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1. Introduction
Pricing and revenue projections are crucial elements of any firm’s business plan. However, uncer-
tainty about consumer willingness to pay makes both tasks challenging. While firms desire revenue
guarantees, they also rely on future revenue projections for budgeting, inventory management, and
capital investment decisions. These needs require reliable estimates of expected profits with confi-
dence bounds. This is especially true in the analogous setting of government procurement, where
the procurement process may be subject to administrative rules and regulations, while at the same
time having an influence on the overall government budget. In such cases, having reliable projec-
tions of procurement results is crucial for planning and execution of public policy.

This paper proposes a novel data-based approach to address these challenges simultaneously. We
consider a scenario where a firm faces uncertainty about the true distribution of consumer types,
building on the classic framework of Maskin and Riley (1984). We allow the firm to design mech-
anisms (menus of price-quantity pairs) while acknowledging limitations in real-world information
access.

Unlike many existing robust mechanism design approaches, we assume the firm observes only a
finite sample drawn from the unknown distribution. This is a natural assumption insofar as it ap-
proximates the type of information that organizations tend to have at their disposal in practice, often
as the result of market research (Lusk and Shogren, 2007). Accordingly, there has been growing in-
terest in analyzing mechanism design with random samples, as exemplified by notable recent papers
including Fu, Haghpanah, Hartline and Kleinberg (2021), Allouah, Bahamou and Besbes (2022), and
Xie, Zhu and Shishkin (2023).

Our contribution to this literature is twofold. First, we provide a class of simple mechanisms with
robust finite-sample revenue guarantees: empirically optimal mechanisms. Second, we develop a
toolkit to perform statistical inference on the profit obtained for any arbitrary mechanism, including
the empirically optimal one. This enables a data-driven approach to the evaluation and comparison
of different pricing strategies.

Empirically optimal mechanisms are remarkably simple to implement and boast notable revenue
guarantees and robustness properties. Specifically, empirically optimal mechanisms simply involve
consistently estimating the true distribution from a sample and implementing the mechanism that
would be optimal for that estimated distribution. This gives rise to a data-based mechanism that
is not only asymptotically optimal, but also strongly robust to small perturbations of the estimated
distribution, owing to profit being Lipschitz continuous in the estimate of the distribution. Fur-
thermore, they induce finite-sample, exponential bounds for profit and regret (the difference to the
optimal profit).

Equally important is the fact that that empirically optimal mechanisms serve as a tool for estimat-
ing and conducting inference on the profit obtained with any mechanism, including the optimal
one. This allows the principal to obtain reliable confidence intervals for profits achievable with any
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mechanism, to compare and test profits and regret arising from different feasible pricing strategies,
and also estimate the maximum achievable profit, which can be of interest to estimate the expected
return to an investment or long-run profitability, as better information about the type distribution
becomes available. In the analogous case of procurement from a firm, the ability to obtain reliable
expenditure projections from any specific policy is particularly valuable, as the procurement pro-
cess may be subject to idiosyncratic administrative constraints. Methodologically, we prove a novel
envelope theorem to establish consistency and asymptotic normality of our proposed estimator via
a functional delta method. We then demonstrate the effectiveness of bootstrap implementations for
conducting inference through Monte Carlo simulations, which suggest that the empirical coverage
of our estimators approximates well the associated confidence intervals, even with relatively few
samples.

Finally, we illustrate how our results on empirically optimal mechanisms extend to an auction set-
ting. We consider the case where the firm auctions a single item to a finite number of risk-neutral
bidders with independent private values drawn from the same distribution. In particular, analogue
versions of asymptotic optimality and profit and regret guarantees are shown to hold in this setting
as well.

Empirically optimal mechanisms correspond to one of the simplest forms of statistically informed
mechanism design: observing a sample, estimating a distribution, and implementing a mechanism
that is optimal for the estimated distribution. As we demonstrate, this extremely simple approach
boasts sound revenue guarantees and allows practitioners to estimate themaximumprofit attainable.
Our results on expected profit estimation enable confidence interval construction and hypothesis
testing, valuable tools for practitioners and researchers. We believe this data-driven perspective on
robust mechanism design holds promise for the broader study of mechanism design under model
uncertainty.

