly and it covers the period 1990-2020. 

The source of the data is the FRED database, which is provided by the Federal Reserve Bank of 

St. Louis. Let us denote the stock price index by S and the oil price index by O. The aim of this 

application is to investigate whether the potential impact of rising or falling oil prices on the 

performance of the world’s largest stock market is time dependent or not. Interestingly, the US 

market is not only the largest market and its financial market is the most valuable in the word, 

the U is also the biggest oil producer in the world. These combinations might make the empirical 

results of this empirical application more useful and general.  
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The variables are expressed in the natural logarithm format. The unit root test results of 

the conducted Phillips-Perron test confirm that each variable is integrated of the first order.12   

Firs, the following linear regression is estimated via the OLS technique for the stock price index 

(i.e. 𝑥1𝑡 = 𝑙𝑛𝑆𝑡): 

 

(𝑙𝑛𝑆𝑡 − 𝑙𝑛𝑆𝑡−1) = 𝑎 + 𝑏𝑡 + ε1𝑡 ,      (21) 

 

Next, the residuals of the above regression are estimated. That is  

 

ε̂1𝑡 = (𝑙𝑛𝑆𝑡 − 𝑙𝑛𝑆𝑡−1) − 𝑎̂ − 𝑏̂𝑡. 

 

Note that the circumflex implies the estimated value. The positive and negative shocks are 

measured as the following based on the definitions presented in equations (1) and (2): 

 

𝜀1̂𝑡
+ ≔ 𝑚𝑎𝑥(𝜀1̂𝑡 , 0)                       and                    𝜀1̂𝑡

− ≔ 𝑚𝑖𝑛(𝜀1̂𝑡 , 0) 

 

The positive and negative partial sums for this variable are defined as the following based on the 

results presented in equations (5) and (6): 

 

(𝑙𝑛𝑆𝑡)
+: =

𝑎̂𝑡 + [
𝑡(𝑡 + 1)
2

] 𝑏̂ + (𝑙𝑛𝑆0)

2
+∑ε̂1𝑖

+

𝑡

𝑖=1

 

          (22) 

(𝑙𝑛𝑆𝑡)
−: =

𝑎̂𝑡 + [
𝑡(𝑡 + 1)
2

] 𝑏̂ + (𝑙𝑛𝑆0)

2
+∑ε̂1𝑖

−

𝑡

𝑖=1

 

          (23) 

Where 𝑙𝑛𝑆0 signifies the initial value of the stock price index in the logarithmic format, which 

is assumed to be zero in this case. Note that the equivalency condition 𝑙𝑛𝑆𝑡 = (𝑙𝑛𝑆𝑡)
+ + (𝑙𝑛𝑆𝑡)

− 

is fulfilled. It should be mentioned that the value expressed by equation (22) represents the good 

news with regard to the stock market while the value expressed by equation (23) signifies the 

                                                            
12 The unit root test results are not reported but they are available on request.  
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bad news pertaining to the same market. The oil price index can also be transformed into 

cumulative partial sums of positive and negative components in an analogous way. Note that a 

drift and a trend was included in the equation of each variable since it seems to be needed based 

on the graphs presented in Figure 1.  

The data set can be transformed by a number of user-friendly statistical software 

components such as Hatemi-J (2014) in Gauss, Hatemi-J and Mustafa (2016a) in Octave, 

Hatemi-J and Mustafa (2016b) in Visual Basic Applications (VBA) and El-Khatib and Hatemi-

J (2017) in C++.13 The dynamic asymmetric causality tests based on bootstrap simulations are 

conducted by statistical software component created by Hatemi-J and Mustafa (2021).  

Prior to implementing causality tests, diagnostic tests were implemented. the results of 

these tests are presented in Table 1, which indicate that the assumption of normality is not 

fulfilled and the conditional variance is not constant in most cases. Thus, making use of the 

bootstrap simulations with leverage adjustments is necessary in order to produce reliable critical 

values. This is particularly the case for subsamples since the degrees of freedom are lower.  

Both symmetric and the asymmetric causality tests are implemented in a dynamic setting. 

