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Abstract

Recent work on policy learning from observational data has highlighted
the importance of efficient policy evaluation and has proposed reductions to
weighted (cost-sensitive) classification. But, efficient policy evaluation need
not yield efficient estimation of policy parameters. We consider the esti-
mation problem given by a weighted surrogate-loss classification reduction
of policy learning with any score function, either direct, inverse-propensity
weighted, or doubly robust. We show that, under a correct specification
assumption, the weighted classification formulation need not be efficient for
policy parameters. We draw a contrast to actual (possibly weighted) binary
classification, where correct specification implies a parametric model, while
for policy learning it only implies a semiparametric model. In light of this,
we instead propose an estimation approach based on generalized method
of moments, which is efficient for the policy parameters. We propose
a particular method based on recent developments on solving moment
problems using neural networks and demonstrate the efficiency and regret
benefits of this method empirically.

1 Introduction

Policy learning from observational data is an important but challenging problem
because it requires reasoning about the effects of interventions not observed in the
data. For example, if we wish to learn an improved policy for medical treatment
assignment based on observational data from electronic health records, we must
take care to consider potential confounding: since healthier patients who were
already predisposed to positive outcomes were likely to have historically been
assigned less invasive treatments, naive approaches may incorrectly infer that a
policy of always assigning less invasive treatments will obtain better outcomes.

Various recent work has recently tackled this problem, known as policy learn-
ing from observational (or, off-policy) data, by optimizing causally-grounded
estimates of policy value such as inverse-propensity weighting (IPW), doubly



robust (DR) estimates, or similar (Qian & Murphy, 2011; Beygelzimer & Lang;
[ford, [2009; Kitagawa & Tetenov], 2018}, [Swaminathan & Joachims) [2015; [Zhao
et all [Zhou et all 2017} [Jiang et al., 2019; Kallus & Zhoul,
2018} [2017). In particular, [Athey & Wager| (2017); [Zhou et al] (2017), among
others, highlight the importance of using efficient estimates of policy value as
optimization objectives, i.e., having minimal asymptotic mean-squared error
(MSE). Examples of efficient estimators are direct modeling or IPW when out-
come functions or propensities are sufficiently smooth (Hirano et al., [2003} [Hahn,
11998), or DR leveraging cross-fitting (Chernozhukov et al., [2018) in more general
non-parametric settings.

Regardless of which of the three estimates one uses, the resulting optimization
problem amounts to a difficult binary optimization problem. Therefore many
of the above leverage a reduction of this problem to weighted classification (for
two actions; cost-sensitive classification more generally) and leverage tractable
convex formulations that use surrogate loss functions for the zero-one loss, such
as, for example, hinge loss (Zhao et al., 2012; Zhou et al., [2017, which yields
a weighted SVM) and logistic loss (Jiang et al., 2019, which yields a weighted
logistic regression). The recently proposed entropy learning approach of
is particularly appealing, since the logistic regression-based surrogate
loss is smooth and therefore allows for statistical inference on the estimated
optimal parameters.

However, as we here emphasize, even if we use policy value estimates that
are efficient, this does not imply that we obtain efficient estimation/learning
of the optimal policy itself, even if the surrogate-loss model is well-specified.
For example, in the case of logistic loss, we demonstrate that, although logistic
regression is statistically efficient for actual binary classification when well-
specified (as is well-known), in the case of policy learning via a weighted-
classification reduction, well-specification only implies a semi-parametric model
and therefore minimizing the empirical average of loss is not efficient in this case.

On the other hand, the implications of correct specification can be summarized
as a conditional moment problem. Such problems are amenable to efficient
solution using approaches based on the generalized method of moments (GMM;
. We demonstrate what an efficient such estimate would look like,
in terms of the efficient instruments for our specific policy learning problem. We
propose a particular implementation of solving our problem based on recent
work on efficiently solving conditional moment problems using a reformulation
of the efficient GMM solution as a smooth game optimization problem, which
can be solved using adversarial training of neural networks (Bennett et al.
. In addition, we prove some results relating the efficiency of optimal policy
estimation to the asymptotic regret of the surrogate loss, and also prove that
under correct specification the regret of the surrogate loss upper bounds the true
regret of policy learning.

We demonstrate empirically over a wide range of scenarios that our method-
ology indeed leads to greater efficiency, with lower MSE in estimating the
optimal policy parameter estimates under correct specification. Furthermore,
we demonstrate that in practice, both with and without correct specification,




our methodology tends to learn policies with lower regret, particularly in the
low-data regime.

1.1 Setting and Assumptions

Let X denote the context of an individual, T € {—1,1} the treatment assigned
to that individual, and Y the resultant outcome. In addition let Y'(¢) denote the
counterfactual outcome that would have been obtained for the corresponding
individual if, possibly contrary to fact, treatment ¢ had been assigned instead.
We assume throughout that we have access to logged data consisting of n iid
observations, S, = {(X;,T;,Y:) : i < n}, of triplet (X,T,Y") generated by some
behavior policy.

We make standard causal assumptions of consistency and non-interference,
which can be summarized by assuming that Y = Y(T'). Furthermore, as is
standard in the above policy learning literature, we assume that X encapsulates
all possible confounders, that is, Y (¢t) LT | X Vt € {—1,1}, as would for example
be guaranteed if the logging policy is a function of the observed individual
context.

A policy m denotes a mapping from individual context to treatment to be
assigned. Concretely, given individual context z, let 7w(z) € {—1,+1} denote
the treatment assigned by policy 7 (we may also consider stochastic policies but
since optimal policies are deterministic we focus on these).