1.1. Related Literature

The most directly related literature studies robust mechanism design with a monopolist who does
not form a prior about consumers’ willingness to pay, but has access to a random sample from this
distribution. Relatively recent papers with this set-up include Cole and Roughgarden (2014), Dhang-
watnotai, Roughgarden and Yan (2015), Huang, Mansour and Roughgarden (2018), Guo, Huang and
Zhang (2020), Fu et al. (2021), Allouah, Bahamou and Besbes (2022), and Xie, Zhu and Shishkin
(2023). Most of the work in this body of literature is concerned with either providing revenue guar-
antees based on a sample, or leveraging the sample to design a mechanism that maximizes profits
conditional on the limited information available.

A sizeable literature has been dedicated to providing sample-based revenue guarantees in auctions.
For example, Huang, Mansour and Roughgarden (2018) give polynomial upper an lower bounds on
the number of samples required to achieve a share 1−ε of the optimal profit, assuming a single buyer
with value drawn from a distribution with the monotone hazard rate property. Cole and Roughgar-
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den (2014) provide a similar characterization of the sample complexity of optimal mechanisms, but
for multiple bidders. Guo, Huang and Zhang (2020) improved on the results of the previous paper
by providing upper and lower bounds that differ by at most a poly-logarithmic factor.

Xie, Zhu and Shishkin (2023) consider a different setting, where a monopolist has access to a ran-
dom sample of data on buyers’ valuations and covariates, and uses it to conduct third-degree price
discrimination or to determine an uniform price. They provide a lower bound on regret, measured
as the minimax difference in expected revenue, for any sample-based strategy as a function of the
sample size. Moreover, they provide pricing strategies that attain this lower bound for both the
third-degree price discrimination and uniform pricing regimes, and thus have the fastest possible
rate of convergence to the optimal profit as the sample size increases.

Our first set of results is very close to this literature, as it provides revenue guarantees for the
empirically optimal mechanism as a function of the sample size. Naturally, such results can also be
inverted to obtain the number of samples that is needed to achieve a given share of the optimal profit
with high probability. On the other hand, we significantly diverge from the papers cited above in the
results concerning inference for any given mechanism. In a sense, the simplicity of the empirically
optimal mechanism allows us to use it as an econometric tool to generate statistical analyses from
the sample that are more detailed than simply providing bounds on regret.

Another strand of the literature is concerned with designing a mechanism that makes optimal use
of the information contained in a sample of consumers’ valuations. Early work by Segal (2003) and
Baliga and Vohra (2003) study a setting where samples are elicited from buyers’ bids themselves,
under different assumptions about the underlying distribution of valuations. They both propose
mechanisms which induce consumers to reveal their own type, while simultaneously allowing the
firm to use others’ bids to infer the distribution and design the mechanism accordingly. Dhangwat-
notai, Roughgarden and Yan (2015) follow Baliga and Vohra (2003) in designing a mechanism with
a random reserve price drawn from the empirical distribution function of buyers’ bids, and show
that their Single Sample mechanism approximates that of an optimal auction. Fu et al. (2020) posit
that the possible distributions of bidders’ types belongs to a finite set, and determine the minimum
number of samples that an auctioneer needs to extract the full surplus without prior knowledge of
the true distribution.

We are not concerned with making optimal use of the data to extract surplus. Rather, we study a
particular mechanism and focus on providing a toolkit for conducting valid non-parametric infer-
ence in the mechanism design setting. Nevertheless, in Section 3.3 we quantify the extent to which
the empirically optimal mechanism can be improved upon in terms of profit by any sample-based
mechanism, and find that the scope for such improvements quickly vanishes as the sample size
increases.