The results for the symmetric asymmetric causality tests are presented in Tables 2 and 3 based 

on the 5% and the 10% significance levels. Based on these results, it can be inferred that the oil 

price does not cause the stock market price index not even at the 10% significance level. The 

results are also robust to the choice of the subsamples because the same results are obtained 

during all subsamples. An implication of this empirical finding is that the market is 

informationally efficient in the semi-strong form with regard to the oil prices as defined by Fama 

(1970). However, when the tests for dynamic asymmetric causality are implemented, the results 

show that an oil price decrease does not cause a decrease in the stock market price index and 

these results are the same across subsamples even at the 10% significance level (see Tables 5 

and 7). Conversely, the null hypothesis that an oil price increase does not cause an increase in 

the stock market price index is rejected during four subsamples. It is interesting that by using 

only three fewer observations, the null hypothesis of non-causality would be rejected at the 10% 

significance in contrast to the result for the entire sample period that does not reject the 

underlying null hypothesis (see Figure 2 and Table 4).   

  

                                                            
13 Note that the Gauss software component allows only for the stochastic trend, while the other software components 

allow for both stochastic and deterministic trends when the underlying variable is transformed into positive and 

negative parts.  
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Figure 1. The Time Plot of the Variables along with the Cumulative Partial Components for 

Positive and Negative Parts. 
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The notation lnOt is representing the oil price index and lnSt is the US stock market price index for all shares. The 

corresponding sign indicates the positive and negative components. 
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Figure 2. The Time Plot of the Causality test Results for the Positive Components at the 10% 

significance level. 

 

 

1. Conclusions 

Tests for causality in the Wiener-Granger sense are regularly used in empirical research of the 

time series data in different scientific disciplines. A popular extension of this approach is the 

asymmetric casualty testing approach as developed by Hatemi-J (2012). However, this approach 

is static by nature. A pertinent issue within this context is whether the potential asymmetric 

causal impacts between the underlying variables in a model are steady or not over the selected 

time span. In order to throw light on this issue, the current paper suggests implementing 

asymmetric causality tests across time so as to see whether the potential asymmetric causal 

impact is time depend or not. It is shown how this can be achieved by using subsamples via two 

different approaches.  

An application is provided in order to investigate the potential causal connection of the 

oil prices with the stock prices of the world’s largest financial market within a time-varying 

setting. The results of the dynamic symmetric causality tests show that the oil prices do not cause 

the market price index regardless of the subsample size. However, when the dynamic asymmetric 

causality tests are implemented, the results show that positive oil price changes cause a positive 

price change in the stock market during certain subsamples. In fact, if only three fewer 

observations are used compared to the full sample size the results show that there is causality 
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from the oil price increase on the stock market price increase. Conversely, if the full sample size 

is used (i.e. only three more degrees of freedom), no causality is found. This shows that indeed 

it can be important to make use of the dynamic causality tests in order to see whether the causality 

result is robust or not across time.  

It should be pointed out that an alternative method for estimating and testing the time-

varying asymmetric causality tests is to make use of the Kalman (1960) filter within a 

multivariate setting. However, this method might not be operational if the dimension of the VAR 

model is rather high and/or the lag order is large.  

The time-varying asymmetric causality tests results can shed light on whether the causal 

connection between the variables of interest is general or time dependent. This has important 

practical implications. If the causal connection changes across time then the decision or policy 

based on this causal impact needs to be time dependent also. This is the case because a static 

strategy is likely to be inefficient within a dynamic environment.  

At the end, the following English proverb that has been quoted by Wiener (1956) says it 

all.  

"For want of a nail, the shoe was lost; 

For want of a shoe, the horse was lost; 

For want of a horse, the rider was lost; 

For want of a rider, the battle was lost; 

For want of a battle, the kingdom was lost!" 

 

References 

Akerlof G. (1970) The Market for Lemons: Quality Uncertainty and the Market Mechanism, 

Quarterly Journal of Economics, 84, 485-500. 

Ang A. and Chen J. (2002) Asymmetric correlations of equity portfolios, Journal of Financial 

Economics, 63, 443-494. 

Bahmani-Oskooee M., Chang T. and Ranjbarc O. (2016) Asymmetric causality using frequency 

domain and time-frequency domain (wavelet) approaches, Economic Modelling, 56, 66-78. 

Davison, A.C. and Hinkley, D.V. (1999) Bootstrap methods and their application. Cambridge, 

UK: Cambridge University Press. 