Let

denote the expected value of following policy 7, relative to complete random-
ization. Given the logged data and some policy class II, our task is to learn
an optimal policy from the class, defined by 7* € arg max, .y J(7m) (notice that
offsetting by the complete randomization policy does not affect this optimization
problem). In particular we consider policy classes where each policy 7 is indexed
by some utility function g and is defined by 7(x) = sign(g(z)), where in turn the
utility functions are parametrized by # € © C R? as G = {gp : 6 € O}, so that

IT = {sign(ge(x)) : 0 € O}.
Correspondingly, we define
J(0) = J(sign(go(-))) = E[sign(ge(X))(Y (+1) — Y'(=1))]

and 6* € argmaxycg J(#). A prominent example is linear decision rules, where
go(z) = 6T 2. Other examples include decision trees of bounded depth and neural
networks.



1.2 Efficiency

We briefly review what it means to estimate the optimal policy parameters, 6*,
efficiently. For simplicity, suppose that 6* is unique. A model M is some set of
distributions for the data-generating process (DGP), i.e., a set of probability
distributions for the triplet (X,T,Y).

A model is generally non-parametric in the sense that this set of distributions
can be arbitrary, infinite, and infinite dimensional.

Consider any learned policy parameters é, that is, a function of the data S,
with values in ©. Roughly speaking, we say that 6 is regular if, whenever the
data is generated from (X;, T}, Y;) ~ p € M, we have that /n(f — 6*) converges
in distribution to some limit as n — oo and this limit holds in a particular
locally uniform sense in M (see [Van der Vaart| [2000, Chapter 25 for a precise
definition). Semiparametric efficiency theory (see ibid.) then establishes that
there exists a covariance matrix V such that for any cost function ¢ : R — R
for which the sublevel sets are {v : ¢(v) < ¢} are convex, symmetric about the
origin, and closed, we have that

lim inf E[e(v/n(8 — 0%))] > Eypr0.v)lc(v)] (1)

n—oo

for any estimator 6 that is regular in M. An important example is MSE, given
by e(v) = [

Efficient estimators are those for which Eq. holds with equality for all
such functions ¢, which, by the portmanteau lemma, would be implied if the
estimator has the limiting law \/ﬁ(é —0*) = N(0,V). Regular estimators is
a very general class of estimators so the bound in Eq. is rather strong. So
much so that, in fact, Eq. holds in a local asymptotic minimax sense for all
estimators (see ibid., Theorem 25.21).

Efficiency is important because, in observational data, we only have the data
that we have and cannot experiment or simulate to generate more so we should
use the data optimally. Equation relates to the efficiency of estimating 6*.
In Section [£.4] we also relate this to regret.

1.3 Related Work

There has been a variety of past work on the problem of policy learning from
observational data. Much of this work considers formulating the objective of
policy learning as a weighted classification problem (Beygelzimer & Langford,
2009; Dudik et al., 2011), and either minimizing the 0-1 loss directly using
combinatorial optimization (Athey & Wager, 2017} Kitagawa & Tetenov, 2018}
|Zhou et al.| 2018)), using smooth stochastic policies to obtain a nonconvex but
smooth loss surface (Swaminathan & Joachims| [2015), or replacing the 0-1
objective with a convex surrogate to be minimized instead (Zhao et al., 2012
Zhou et all 2017} [Jiang et all 2019} Beygelzimer & Langford) 2009} [Dudik et al.
2011). In addition there is work that extends some of the above approaches to
the continuous action setting (Kallus & Zhoul [2018} [Krishnamurthy et al.|, 2019;




|Chernozhukov et al., 2019); our focus will be solely on binary actions. Of these
methods the convex-surrogate approach has the advantage of computational
tractability and, when the convex surrogate is smooth (e.g. [Jiang et all [2019)),
the ability to perform statistical inference on the optimal parameters. Our paper
extends this work by investigating how to solve the smooth surrogate problem
efficiently. Although much of this past work has used objective functions for
learning based on statistically efficient estimates of policy value (Dudik et al.,
|2011} [Athey & Wager, |2017} |Zhou et al.l 2018; |Chernozhukov et al.| [2019)), to the
best of our knowledge our paper is novel in investigating the efficient estimation
of the optimal policy parameters themselves.

In addition there has been a variety of past work on solving conditional
moment problems (see [Khosravi et al.| (2019)); Bennett et al|(2019) and citations
therein). Our paper builds on this work as it reformulates the problem of policy
learning as a conditional moment problem, which we propose to solve using

optimally weighted GMM 1982) and DeepGMM (Bennett et all [2019).

2 The Surrogate-Loss Reduction and Its Fisher
Consistency

In this section, we present the surrogate-loss reduction of policy learning and
the implications of correct specification.

Many policy learning methods start by recognizing that the policy value can
be re-written as

J(0) = E[¢) sign(go(X))] (2)

where 1) is any of the following score variables, which all depend on observables:

Yrps = ETT&), YoM = p1(X) — p—1(X),

Ypr = YpM + YIps — TJ;T(%)’ 3)

where e;(z) = P(T =t | X = z) and (x) = E[Y(¢) | X = z]. Equation
arises once we recognize that all of these satisfy E[y) | X] =E[Y (1) -Y(-1) | X].
Then we can approximate Eq. using its empirical version:

Tn(0) = 5 321 visign(gs(Xy)). (4)

In particular, |Athey & Wager| (2017)); [Kitagawa & Tetenov| (2018); Zhou et al.|
prove bounds of the form supycg |Jn(6) — J(8)| = Op(1/4/n) given that
the policy class has bounded complexity. This shows that optimizing 6 e
arg maxycg Jn(#) provides near-optimal solutions in the original policy learning

~ ~ ~

problem, since J(6*) —J(0) < J(0*) — J(0) + Jn(8) — Jp(0%) < 2supgeg |Jn(6) —
J(0)]. Given that in practice the nuisance functions e; and i are estimated from
data, we denote the corresponding score variable when such estimates are plugged

in as 1& to differentiate it from the variable > that uses the true nuisance functions.
We correspondingly let J,(6) = L 3" | 4); sign(gg(X;)). When J,,(6) is efficient




for J(f) one can generally additionally prove that supyeg |Jn(0) — Jn(0)| =
0y (1/ /).