More generally, the present paper fits into the broader literature on mechanism design when the
principal has perfect knowledge not about the whole distribution, as in the more standard models
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(e.g. Maskin and Riley, 1984), but only about some features of this distribution. With such infor-
mation, the firm can then narrow down the set of possible distributions to consider and adopt a
pricing strategy that maximizes the worst-case profit or minimizes the worst-case regret. This ap-
proach tries to address the concern that the optimal mechanism is not robust to the firm having
less than exact information on the distribution of consumers’ willingness-to-pay, in line with the
general research program of robust mechanism design.

In this broader literature, the papers which are closest to ours are Bergemann and Schlag (2008;
2011) and Carrasco et al. (2018a). These papers model a firm that does not know the distribution of
consumer types, but has access to imperfect information that allows it to refine the set of possible
distributions. Focusing on a linear specification, they assume the firm acts as if it faces an adversarial
nature that chooses a distribution to maximize regret.1 Bergemann and Schlag (2008) assume that
the firm knows only an upper bound for the support; Bergemann and Schlag (2011) study the case
where the firm also knows that the true distribution of consumers’ willingness-to-pay is in a given
neighbourhood of a given target distribution; Carrasco et al. (2018a) posits that the firm knows either
the first moment and an upper bound for the support of the distribution,2 or the first two or three
moments of the distribution. These papers then characterize the regret-minimizing mechanisms,
whereby the firm hedges against uncertainty by randomizing over prices. Our analysis shows that,
in addition to its other desirable properties, the empirically optimal mechanism generates nearly
minimal worst-case regret in the sense of these papers.

In another related paper, Madarász and Prat (2017) allow for a firm that is uncertain over both the
distribution of types and the functional form of consumers’ utility functions, while at the same
time endowing the firm with a possibly misspecified benchmark model of consumer demand. They
provide a uniform bound on regret that depends on the distance between the firm’s benchmark
model and the truth, where the measure of distance between models is related to the largest absolute
value of the difference of willingness-to-pay across all possible types and quantities. Instead of
looking at the worst-case scenario solution, the authors show that adjusting the pricing strategy
that is optimal for the misspecified model in a specific manner involving this distance leads to a
deterministic uniform bound on regret, similar to the probabilistic bound provided by the empirically
optimal mechanism.

A brief outline of the paper is as follows. Section 2 introduces the main theoretical framework. In
Section 3, we define our class of empirically optimal mechanisms and examine some of their main
properties: asymptotic optimality and profit guarantees. After exploring this particular class of
mechanisms, in Section 4 we turn to the question of providing a statistical toolkit to estimate and
conduct inference on profit, including optimal expected profit. Section 5 illustrates an extension
of our results to the auction setting with independent private values. Finally, we conclude with a
1Bergemann and Schlag (2011) also consider the case where nature minimizes profit and show the firm chooses a deter-
ministic uniform pricing rule.

2This is also the case in a closely related paper, Carrasco et al. (2018b), which relaxes the assumptions that consumers’
utility function is linear in quantity and that the firm’s cost is also linear.
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discussion of specific suggestions for further work in Section 6. All omitted proofs are included in
the Appendix.

2. Setup
Let Θ := [θ,θ] ⊂ R, denote the set of feasible consumer types, which are distributed according to
the cumulative distribution F0 ∈ F . Denote by F the set of all distributions on Θ endowed with
the supremum-norm ∥ ·∥∞, i.e., ∥F∥∞ := supt∈R |F(t)| for all F ∈ F . Consumers’ utility is given
by u(θ, x, p) = v(θ, x)− p, where θ is the consumer’s type, x ∈ X := [0, x] denotes quantity, and
p ∈ R+ price. We assume that v is twice continuously differentiable, concave in x, supermodular,
v(θ, x)= v(θ,0)= 0 for all θ and x, increasing in both arguments, and, wherever positive, strictly so.