El-Khatib Y. and Hatemi-J A. (2017) ASYM_CAUS: C++ Module for Transforming an 

Integrated Variable with Deterministic Trend Parts into Negative and Positive Cumulative 



17 
 

Partial Sums, Statistical Software Components CPP001, Boston College Department of 

Economics. Available online: (https://ideas.repec.org/c/boc/bocode/cpp001.html). 

Fama E.F. (1970) Efficient Capital Markets: A Review of Theory and Empirical Work, Journal 

of Finance, 25(2), 383-417. 

Geweke J. (1982) Measurement of Linear Dependence and Feedback between Multiple Time 

Series, Journal of American Statistical Association, 77, 304–324. 

Granger C.W. (1969) Investigating Causal Relations by Econometric Models and Cross-spectral 

methods, Econometrica, 37, 424-439. 

Granger, C.W. (1986) Developments in the Study of Cointegrated Economic Variables, Oxford 

Bulletin of Economics and Statistics, 48(3), 213-228. 

Granger, C.W. (1988) Some Recent Development in a Concept of Causality, Journal of 

Econometrics, 39(1-2), 199-211. 

Granger, C.W. and Yoon G. (2002) Hidden Cointegration. Department of Economics Working 

Paper. University of California. San Diego. 

Hacker S. and Hatemi-J A. (2005) A multivariate test for ARCH effects. Applied Economics 

Letters, 12(7), 411−417. 

Hacker S. and Hatemi-J A. (2006) Tests for Causality between Integrated Variables using 

Asymptotic and Bootstrap Distributions: Theory and Application, Applied Economics, 

38(13), 1489-1500. 

Hacker S. and Hatemi-J A. (2009) MV-ARCH: GAUSS module to implement the multivariate 

ARCH test, Statistical Software Components, Nr. G00009, Boston College Department of 

Economics. Available online. (https://ideas.repec.org/c/boc/bocode/g00009.html). 

Hacker S. and Hatemi-J A. (2010) The Properties of Procedures Dealing with Uncertainty about 

Intercept and Deterministic Trend in Unit Root Testing, Working Paper Series in Economics 

and Institutions of Innovation 214, Royal Institute of Technology, CESIS - Centre of 

Excellence for Science and Innovation Studies, Stockholm. 

Hacker S. and Hatemi-J A. (2012) A Bootstrap Test for Causality with Endogenous Lag Length 

Choice: Theory and Application in Finance, Journal Economic Studies, 39(2), 144-160. 

Hatemi-J A. (2003) A new method to choose optimal lag order in stable and unstable VAR 

models, Applied Economics Letters, 10(3), 135-137.  

Hatemi-J A. (2004) Multivariate tests for autocorrelation in the stable and unstable VAR models, 

21, Economic Modelling, 661-683. 

Hatemi-J A. (2008) Forecasting properties of a new method to choose optimal lag order in stable 

and unstable VAR models, Applied Economics Letters, 15(4), 239-243.  

https://ideas.repec.org/c/boc/bocode/cpp001.html
https://ideas.repec.org/c/boc/bocode/cpp001.html
http://ideas.repec.org/c/boc/bocode/g00009.html
http://ideas.repec.org/c/boc/bocode/g00009.html
http://ideas.repec.org/s/boc/bocode.html
https://ideas.repec.org/c/boc/bocode/g00009.html


18 
 

Hatemi-J A. (2012) Asymmetric Causality Tests with an Application, Empirical Economics, 

43(1), 447–456. 

Hatemi-J A. (2014) ASCOMP: GAUSS Module to Transform Data into Cumulative Positive and 

Negative Components, Statistical Software Components G00015, Boston College 

Department of Economics. Available online: 

      (https://ideas.repec.org/c/boc/bocode/g00015.html). 

Hatemi-J A. (2020a) Hidden Panel Cointegration, Journal of King Saud University-Science, 

32(1), 507-510. 

Hatemi-J A. (2020b) Asymmetric Panel Causality Tests with an Application to the Impact of 

Fiscal Policy on Economic Performance in Scandinavia, Economia Internazionale / 

International Economics, 73(3), 389-404. 

Hatemi-J A. and El-Khatib Y. (2016) An Extension of the Asymmetric Causality Tests for 

Dealing with Deterministic Trend Components, Applied Economics, 48(42), 4033-4041. 

Hatemi-J A. and Mustafa A. (2016a) TDICPS: OCTAVE Module to Transform an Integrated 

Variable into Cumulative Partial Sums for Negative and Positive Components with 

Deterministic Trend Parts, Statistical Software Components, Nr. OCT001, Boston College 

Department of Economics. Available online.  