Given the non-convexity and non-smoothness of the empirical objective
function Eq. it is not necessarily clear how to actually optimize it, however.
Many works (Jiang et al., 2019 Zhao et al., [2012; Beygelzimer & Langford),
2009)) recognize that this optimization problem is actually equivalent to weighted
binary classification (in our two-action case), since v; sign(go(X;)) = |¢:|(1 —
2sign(gq (X:)#w, )> S0 any classification algorithm that accepts instance weights can
perhaps be used to address Eq. . Specifically, many classification algorithms
take the form of minimizing a convexr surrogate loss:

Ln(0) = 5 X202y [ill(g0(X,), sign(vs)), (5)

where [(g, 5) acts as a surrogate for the zero-one loss Igign (g, (x,)-£y;- Analogous
to above, we let L(6) = E[|¢|l(go(X), sign(¢)))] denote the population version
of this loss. For classification, Bartlett et al.| (2006]) studies which losses are
appropriate surrogates, i.e., are classification-calibrated. The population version
of the surrogate loss, which L, (6) is approximating, is

L(0) = E[[¢[l(g0(X), sign(¢))]- (6)

Following |Jiang et al.| (2019), we will focus on the logistic (or, logit-cross-
entropy) loss function and define (g, s) everywhere asE|

I(g,s) = 2log(1+exp(g)) — (s + 1)g.

This loss is clearly smooth, and I(gg(x), s) is also convex in 6 as long as gg(z) is
convex in @ for each x. The loss is also classification-calibrated, which immediately
yields the following, given an additional regularity assumption:

Assumption 1. E[¢ | X] =E[Y (1) - Y (-1) | X], and E[|¢|] < cc.

Theorem 1 (Fisher Consistency Under Correct Specification). Suppose the
policy class I1 is correctly specified for the surrogate loss in the sense that

gn ( arg min ]E[Itbll(g(X)ﬁign((/J))]) 7. (7)

g unconstrained

Then given Assumption[d, any minimizer of the surrogate-loss risk is an optimal
policy:

J(0*) = max J(m)
T unconstrained
for all 0% € argmin L(6).
0co
LAll of our results actually extend to any twice-differentiable classification-calibrated loss.
Logistic is the most prominent such loss.




Theorem [1] establishes that, under correct specification, if we minimize the
population surrogate loss, L(f), then we obtain the optimal policy. Therefore, a
natural strategy for policy learning would be to directly minimize the empirical
loss L, (0), as was done by the above. Although the above arguments indicate
that this approach would be computationally tractable, and also consistent under
mild regularity conditions that ensure that optimizers of L,,(6) would converge
to optimizers of L(#), it is not clear that it is statistically efficient, even if we
use an efficient score variable for policy value estimation.

3 The Conditional-Moment Reformulation of the
Surrogate-Loss Reduction

In this section we establish a new interpretation of the surrogate-loss reduction
as a conditional moment problem and we discuss the implications of this in terms
of the model implied by correct specification. This will enable us to conduct
efficiency analysis and to design algorithms with improved efficiency in the next
section.

3.1 The Conditional Moment Problem

To make progress toward a characterization of efficiency under correct specifica-

tion, we next establish an equivalent formulation of optimizing the population

surrogate loss under correct specification as a conditional moment problem.
Define the derivative of | with respect to g:

l/(g75) = 20(9) - (S + 1)7
where o(g) = exp(g)/(1 4 exp(g)) is the logistic function.

Theorem 2 (Conditional Moment Problem Under Correct Specification). Sup-
pose Assumption [1] holds and the policy class 11 is correctly specified for the
surrogate loss in the sense that Eq. @ holds. Define

m(X;0) = E[||l'(go(x),sign(y)) | X].
Then we have that

0" € argmin L(0)
)

— m(X;0%) =0 almost surely. (8)

Theorem [2 arises straightforwardly from the observation that, under correct
specification, gg(x) minimizes E[[¢);|l(go(X), sign(y)) | X = z] for almost every
z. Using smoothness and convexity, this latter observation is restated using
first-order optimality conditions. Dominated convergence theorem allows us to
exchange differentiation and expectation and we obtain the result. Theorem



provides an alternative characterization of 8* as solving a conditional moment
problem.

Notice that Eq. is equivalent to the statement that, for any square
integrable function f of X, we have the moment restriction

E[m(X;0)f(X)] = 0. (9)

This alternative characterization makes the problem amenable to efficiency
analysis.

Notice that by first-order optimality, if 6* € interior(©), optimizing L(f) in
Eq. @ exactly corresponds to solving the set of d moment equations given by
E[m(X;0)he(X)] = 0. Similarly, optimizing the empirical loss L, () in Eq. (5]
corresponds to solving these d equations with population averages (E) replaced
with empirical sample averages.

However, Eq. @[) gives a much broader set of equations. Leveraging this fact
will be crucial to achieving efficiency. Indeed, it is well-known that even if a
small number of moment equations are sufficient to identify a parameter (e.g.,
in the above, the d equations identify 6* via first-order optimality), taking into
consideration additional moment equations that are known to hold can increase
efficiency in semiparametric settings (Carrasco & Florens, |2014]).