The firm can choose a menu or mechanism M from the set M of all compact menus M′ ⊂ X ×R+
containing the element (0,0). These comprise pairs of quantity and prices that the consumers can
choose, with the option of consuming nothing being always available. We impose the further re-
striction that if (x,0) ∈ M′, then x = 0; that is, the firm does not give away strictly positive quantities
of the good for free.3 The firm incurs a twice differentiable, convex, and strictly increasing cost for
quantity sold, c : X →R, where c(0) = 0. When choosing menu M ∈M and facing a distribution of
consumer types F ∈F , the firm’s expected profit π(M,F) is given by

π(M,F) :=
∫

p(θ)− c(x(θ))dF(θ),

for some (x(θ), p(θ)) ∈ argmax(x,p)∈M u(θ, x, p), with ties broken in favor of the firm.

Our setup encompasses many of the variations in the literature, being mostly the same as that in the
one buyer version of Myerson (1981) and Maskin and Riley (1984), except that there c is assumed to
be linear and F corresponds to the distributions with a strictly positive density. Mussa and Rosen
(1978), instead, assume that v(θ, x) = θ · x and specify c to be strictly convex. In Bergemann and
Schlag (2011) and Carrasco et al. (2018a), v(θ, x)= θ · x and F is a subset of distributions that satisfy
some pre-specified conditions.4

We consider the case where neither the firm nor the consumers know the true distribution of types,
F0 ∈F , which motivates the choice of dominant strategies as our solution concept. Instead, the firm
has access to a sample Sn = (θi, i = 1, ...,n) ∈Θn, n ∈N, where each θi is independently drawn from
F0. As discussed later (Section 6), such a sample can and will often arise from, for instance, market
research previously conducted. This gives rise to the problem of selecting a menu depending on the
realized sample. Let S denote the set of all samples, S := ⋃

n∈NΘn. A sample-based mechanism is
then a mapping MS : S →M , which selects a specific menu depending on the realized sample.

The robust mechanisms mentioned earlier can easily be adjusted to incorporate the information in
the sample in order to estimate the features of the distribution that they assume to be known. For
3This restriction facilitates Section 4’s inference exercise for an arbitrary fixed menu and is without loss of revenue from
the firms’ perspective.

4It does not include, for instance, the case where the firm’s cost depends directly on the consumers’ type as in Example
4.1 in Toikka (2011).
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example, given a particular sample Sn, the firm can then estimate the support of the true distri-
bution and implement the mechanism given in Bergemann and Schlag (2008). Alternatively, it can
estimate the first few moments of the true distribution and implement the mechanism in Carrasco
et al. (2018a). A natural question is then whether, given sampling uncertainty, these sample-based
mechanisms would exhibit probabilistic robustness properties akin to the deterministic ones that
hold when these features are perfectly known. This question is relevant in practice since any in-
formation about an unknown distribution is usually obtained from finite data. We therefore take a
more direct and, arguably, simpler approach that makes full use of the sample itself to “learn” about
the underlying true distribution and inform mechanism choice.

3. Empirically Optimal Mechanisms
In this section, we introduce the class of empirically optimal mechanisms. This class of mechanisms
is defined by two elements: an estimator of the true distribution and a mapping that takes each
estimated distribution to a menu that would be optimal were the estimate to coincide with the true
distribution.5

Let F̂ denote the set of estimators that are consistent for F0, that is, the set of estimators F̂ such
that (i) F̂ : S → F ; and (ii) ∥F̂(Sn)−F0∥∞ p→ 0, for any F0 in F . Let M∗ : F → M be a fixed
selection from the set of optimal menus for every distribution, that is, ∀F ∈F , M∗(F) ∈M∗(F) :=
argmaxM∈M π(M,F). An empirically optimal mechanism M̂∗ is a sample-based mechanism that
simply composes together a consistent estimator and a selection from the set of optimal menus, that
is, M̂∗ = M∗ ◦ F̂ . We refer to the set of empirically optimal mechanisms as M̂∗.

While extremely simple, nothing ensures us that such a sample-based mechanism is either well-
defined in general environments or that it constitutes a reasonable approach to pricing under un-
certainty. The purpose of this section is to address these issues and show that this simple approach
to pricing delivers several desirable properties including strong probabilistic robustness guarantees.