      (https://ideas.repec.org/c/boc/bocode/oct001.html). 

Hatemi-J A. and Mustafa, A. (2016b) A MS-Excel Module to Transform an Integrated Variable 

into Cumulative Partial Sums for Negative and Positive Components with and without 

Deterministic Trend Parts, MPRA Paper 73813, University Library of Munich, Germany. 

Hong Y. and Zhou G. (2008) Asymmetries in stock returns: statistical test and economic 

evaluation, Review of Financial Studies, 20, 1547–1581. 

Kalman R.E. (1960) A New Approach to Linear Filtering and Prediction Problems, Journal of 

Basic Engineering, 82, 35–45. 

Longin F. and Solnik B. (2001) Extreme correlation of international equity markets, Journal of 

Finance, 56, 649-676. 

Lucas, R.E. (1976) Econometric Policy Evaluation: A Critique. In Brunner, K.; Meltzer, A. 

(eds.). The Phillips Curve and Labor Markets. Carnegie-Rochester Conference Series on 

Public Policy. 1. New York: American Elsevier, 19–46. 

Lutkepohl H. (2005) New Introduction to Multiple Time Series Analysis. Springer.  

Meissner G (2014) Correlation Risk Modelling and Management, Wiley Financial Series, Wiley. 

https://ideas.repec.org/c/boc/bocode/g00015.html
https://ideas.repec.org/c/boc/bocode/g00015.html
http://ideas.repec.org/s/boc/bocode.html
https://ideas.repec.org/c/boc/bocode/oct001.html


19 
 

Mustafa A. and Hatemi-J A. (2021) A VBA Module Simulation for Finding Optimal Lag Order 

in Time Series Models and Its Use on Teaching Financial Data Computation, Applied 

Computing and Informatics, forthcoming. 

Phillips P.C., Shi S. and Yu, J., (2015) Testing for multiple bubbles: historical episodes of 

exuberance and collapse in the S&P 500, International Economic Review, 56(4), 1043–1078. 

Sims C.A. (1972) Money, Income and Causality, American Economic Review, 62, 540-552. 

Sims C.A. (1980) Macroeconomics and Reality, Econometrica, 48, 1-48. 

Toda H.Y. and Yamamoto T. (1995) Statistical Inference in Vector Autoregressions with 

Possibly Integrated Processes, Journal of Econometrics, 66, 225-250. 

Spence M. (1973) Job Market Signalling, Quarterly Journal of Economics, 87, 355-374. 

Stiglitz J. (1974) Incentives and Risk Sharing in Sharecropping, Review of Economic Studies, 

41, 219-255. 

Wald A. (1939) Contributions to the Theory of Statistical Estimation and Testing Hypotheses, 

Annals of Mathematical Statistics, 10(4), 299–326. 

Westerlund J. (2007) Testing for Error Correction in Panel Data. Oxford Bulletin of Economics 

and Statistics, 69, 709-748. 

Wiener N. (1956) The Theory of Prediction. In Modern Mathematics for Engineers, vol. 1 (ed. 

E. F. Beckenbach). New York: McGraw-Hill.  

 

 

  



20 
 

Appendix of Tables 

 

Table 1. Test Results for Multivariate Normality and Multivariate ARCH in the VAR Model. 

Variables in the 

Model 

The P-value of the 

Multivariate 

Normality Test 

The P-value of the 

Multivariate 

ARCH test 

[𝑙𝑛𝑆𝑡 , 𝑙𝑛𝑂𝑡] 0.0814 0.3743 

[(𝑙𝑛𝑆𝑡)
+, (𝑙𝑛𝑂𝑡)

+] 0.5555 0.0028 

[(𝑙𝑛𝑆𝑡)
−, (𝑙𝑛𝑂𝑡)

−] 0.0087 0.0150 

Notes: 

1. lnOt signifies the oil price index and lnSt is the US stock price index for all shares.. The vector  
[(𝑙𝑛𝑆𝑡)

+, (𝑙𝑛𝑂𝑡)
+] denotes the cumulative partial sum of the positive changes and the vector  

[(𝑙𝑛𝑆𝑡)
−, (𝑙𝑛𝑂𝑡)

−] indicates the cumulative partial sum of the negative changes. 