3.2 The Semiparametric Model Implied by Specification

In order to reason about efficiency, we need to reason about the model implied
by Eq. . To do so, we first establish the following lemma:

Lemma 1. Assume Assumption[ll Then given a policy class I1, the model of
DGPs (distributions on (X, T,Y)) where I1 is correctly specified for the surrogate
loss (in the sense of Eq. ) is given by all distributions on (X,T,Y) for which
there exists 0* € © satisfying

Py >0]X)

E[|v| | X] = 0(g¢+(X)) almost surely. (10)

This model is generally a semiparametric model. That is, while Eq. is a
parametric restriction on the function P(¢p > 0| X = z)/E[|¢] | X = z], the set
of corresponding distributions on (X,7T,Y") that satisfy this restriction is still
infinite-dimensional and non-parametric.

3.3 Comparison with Logistic Regression for Classifica-
tion

One question the reader might have at this point is why an approach different than
empirical loss minimization is necessary for efficiency, given that the surrogate
loss formulation seems mathematically identical to binary classification using
logistic regression, which is known to be efﬁcientﬂ The difference between the

2This is because logistic regression performs maximum likelihood estimation (MLE), which
is statistically efficient for well-specified parametric models.



problems is that for actual classification we have that v is a binary class label,
i.e., ¥ € {—1,1}. If we assume the policy class is well-specified and ¢ € {—1,1},
the characterization of our semiparametric model from Lemma [I| reduces to

P =1]X) = a(ge- (X)),

which implies that our model is parametric, since the choice of 8* now fully
characterizes the distribution of the label ¢ given X. E.g., usually for logistic
regression we let gg(z) = 67 x so that the above says that the logit of P(¢) =1 | X)
is linear. Therefore, performing logistic regression corresponds to MLE for this
parametric model, which is efficient.

However in our general setting this is not the case and there is a non-trivial
nuisance space, since an infinite-dimensional space of conditional distributions for
¥ given X = x could result in the same function P(¢ > 0| X = 2)/E[|¢| | X =
x]. This suggests that we may need to be more careful in order to obtain efficiency
and that there may exist estimators that are more efficient than empirical loss
minimization.

4 Efficient Policy Learning Reductions

In this section we propose some efficient methods for policy learning based on the
above conditional-moment formulation. In addition, we provide some analysis of
these methods in terms of efficiency and regret.

4.1 FiniteGMM Policy Learner

We begin by proposing an approach based on using multi-step GMM to solve the
conditional moment problem, which we will call FINITEGMM. This approach
works by optimally enforcing for the moment conditions given by Eq. @ for
a finite collection of critic functions F = {fi,..., fx}. Specifically, given some
initial estimate 6,, of 0*, define:

m(0); = L0 il (g0 (X), sign(vs)) f(X:)
C(0n)jr = 2311 21 (g5, (Xi), sign () f5(Xs) fi(X)
0(6;0,) = m(0) C(6,)m(6).

We then estimate 6 by 6, = = argminy O(Q;én). We can repeat this multiple
times, plugging in 0,, as 0,, and resolving.

An important issue with this estimator, however, is how to choose the critic
functions. Standard GMM theory requires that the £ moment conditions are
sufficient to identify #*. And even then, the above is only the most efficient
among estimators of the form argminy ||(mq(0),. .., mk(0)] for any norm || - ||,
but there may still be more efficient choices of critic functions.



4.2 The Efficient Instruments for Policy Learning

One nice result from the theory of conditional moment problems is the existence
of a finite set of critic functions ensuring efficiency in the sense of Section [I.2}
Define:

Q(z) = E[¢*l'(go(X),sign(¢))* | X = 7]
ho«(x) = Vage(x) |o=o-
D(x) = E[Va([¢[l'(96(X), sign(¥))) lo=o-| X = ]
= E[[¢]l" (go- (X)), sign(v))he- (x) | X = ]
fita) =g

We call F* = {ff,..., fi} the efficient instruments, and as long as the span of
F contains these instruments then FINNTEGMM is guaranteed efficiency (Neweyl,
1993).

Given this, one approach would be to let F be flexible with the hope of
approximately containing F*. Letting, for example, F be the first k(n) functions
in a basis for Ly such as a polynomial basis and letting k(n) — oo can be
shown to be efficient under certain conditions (Neweyl (1993). This, however,
can perform very badly in practice, especially with any reasonable amount of
features. Ideally, we would instead be able to make use of modern machine
learning methods and approximate F* using some flexible function class such as
neural networks rather than defining a finite set of basis functions.

4.3 ESPRM Policy Learner

Motivated by the above concerns, we now present our proposed approach:
ESPRM (efficient surrogate policy risk minimization). This is based on the
extension of Bennett et al.| (2019) to our conditional moment problem. In
the setting of instrumental variable regression, Bennett et al.| (2019) proposes
an adversarial reformulation of optimally-weighted GMM, which allows us to
consider critic functions given by flexible classes such as neural networks. Then
if this class provides a good approximation for the efficient instruments, this
approach should be approximately efficient.
Specifically, we define:

w(X, 0, f) = [¥]l (g0 (X), sign(¥)) f(X)
U0, £;0) = L 377 u(Xi,1::0, f)]
— S w(Xa, D5 0, )2,

where as above é,L is some initial consistent estimate of 8*. Then following
Bennett et al.| (2019), the ESPRM estimator is defined as

HESPRM _ arg ming sup g U, f; 9),
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where F is our flexible function class (henceforth assumed to be a class of neural
networks). It remains to describe how this adversarial game is to be solved,
and how to define 6,,. As in Bennett et al.|(2019) we optimize the objective by
performing alternating first-order optimization steps using the OAdam algorithm
(Daskalakis et al., [2017]), which was designed for solving smooth game problems
such as generative adversarial networks (GANs). In addition, we continuously
update 6, during optimization, where at each step of alternating first order
optimization we set 6,, equal to the previous iterate of 0,,.