3.1. Existence

In order to show that the set of empirically optimal mechanisms M̂∗ is nonempty, we start by briefly
noting that an optimal menu exists for any distribution F ∈F . Formally, we have that M∗(F) ̸= ;
for all F ∈ F — we include a formal proof of this statement in Appendix A. Since this implies
that a selection M∗ : F → M such that M∗(F) ∈ M∗(F) exists, and as there are consistent esti-
mators for any F0 ∈ F , the set of empirically optimal mechanisms M̂∗ is nonempty. An example
of a consistent (and unbiased) estimator for F0 is the empirical cumulative distribution, defined as
F̂(Sn)(θ) = 1

n
∑n

i=1 1{θi≤θ}. Moreover, for any F0 ∈ F , it has a uniform rate of convergence, that is,
∥F̂(Sn)−F0∥∞ p→ 0 (in fact, by the Glivenko–Cantelli theorem, uniform convergence occurs almost
5Note that, if the seller did have a prior, µ ∈∆(∆(Θ)), over the set of possible distributions, it would still be sufficient to
consider only the expected distribution according to the seller’s posterior, Eµ[F|Sn] ∈F , in order to determine which
mechanism to choose. That is, due to linearity of the profit function on the distribution, maxM∈M Eµ[π(M,F)|Sn] =
maxM∈M π(M,Eµ[F|Sn]).
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surely).

Note that under some specific conditions, an exact characterization of the set of optimal menus is
known. For instance, if v(θ, x) = θ · x and c(x) = c · x, it is well-known that any optimal mechanism
is F-almost everywhere equal to an indicator function 1{p∗≥θ}, where p∗ ∈ argmaxp∈supp(F)(p− c) ·∫

1{p≥θ} dF(θ). Such an explicit solution simplifies the problem of characterizing empirically opti-
mal mechanisms dramatically. When, instead, v is multiplicatively separable, and F0 is absolutely
continuous and has convex support, any optimal mechanism is almost everywhere equal to point-
wise maximization of the ironed virtual value as shown in Toikka (2011). Hence, the problem of
characterizing empirically optimal mechanisms can be made computationally tractable by ensuring
not only consistency, but also absolute continuity and convex support of estimates F̂(Sn). Although
the empirical cumulative distribution fails to be absolutely continuous, one such estimator F̂ can be
easily obtained by adopting any smooth interpolation of the empirical cumulative distribution, for
example a linear interpolation, a cubic spline, or an interpolation relying on Bernstein polynomials.6

3.2. Asymptotic Optimality

Having defined our class of empirically optimal mechanisms, we establish in this section that they
are asymptotically optimal: the realized expected profit given the mechanism converges in proba-
bility to the optimal expected profit as the sample size grows.

Such convergence is not guaranteed for arbitrary sample-based mechanisms, even for those that
have desirable robustness properties, as it requires that the sample-based mechanism makes full
use of the sample. For instance, if the mechanism relies only on statistics such as estimates for a
finite number of moments or the support of the distribution, then it is immediate that it will not, in
general, converge in probability to the optimal expected profit. Relying on an estimator for the true
distribution itself (an infinite-dimensional parameter) is then key to obtaining asymptotic optimality.

We start by making an important observation:

Lemma 1. For any M ∈ M , π(M,F) is Lipschitz continuous in F ∈ F , with a Lipschitz constant L

that does not depend on M.

We defer the proof to Appendix B, but highlight the main steps here. The proof of Lemma 1 first
makes use of the revelation principle to focus on the elements of any arbitrary menu that are payoff
relevant, as these are given by a bounded non-decreasing function, and hence of bounded variation.
Then, we appeal to a result that provides an upper bound on Riemann–Stieltjes integrals of functions
of bounded variation to obtain the result. In particular, we find a Lipschitz constant of at most

L = 2
(
v(θ, x)+ (θ−θ) ·max

θ′∈Θ
v1(θ′, x)+ c(x)

)
.

6In Appendix G, we provide a simple proof for the fact that linear interpolations retain the uniform convergence (and
therefore consistency) properties of the empirical distribution. See Babu, Canty and Chaubey (2002) and Leblanc (2011)
for details on interpolation of the empirical cumulative distribution using Bernstein polynomials.
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For every F ∈F , define the firm’s value function as

Π(F) := sup
M∈M

π(M,F).