2. The multivariate test of Doornik and Hansen (2008) was implemented for testing the null hypothesis of 

multivariate normality in the residuals in each VAR model.  

3. The multivariate test of Hacker and Hatemi-J (2005) was conducted for testing the null hypothesis of no 

multivariate ARCH (1).  
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Table 2: Dynamic Symmetric Causality Test Results at the 5% Significance Level. 

(H0: The Oil Price Does Not Cause the Stock Market Price Index.) 

SSP Test Value 5% Bootstrap CV TVpCV

---------------------------------------------------------------------------------------------

1 1.788 572.528 0

2 1.431 52.787 0.034

3 0.832 20.977 0.068

4 0.863 13.312 0.062

5 0.112 10.484 0.082

6 0.317 4.592 0.024

7 0.365 5.385 0.059

8 0.429 5.135 0.071

9 0.239 4.678 0.092

10 0.525 4.502 0.053

11 0.5 4.76 0.11

12 0.538 4.054 0.123

13 0.642 4.561 0.118

14 0.757 4.606 0.139

15 0.591 4.859 0.156

16 0.281 4.211 0.14

17 0.623 3.68 0.076

18 0.635 4.571 0.136

19 0.638 4.252 0.149

20 0.627 4.403 0.145

21 0.627 4.129 0.152  

DENOTATIONS 

------------------------ 

SSP: The Subsample Period. 

CV: The Critical Value. 

TVpCV: The Test Value per the Critical Value 

TVpCV = (Test Value) / (Bootstrap Critical Value at the Given Significance Level) 

If the value of TVpCV > 1, it implies that the null hypothesis of no causality is rejected at the given significance 

level. 
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Table 3: Dynamic Symmetric Causality Test Results at the 10% Significance Level. 

(H0: The Oil Price Does Not Cause the Stock Market). 

SSP Test Value 10% Bootstrap CV TVpCV 

------------------------------------------------------------------------------------------ 

1 0.187 139.42 0.001 

2 1.788 22.105 0.081 

3 1.431 10.186 0.14 

4 0.832 8.851 0.094 

5 0.863 7.811 0.11 

6 0.112 2.957 0.038 

7 0.317 3.574 0.089 

8 0.365 3.231 0.113 

9 0.429 3.188 0.135 

10 0.239 3.043 0.079 

11 0.525 3.011 0.174 

12 0.5 2.876 0.174 

13 0.538 3.083 0.174 

14 0.642 2.95 0.218 

15 0.757 3.218 0.235 

16 0.591 2.835 0.209 

17 0.281 2.623 0.107 

18 0.623 3.04 0.205 

19 0.635 2.894 0.219 

20 0.638 2.981 0.214 

21 0.627 3.05 0.206 
DENOTATIONS 

------------------------ 

SSP: The Subsample Period. 

CV: The Critical Value. 

TVpCV: The Test Value per the Critical Value 

TVpCV = (Test Value) / (Bootstrap Critical Value at the Given Significance Level) 

If the value of TVpCV > 1, it implies that the null hypothesis of no causality is rejected at the given significance 

level. 
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Table 4: Dynamic Asymmetric Causality Test Results att the 5% Significance Level. 

(H0: An Oil Price Increase Does Not Cause an Increase in the Stock Market.) 

SSP Test Value 5% Bootstrap CV TVpCV 

------------------------------------------------------------------------------------------ 

1 0 0.157 0 

2 0 0 0 

3 0.003 0.039 0.072 

4 0 16.548 0 

5 5.292 12.61 0.42 

6 0.838 11.836 0.071 

7 2.89 8.299 0.348 

8 1.052 5.009 0.21 

9 1.124 4.334 0.259 

10 10.014 8.446 1.186 

11 2.309 4.543 0.508 

12 3.688 7.523 0.49 

13 6.353 7.967 0.797 

14 9.888 7.387 1.339 

15 11.778 7.529 1.564 

16 2.607 5.282 0.494 

17 7.435 7.514 0.989 

18 2.136 4.334 0.493 

19 1.279 4.311 0.297 

20 1.288 4.536 0.284 

    
DENOTATIONS 

------------------------ 

SSP: The Subsample Period. 

CV: The Critical Value. 