4.4 Efficient Learning implies Optimal Regret

Finally we prove that efficiency not only ensures minimal MSE in estimating 6*
but also implies regret bounds. Let

Regret ;(f) = argmax J(w)— J(0)

7 unconstrained

Regret; (0) = L(0) — gigg L(0).

Theorem 3 (Regret Upper Bound). Suppose Assumption holds and that the
policy class 11 is correctly specified for the surrogate loss in the sense that Eq.
holds. Then, for any 0 € © we have:

Regret;(0) < Regret;,(0).

This theorem implies that the regret of a policy is upper-bounded by the excess
risk of the surrogate loss. Next, we make the following regularity assumption
about the loss L:

Assumption 2 (Well Behaved Loss). L has a unique minimizer 0* in the
interior of ©, and the Hessian H(0*) of L at 0* is positive definite.
Given this assumption, a Taylor’s theorem expansion yields Regret L(én) =

(0, — 0*)TH(6*)(0,, — 6*) + 0(||0,, — 6*||2). For for any regular estimator 6, we
can also define the asymptotic regret ARy as the limiting distribution:

nRegret; (0,) —q ARL(6,,),

which exists since regularity implies that \/ﬁ(én — 0*) has a limiting distribution.
Given this we can prove the following optimality result of our efficient estimators
in terms of asymptotic regret:

Theorem 4 (Optimal Asymptotic Regret). Given Assumption@ and any non-

negative, non-decreasing ¢, we define the risk Ry(0,) = E[¢p(ARL(0,))]. Given

this, there exists a risk bound By such that Ry(6,) > By for every regular 6,
with equality if 0, is semi-parametrically efficient.

Together with Theorem [3| this means that both the actual regret (Regret ;)
and the surrogate regret (Regret; ) of policies given by efficient estimators 6 are
0,(1/n), and the surrogate regret has an optimal constant.

11



5 Experiments

5.1 Synthetic Scenarios

First we investigate the performance of our algorithms on a variety of synthetic
scenarios. In all these scenarios X is 2-dimensional, and X and Y (t) — u(X) are
standard Gaussian distributed for each ¢; the scenarios only differ in the functions
e and e;. In none of the scenarios is our policy class actually well-specified in
the sense of Eq. .

We consider the following kinds of synthetic scenarios:

e LINEAR: ps(7) = al 2+ ay and eq(x) = sigmoid (b’ 2+ bg) for some vectors
a—1, Ay, b.

e QUADRATIC: py(z) = 2T Ayw + al 2 + ay and e1(x) = sigmoid(z? Bz +
bT'x + by) for some symmetric matrices A and B, and vectors a_1, a1, b.

In addition we experiment with the following policy classes: a linear policy
class, where gg(x) = 07z + 6y, and a flezible policy class where gg(z) is given by
a fully-connected neural network with a single hidden layer of size 50, and leaky
ReLU activations.

In all cases we use the surrogate loss method of [Jiang et al.| (2019)) described
in Section [2 as a benchmark, which we henceforth refer to as ERM. We note that
although in the prior work they used 1[)1135, we instead use ’([)DR, both because it
is theoretically better grounded (Athey & Wager} 2017; |Zhou et al.l |2017) and
we found that it gives stronger results for all methods. For our ESPRM method
we let F be the same neural network function class as for flexible policies, and
perform alternating first-order optimization as described in Section for a
fixed number of epochs.

For all methods, except where otherwise specified, we use the 1[1D r weights
described in Eq. , with nuisance functions fit using correctly specified linear
regression or logistic regression algorithms on a separately sampled tuning dataset
of the same size as the training datasetﬁ We provide some additional results in
the appendix where nuisances were instead fit via flexible neural networks, which
show that this has little effect on our results. In all cases except for ESPRM we
perform optimization using LBFGS. Additional optimization details are given in
the appendixEI

For all configurations of scenario kind and policy we ran our experiments
by sampling random scenarios of the respective kind, by setting all scenario
parameters to be independent standard Gaussian variables. Specifically, for each
n € {100,200, 500, 1000, 2000, 5000, 10000} we sample 64 random scenarios of the
respective kind, and for each random scenario we sample n training data points
and run all methods on this data. Results for FINITEGMM, which generally did
badly as predicted, are given in the appendix.

3By correctly specified we mean that for LINEAR we fit using linear/logistic regression on
X, whereas for QUADRATIC we fit on a quadratic feature expansion of X.
4Code for running all of our experiments is located at https://github.com/CausalML/ESPRM.
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Figure 1: Difference in performance between ESPRM and ERM. We plot RMRR
against number of training examples for each combination of policy class and
scenario kind. All shaded regions are 95% confidence intervals constructed from
bootstrapping.
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Policy ERM ESPRM Difference
Linear —0.96 £4.32 442+3.78 5.38£5.06
Flexible —1.75+4.64 7.68+3.16 9.42+5.17

Table 1: Average predicted policy value (multiplied by 1000) for the Jobs case
study for ERM versus ESPRM over 64 repetitions. The + interval provides
the 95% confidence intervals.