Lemma 1 leads to a further result, this time regarding (Lipschitz) continuity of the value function:

Lemma 2. Π is Lipschitz continuous, with Lipschitz constant L.

Proof. For any F,G ∈F , |Π(F)−Π(G)| =
∣∣∣∣ sup
M∈M

π(M,F)− sup
M∈M

π(M,G)
∣∣∣∣≤ sup

M∈M
|π(M,F)−π(M,G)| ≤

L · ∥F −G∥∞.

Finally, the desired result of asymptotic optimality of our class of empirically optimal mechanisms
follows immediately:

Proposition 1. Let M̂∗ be an empirically optimalmechanism given by M̂∗ = M∗◦F̂ . Then, |π(M̂∗(Sn),F0)−
Π(F0)| p→ 0.

Proof. By Lemmas 1 and 2, we have that |π(M̂∗(Sn),F0)−Π(F0)| ≤ |π(M̂∗(Sn),F0)−π(M̂∗(Sn), F̂(Sn))|+
|π(M̂∗(Sn), F̂(Sn))−Π(F0)| ≤ L ·∥F̂(Sn)−F0∥∞+|Π(F̂(Sn))−Π(F0)| ≤ 2L ·∥F̂(Sn)−F0∥∞ p→ 0.

Proposition 1 provides a simple justification for using an empirically optimal mechanism to guide
the firm’s pricing strategy: as the sample size grows large, such sample-based mechanisms deliver
an expected profit close to the optimal one. We stress the minimal informational assumptions made.
In particular, this result does not depend on the firm knowing the support of the true distribution F0

ex ante, as the empirically optimal mechanism is defined making use only of the estimated cumu-
lative distribution and there are consistent estimators that require no assumptions on (and in fact,
asymptotically learn) the support of F0. Moreover, as Π(F0)−π(M̂∗(S),F0)≤ 2L∥F̂(S)−F0∥∞, we
conclude that empirically optimal mechanisms are robust in a sense akin to Bergemann and Schlag
(2011), since for any ε> 0, samples inducing ∥F̂(S)−F0∥∞ < ε imply that Π(F0)−π(M̂∗(Sn),F0)≤
2Lε.

3.3. Robustness Properties

While some sample-based implementations of existing robust mechanisms would not be asymptot-
ically optimal, it is possible that others would. Thus, an obvious question is: Do empirically optimal
mechanisms provide robustness guarantees with finite samples that render them especially appeal-
ing? In this section, we argue that this is indeed the case.

Robustness properties of mechanisms regard worst-case scenarios. The existing literature has fo-
cused on two main properties. One corresponds to the worst-case profit that the firm can expect
given that the true distribution lies in a specific set A ⊆ F . This is in part motivated by appeal-
ing to the characterization of preferences exhibiting ambiguity aversion by Gilboa and Schmeidler
(1989), which entails a maxmin representation, whereby the decision-maker (here, the firm) evalu-
ates each act (mechanism) by assuming the worst-case payoff. The robustness of a specific mech-
anism according to this criterion is then given by the lower bound on expected profit it can attain,
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minF∈Aπ(M,F). The second robustness criterion that has been considered in the literature depends
on the notion of regret: How much profit the firm may be forgoing by committing to mechanism M

when the true distribution is F0, that is, R(M,F0) :=Π(F0)−π(M,F0).

A simple implication of Lemmas 1 and 2 is that we can immediately obtain probabilistic bounds on
regret and on how far the realized expected profit may be from the profit the firm expects to obtain
given its estimated distribution.

Proposition 2. Let M̂∗ = M∗ ◦ F̂ be an empirically optimal mechanism. Suppose that F̂ ∈ F̂ is

such that ∀Sn ∈ S , P(∥F̂(Sn)−F0∥∞ > δ) ≤ p(n,δ) for some function p : N×R+ → [0,1]. Then, (i)

P
(|π(M̂∗(Sn), F̂(Sn))−π(M̂∗(Sn),F0)| > δ)≤ p(n,δ/L); and (ii) P

(
R(M̂∗(Sn),F0)> 2δ

)≤ p(n,δ/L),

where L denotes the Lipschitz constant from Lemma 1.