TVpCV: The Test Value per the Critical Value 

TVpCV = (Test Value) / (Bootstrap Critical Value at the Given Significance Level) 

If the value of TVpCV > 1, it implies that the null hypothesis of no causality is rejected at the given significance 

level. 
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Table 5: Dynamic Asymmetric Causality Test Results at the 10% Significance Level. 

(H0: An Oil Price Increase Does Not Cause an Increase in the Stock Market.) 

SSP Test Value 10% Bootstrap CV TVpCV 

------------------------------------------------------------------------------------------ 

1 0 0.104 0 

2 0 0 0.001 

3 0.003 0.01 0.287 

4 0 10.351 0 

5 5.292 8.517 0.621 

6 0.838 7.86 0.107 

7 2.89 5.562 0.52 

8 1.052 3.335 0.315 

9 1.124 2.905 0.387 

10 10.014 5.873 1.705 

11 2.309 3.245 0.712 

12 3.688 5.594 0.659 

13 6.353 5.749 1.105 

14 9.888 5.188 1.906 

15 11.778 5.392 2.184 

16 2.607 3.074 0.848 

17 7.435 5.378 1.382 

18 2.136 3.2 0.667 

19 1.279 2.965 0.432 

20 1.288 3.085 0.417 

    
DENOTATIONS 

------------------------ 

SSP: The Subsample Period. 

CV: The Critical Value. 

TVpCV: The Test Value per the Critical Value 

TVpCV = (Test Value) / (Bootstrap Critical Value at the Given Significance Level) 

If the value of TVpCV > 1, it implies that the null hypothesis of no causality is rejected at the given significance 

level. 
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Table 6: Dynamic Asymmetric Causality Test Results at the 5% Significance Level. 

(H0: An Oil Price Decrease Does Not Cause a Decrease in the Stock Market.) 

SSP Test Value 10% Bootstrap CV TVpCV 

------------------------------------------------------------------------------------------ 

1 40.802 415.432 0.098 

2 1.021 34.228 0.03 

3 1.001 19.468 0.051 

4 1.245 14.706 0.085 

5 0.44 11.328 0.039 

6 0.525 9.4 0.056 

7 0.616 10.372 0.059 

8 0.036 5.526 0.007 

9 0 5.221 0 

10 0.353 4.948 0.071 

11 0.362 4.86 0.075 

12 0.373 4.692 0.08 

13 0.382 4.387 0.087 

14 0.387 4.717 0.082 

15 0.372 4.664 0.08 

16 0.081 4.374 0.019 

17 0.085 4.338 0.02 

18 0.087 5.029 0.017 

19 0.084 4.757 0.018 

20 0.078 4.499 0.017 

        
DENOTATIONS 

------------------------ 

SSP: The Subsample Period. 

CV: The Critical Value. 

TVpCV: The Test Value per the Critical Value 

TVpCV = (Test Value) / (Bootstrap Critical Value at the Given Significance Level) 

If the value of TVpCV > 1, it implies that the null hypothesis of no causality is rejected at the given significance 

level. 

 

  



26 
 

Table 7: Dynamic Asymmetric Causality Test Results at the 10% Significance Level. 

(H0: An Oil Price Decrease Does Not Cause a Decrease in the Stock Market.) 

SSP Test Value 10% Bootstrap CV TVpCV 

------------------------------------------------------------------------------------------ 

1 40.802 93.964 0.434 

2 1.021 19.269 0.053 

3 1.001 10.783 0.093 

4 1.245 9.204 0.135 

5 0.44 7.935 0.055 

6 0.525 6.316 0.083 

7 0.616 6.836 0.09 

8 0.036 3.601 0.01 

9 0 3.339 0 

10 0.353 3.275 0.108 

11 0.362 3.048 0.119 

12 0.373 3.248 0.115 

13 0.382 3.076 0.124 

14 0.387 3.199 0.121 

15 0.372 2.938 0.127 

16 0.081 2.862 0.028 

17 0.085 2.784 0.031 

18 0.087 3.205 0.027 

19 0.084 2.884 0.029 

20 0.078 3.066 0.025 

        
DENOTATIONS 

------------------------ 

SSP: The Subsample Period. 

CV: The Critical Value. 

TVpCV: The Test Value per the Critical Value 

TVpCV = (Test Value) / (Bootstrap Critical Value at the Given Significance Level) 

If the value of TVpCV > 1, it implies that the null hypothesis of no causality is rejected at the given significance 

level. 

 

 