Define Relative Mean Regret Reduction (RMRR), given by:

RMRR(6,) = (1 - E[Regret{fgl\)j]

x 100%,
E[Rogret, (0 n)

where each expectation in the fraction is taken over the joint distribution of
randomly sampled scenario, and corresponding random estimate 6. Then for
each scenario kind and policy class, we plot predicted RMRR against number of
training data based on our ESPRM estimates in Fig. [I] We see that ESPRM
consistently obtains policies on average that are lower regret or on-par than
those obtained by ERM (typically with around 10% to 20% RMRR), with 95%
confidence intervals indicating clearly better performance in every case except
for training flexible policies on random QUADRATIC scenarios (in which case
performance seems roughly on par). It is notable that this even occurs in the
QUADRATIC setting with the linear policy class, where our policy class is not
even well specified for the loss, let alone the surrogate loss. We can also observe
that the most significant regret benefits tend to occur with smaller training
set sizes (since the same RMRR implies a larger absolute decrease in regret),
indicating that the statistical efficiency of our method is leading to improved
finite sample behavior.

In Fig. 2] we plot the convergence in terms of the MSE of the estimated
parameter from ESPRM and ERM, for the LINEAR setting and linear policy
class (where parameters are low-dimensional and correctly specified). We plot
both the MSE convergence, and the average difference in the squared error
between the estimates, across the random scenarios] It is clear from these
results that ESPRM consistently estimates optimal policy parameters with lower
squared error on average compared to ERM across these random simulated
scenarios. This provides strong evidence that the methodology indeed provides
an improvement in statistical efficiency for solving the smooth surrogate loss
problem.

5.2 Jobs Case Study

We next consider an application to a dataset derived from a large scale experi-
ment comparing different programs offered to unemployed individuals in France
(Behaghel et al.l [2014). We focus our attention to two arms from the experiment:

5All parameter vectors are normalized first given that the policy function is scale-invariant.
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Convergence of parameter MSE

Method
Ll B — ERM
07 NG ---- ESPRM
woo e 5
[%2] g
=
10—2 ----------------------------------
102 10° 10
Training Set Size
o Mean Decrease in Square Error
010 Method
8 0.08 — ERM
3 . ---- ESPRM
Q 006
—_
S 0.04 X
= '~ -~
W o0.02 Sl
v B
T 0.00
3
O —0.02
(7]
102 10° 10*

Training Set Size

Figure 2: Above we plot the convergence in MSE of the predicted 6,, for each
method with a linear policy class, over the random scenarios of the LINEAR class.
Below we plot the average difference in the squared error of ESPRM and ERM
(positive numbers indicate improvement over ERM). All shaded regions are 95%
confidence intervals constructed from bootstrapping.
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a treatment arm where individuals receive an intensive counseling program run
by a public agency and a treatment arm with a similar program run by a private
agency. The hypothetical application is learning a personalized allocation to
counseling program, with the aim of maximizing the number of individuals who
reenter employment within six months, minus costs. (The original study’s focus
was not personalization.) Our intervention is simply the offer of the counseling
program; we therefore ignore the fact that some individuals offered one of the
programs did not attend.

To make our policies focus on heterogeneous effects, we set the costs of each
arm to be equal to their within-arm average outcome in the original data. That
is, the outcome we consider is equal whether one reentered employment within
6 months, minus the average number of individuals who entered employment
within 6 months in that arm. The covariates we consider personalizing on are:
statistical risk of long-term unemployment, whether individual is seeking full-
time employment, whether individual lives in sensitive suburban area, whether
individual has a college education, the number of years of experience in the
desired job, and the nature of the desired job (e.g., technician, skilled clerical
worker, etc.).

We then consider 64 replications of the following procedure. Each time, we
randomly split the data 40%/60% into train/test. We then introduce some
confounding into the training dataset. We consider the following three binary
variables: whether individual has 1-5 years experience in the desired job, whether
they seek a skilled blue collar job, and whether their statistical risk of long-term
unemployment is medium. After studentizing each variable, we segment the
data by the tertiles of their sum. In the first tertile, we drop each unit with
probability 7/8. In the second tertile, we drop private-program units with
probability 1/4 and public-program units with probability 7/8. In the third
tertile, we drop public-program units with probability 1/4 and private-program
units with probability 7/8. Given a policy learned on this training data, we
evaluate it on the held-out test set using a Horvitz-Thompson estimator.

Of the training data, 20% was set aside for training nuisances, and an
additional 20% as validation data for early stopping. We then trained both
linear and flexible policies using ERM and ESPRM as in our simulation studies,
with the exception that nuisances were fitted using neural networks (of the same
architecture as the flexible policy class).

We summarize the mean estimated outcome for the policies from each method
in Table [l We note from these values that on average ESPRM seems to be
learning higher value job-assignment policies than ERM. Furthermore, perform-
ing paired two-sided t-tests on the two sets of repetitions for each policy to test
for difference in mean policy value we obtained p-values of .0429 for the linear
policy class and .0007 for the flexible policy class, clearly highlighting the benefit
of our ESPRM method.

16



6 Conclusion

We considered a common reduction of learning individualized treatment rules
from observational data to weighted surrogate risk minimization. We showed
that, quite differently from actual classification problems, assuming correct
specification in the policy learning case actually suggests more efficient solutions
to this reduction. In particular, even if we use efficient policy evaluation,
this may not necessarily lead to efficient policy learning. Specifically, under
correct specification, the problem becomes a conditional moment problem in
a semiparametric model and efficiency here translates to both better MSE in
estimating optimal policy parameters and improved regret bounds.