While Proposition 2 is a trivial observation, it enables the firm to obtain strong, non-asymptotic
probabilistic bounds on both profit and regret whenever basing an empirically optimal mechanism
on an estimator F̂ with specific properties. Whenever the firm knows an upper bound θ for the
support of the true distribution, L can be obtained in a way that depends exclusively on known
constants and these probabilistic profit and regret guarantees can be computed explicitly. The next
two examples illustrate how this result can be applied by focusing on estimators F̂ with well-known
properties, such as the empirical cumulative distribution and smooth interpolations of it.

Example 1. Let M̂∗ = M∗ ◦ F̂ be any empirically optimal mechanism such that F̂ denotes the cu-
mulative distribution estimator. By the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky, Kiefer
and Wolfowitz, 1956) with Massart’s (1990) constant, we have that

P(∥F̂n −F0∥∞ > δ)≤ 2exp
(−2nδ2)

and hence p(n,δ) = 2exp
(−2nδ2). Then, Proposition 2 applies and we can obtain regret lower

than 2δ with probability of at least 1− p(n,δ) and a confidence bound with range 2δ such that the
true expected profit differs from π(M̂∗(Sn), F̂(Sn)) by less than δ also with probability greater than
1− p(n,δ).

Example 2. Suppose that F is restricted to the set of absolutely continuous distributions on Θ, of
which F0 is known to be an element of, and that v is multiplicatively separable in θ ∈Θ and x ∈ X .
If we were to constrain F̂(S) to also be absolutely continuous, admitting a strictly positive density
and having convex support, an analytic characterization of M∗(F̂(S)) is known, given by pointwise
maximization of the ironed virtual value given F̂(S).7 This would then simplify the computational
cost of finding the optimal mechanism. Take F̂ to be any interpolation of the empirical cumulative
distribution that results in a valid distribution function that is absolutely continuous and has convex
support, such as the linear interpolation (see Lemma 10 in the appendix). Note that given that
F0 is atomless by assumption, P (∃k,ℓ ∈ {0,1, ...,n−1} : sk = sℓ) = 0 ∀n ∈ N, and thus the linear

7Toikka (2011) has shown that for any absolutely continuous distribution F on Θ with a strictly positive density, the set
of maximizers M∗(F) pointwise maximize J̄(θ)v(θ, x)− c(x), where J̄(θ) is the ironed version of J(θ) := θ− 1−F(θ)

f (θ) .
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interpolation is well-defined with probability 1. Furthermore, for any such interpolation F̂ , with
probability 1, the estimate given by F̂(Sn) differs from the empirical cumulative distribution F̂E(Sn)

by at most 1/n at any given point. Hence,

P(∥F̂(Sn)−F0∥∞ > δ)≤P(∥F̂E(Sn)−F0∥∞+∥F̂(Sn)− F̂E(Sn)∥∞ > δ)

≤P(∥F̂E(Sn)−F0∥∞ > δ−1/n)≤ 2exp
(−2n(δ−1/n)2) ,

where, again, the last inequality follows from the Dvoretzky–Kiefer–Wolfowitz inequality withMas-
sart’s constant. It follows that p(n,δ) = 2exp

(−2n(δ−1/n)2). As F̂ ∈ F̂ , Proposition 2 applies and
the regret and confidence bounds are obtained.

As this next example shows, under some assumptions on the true distribution F0 one can even
obtain not only non-asymptotic, but also deterministic (i.e., non-probabilistic) regret and confidence
bounds.