Based on this observation, we proposed an algorithm, ESPRM, for efficiently
solving the surrogate loss problem. We showed that our method consistently
outperformed the standard method of empirical risk minimization on the sur-
rogate loss, both over a wide variety of synthetic scenarios and in a case study
based on a real job training experiment.
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A  Omitted Proofs

To prove Theorems [If and [2] we first establish the following two useful lemmas.
Define

G = argmin E[l¢|l(9(X),sign(¥))],

g unconstrained

G = argenglinEW\l(g(X), sign(1))].

Correct specification, Eq. , is the assumption that G N G #* O,
Lemma 2. Suppose G ng # &. Then
Gng =g".

Proof. For brevity, let ¢(g) = E[|¢]l(g(X), sign(v))].

Let any g € GN G be given. Now let any ¢’ € G be given. Since g € G, we
have ¢(g) < ¢(g’). Since ¢’ € G was arbitrary, we conclude that g € G*.

Now, let any g € G* be given. By assumption, 3g* € GNG . Since g € G*
and g* € G, we obtain that ¢(g) < ¢(g*). Now let any ¢’ unconstrained be
given. Since g* € G, we have c(g%) < ¢(g¢'), whence ¢(g) < c(g'). Since ¢

unconstrained was arbitrary, we conclude that g € G". Since g € G by definition
of G*, we conclude that g€ GNG . O

Lemma 3. Suppose E[|¢] | X] < oo almost surely. Then
G ={g(): E[|9|l'(g(X),sign(®)) | X] = 0 almost surely}.

Proof. Notice that because g is an unconstrained function of X it must minimize
the conditional expectation. That is,

G ={g:g(x) € argmin E[|1)|(z,sign(¢))) | X = a] for a.e. z}.
z€R

Since |¢]l(z, sign(v))) is convex in z, so is E[|¢|l(z, sign(¢)) | X = z]. Next, note
that by mean value theorem, we have

0 .

5, EllYi(z,sign(¥)) | X = 2]

(z + h,sign(y)) — [¢[l(z, sign(+)))
h

= lim B (|41 (2(h), sign(s)) | X = 2]

for some z(h) € [z,z 4+ h]. Since |I'(z(h),sign(y)))| <4 and E[|¢] | X = z] < oo,
dominated convergence theorem yields

= lim E {|1/)|l

h—0

X =]

5BVl sign()) | X = o] = B |6l iy (). sign()) | X = 2]

=E[[9[V'(z, sign(¢)) | X = a].
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We conclude via first-order conditions for unconstrained optimization over z that

G = {g:E[[¢[l'(g(x),sign(¥))) | X = 2] =0 for a.e. z},
which is a restatement of the lemma’s result. O
We are now prepared to prove Theorems [I] and 2]

Proof of Theorem[Il Suppose §* € argming.g L(f). That is, go- € G*. By

Lemma go- € G . Then, by Lemma E (|9 (go= (z),sign(y)) | X = 2] =0
for a.e. x. Consider such an . Note that I'(g,s) = —so(—sg), and define
az = E[[¢[1{¢) > 0} | X = 2] and b, = E[[¢[1{¢) < 0} | X = .

0 = E [t~ sign(v)go- (x)) | X = a]
= 0(—ge-(2))az — o(go())bs
= az — 0(go(2))(az + bs),

hence

- 1
1+ by/a,

9o+ (z) = log (Z;”) :

We therefore have, from sign(log(a/b)) = sign(a — b),

o(ge-(x))

sign(go- () = sign(E [[¢[1{s > 0} | X = a] — E[[W[1{¢: < 0} | X = a))
— sign(E[w | X = a).

The condition that sign(g(z)) = sign(E[¢) | X = z]) for almost every z is
exactly equivalent to the condition that sign(g(-)) € max; unconstrained J ()
since, by assumption on ¢ and iterated expectations, we have that J(w) =
Elr(X)(Y(1) = Y(-1))] = E[r(X)E[Y (1) — Y(-1) | X]] = E[r(X)¢]. O

Proof of Theorem[3 First note that Assumption [1] implies that E[[¢)| | X =
x] < oo almost everywhere, so the conditions of Lemma [3| apply. Now sup-
pose 0" € argmingcg L(#). By Lemma 2| gy« € G". Then, by Lemma
E ||l (gox (z),sign(y))) | X =x] = 0 for a.e. x, which is a restatement of
m(X;6*) = 0 almost surely.

Now suppose m(X;6*) = 0 almost surely. Then, by Lemma [3} gy~ € G By
definition, gg« € G. Therefore, by Lemma [2| gg- € G*, which is a restatement of
0* € argmingcg L(0). O

Proof of Lemmal[ll Suppose that II is correctly specified for the surrogate loss.
Then given Assumption I} there exists 6* such that, for each = almost everywhere,
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we have:

E[|{](20(go- (X)) — (sign(d)) + 1)) | X =] =0
= E[[4|(20(gs- () — (sign(¥)) + 1)) | X = 2] =0
= 20(go-(@)E[[¢)| | X = 2] =2P($ > 0| X = x)
B Py>0|X=x)
COE[| X =a]

= o(ge-(2))

O

Proof of Theorem[3 Let S = sign(z)). We first note that given E[[¢|] < oo from
Assumption |1} we have that J and L can be re-scaled by a factor of E[|¢|] and
expressed as the expected values of 1{S = sign(go(X))} and ¢(Sge(X)), where
¢(a) = 2log(1 + exp(e)) — 2a, for some modified distribution of X, S (where
the measure p(z, s) of X, S is re-scaled by E[|¢| | X = 2,5 = s]). In addition by
our correct specification assumption we have Regret; (§) = L(0) — L*, where L*
is the minimum loss over all possible unconstrained choices of function g. Given
the above it follows from Bartlett et al| (2006, Theorem 3) that w(Regret ;) <
Regret; for some non-decreasing, non-negative function w : [0,1] — [0, c0),
which depends only on the nonnegative loss function ¢. Following their notation,
define:

H(n) = C‘lgé%%(a) + (1 =n)o(—a)
H™(n)=  inf  né(a)+ (1 —n)p(—a)

a:a(2n—1)<0

oo - (150) - (157),

Then it follows from [Bartlett et al.| (2006, Section 2) that w is the Fenchel-
Legendre biconjugate of w. Now it is easy to verify from these definitions that
w(#) = |0, which is convex, and thus w(f) = @w(f) = |f|. The desired result
follows immediately from this since |Regret ;| = Regret ;. O

Proof of Theorem[}) Given Assumption [2] from the Taylor expansion from Sec-
tion 4] we have:

nRegretL(én) = (\/ﬁ(én - 9*))TH(9*)(\/ﬁ(én - 9*)) + ||\/ﬁ(én - 0*)”20(1)

Thus assuming that 0, is regular, we let W be the limiting distribution of
(6, — %), which by Slutsky’s and the continuous mapping theorem gives us
that .

AR (0,) = WTH(6*)W.

Now, by [Van der Vaart| (2000, Theorem 25.20) we have that W = N(0, V) %
M, where M is given by some arbitrary distribution, V' is the convariance
matrix of the semi-parametrically efficient estimator, and * denotes convolution.
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In addition M = 0 as. < 0, is semi-parametrically efficient. Now let
W* = N(0,V). Then it follows from [Van der Vaart| (2000, Lemma 8.5) that
E[p(WTH(0*YW))] > E[p(W*TH(6*)W*)] for any W = W* x M, since l(w) =
é(wT H(0*)w) is a bowl-shaped loss in the sense of Van der Vaart| (2000) given
that ¢ is non-negative and non-decreasing. Thus we can conclude by noting
that the efficiency bound is given by By = E[p(W*T H(6*)W*)], which is clearly

realized for any semi-parametrically efficient 6,,. O

B Additional Experiment Details

B.1 Additional Optimization Details

Solving ESPRM Smooth Game As mentioned in Section [£.3] we solve the
smooth game by running alternating first-order optimization using the OAdam
algorithm. We tuned this procedure manually by experimenting on a couple of
hand selected synthetic scenarios, one LINEAR and one QUADRATIC, prior to
running our main experiments. We found generally good results using a learning
rate of 0.001 for linear policy networks, and 0.0002 for flexible policy networks,
with the learning rate of the critic f network set to 5 times that of the policy
netowrk. Furthermore we found good results using a number of epochs given by
the fixed rule of min(8000000/n,8000), where n is the number of training data
points used.

Optimizing Neural Networks for Nuisance Functions and Finite GMM
In all cases where we optimized neural networks in these problems we used
the LBFGS algorithm. Furthermore we performed some additional first-order
optimization using Adam to deal with potential cases of poor convergence, using
a learning rate of 0.001, and stopping once performance on a held-out validation
set (of same size as training set) failed to improve for 5 consecutive epochs.

B.2 Results for FiniteGMM Methods

We include here results for our FINITEGMM method. As mentioned in Section [5]
the results for these methods were poor as expected. In particular the results seem
to be very unstable, with extremely poor policy learning in a small percentage
of cases, leading to extremely negative RMRR values in all cases except with
QUADRATIC scenario and linear policy network. However even in the majority of
cases where these estimators don’t have unstable behavior, they seem to perform
par with or at best only marginally better than ERM, with the one expection
of QUADRATIC scenario and linear policy network.

In our experiments with FINITEGMM we experimented with two different
kinds of choices for the set of critic functions F: (1) polynomial expansion of X of
degree d; and (2) Random Kitchen Sink (RKS; Rahimi & Recht|(2009))) expansion
of X of length n using the Gaussian kernel with o = 0.5. Note that the Random
Kitchen Sink expansion is designed such that ¢, (21)7 ¢, (22) ~ K(21,x2) for
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some given kernel, with approximation error vanishing as n — oo. In both cases,
the function f; is given by the i’th coordinate of the corresponding feature map.
We calculated é,FLINITEGl\'H\'l using 3 stages, with the guess of 6y in the first stage
chosen at random.

In Fig. [3] we plot the performance of both FINNTEGMM and ESPRM in terms
of the RMRR metric, plotting both mean and median values across different
values of n. Although we experimented with multiple choices of polynomial
degree / RKS expansion length, we only plot results for degree 3 polynomials
(Poly(3)), and length 64 expansions (RBF(64)) for clarity, as we found these
gave the least-worst results.

B.3 Additional Results for Flexible Nuisance fitting

We provide here some additional results for our simulation study on QUADRATIC
where the nuisances were fit using flexible neural network training (using the
same neural network architecture as for the flexible policy class) instead of using
a correctly specified model. We show results for the ESPRM and ERM methods
in Fig. 4] both with nuisance fit using correctly specified model and using flexible
neural network model. We note that results are about the same in both cases:
for linear policies we have clearly superior results with our method versus ERM,
while for flexible policies in both cases the methods are roughly on par with each
other, with slight performance increase in favor of ESPRM for some values of n.
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Figure 3: Results for ESPRM, ERM, and FINITEGMM methods for all scenarios
and policy network types, where nuisances are fit using linear /logistic regression
as in main experiments.
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Figure 4: Results for both ESPRM and ERM methods for QUADRATIC, where
in top row results obtained by fitting correctly specified nuisance model, while
in bottom row results fit using flexible nueral network nuisance model.
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