Example 3. Suppose that it is known that the true distribution F0 admits a density f0 with total
variation bounded by B < ∞ and has support contained in [0,1].8 Let VB denote the set of all
densities on [0,1] with total variation bounded by B. Take any kernel density estimator, given by

f̂ (Sn)(u)= 1
nhn

n∑
i=1

K
(

u−θi

h

)
,

where h is a smoothing parameter such that h → 0 as n →∞, θi denotes the value of observation i,
K ≥ 0 and

∫
K(u)du = 1. From theorem 3 in Datta (1992), we know that, for any such kernel density

estimator f̂n, one has

sup
f ∈VB

∥ f̂ (Sn)− f ∥1 ≤ (2B+1)k1h+
(

k2

nh

)1/2
,

where k1 := ∫ |u|K(u)du and k2 := ∫
K2(u)du. Define q(n,h) := (2B + 1)k1h +

(
k2
nh

)1/2
and let

F̂(Sn)(θ) := ∫
1u≤θ f̂ (Sn)(u)du denote the estimated cumulative distribution.

Note that there are several kernel density estimators available such that

k1 =
∫

|u|K(u)du <∞ and k2 =
∫

K2(u)du <∞,

e.g. if K is the uniform kernel, triangle, Epanechnikov, among others.
In order for F̂ to belong to F̂ we need for it to (1) be uniformly consistent and (2) to have com-
pact support. There are several ways to achieve this, namely by relying on a kernel such that∫
|u|>δK(u)du = 0 for some finite δ> 0 — which is satisfied by most of the standard kernels, namely
the ones cited above. For any such kernel, k1,k2 <∞ and ∀Sn ∈S , supp F̂(Sn)⊆Θ is compact, by
choosing lower and upper bounds θ, θ appropriately.
Therefore,

∥F̂(Sn)−F0∥∞ = sup
θ∈Θ

∣∣F̂(Sn)(θ)−F0(θ)
∣∣= sup

θ∈Θ

∣∣∣∣∫ 1u≤θ
(
f̂ (Sn)(u)− f0(u)ds

)∣∣∣∣
≤ sup

θ∈Θ

∫
1u≤θ| f̂ (Sn)(u)− f0(u)|ds ≤ ∥ f̂ (Sn)− f0∥1 ≤ q(n,h),

8This can be generalized to some closed interval in R.
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where ∥ ·∥1 denotes the L1 norm, i.e. ∥ f ∥1 := ∫ | f (u)|du. It follows immediately that if h → 0

and n · h → ∞, ∥F̂(Sn)−F0∥∞ → 0 and, consequently, F̂ ∈ F̂ . The argument above implies that
R(M̂∗(Sn),F0) ≤ q(n,h)/2L and |π(M̂∗(Sn), F̂(Sn))−π(M̂∗(Sn),F0)| ≤ q(n,h)/L. As such, if f0 has
total variation bounded by B, we can obtain non-probabilistic bounds on regret and expected profit
when implementing an empirically optimal mechanism based on kernel density estimation.

Other sample-based mechanisms could potentially yield even stronger robustness properties. How-
ever, for any sample-based mechanism MS , one has

R(MS(Sn),F0)−R(M̂∗(Sn),F0)=π(MS(Sn),F0)−π(M̂∗(Sn),F0)

≤Π(F0)−π(M̂∗(Sn),F0)= R(M̂∗(Sn),F0).

As the examples above show, choosing F̂ appropriately ensures that P(R(M̂∗(Sn),F0)> δ) declines
exponentially with n. Hence, the gains in profit and regret guarantees from implementing alterna-
tive pricing policies are modest at best, in a formal sense.

To conclude this section, we note that Proposition 2 can instead be used to determine how many
samples the firm requires in order to obtain specific robustness guarantees when relying on em-
pirically optimal mechanisms. That is, another reading of Proposition 2 is that the firm only needs
at most N samples — where N is the smallest integer such that α ≥ p(N,δ/L) — to secure at most
2δ of regret with probability 1−α. Alternatively, the same N samples provide a (conservative)
confidence interval for profit with range 2δ and confidence level of 1−α. This results in a non-
asymptotic sample complexity bound for a specific class of sample-based mechanisms. In contrast
to the sample-complexity bounds obtained in Huang, Mansour and Roughgarden (2018), which per-
tain to the share of the optimal profit that the firm is able to secure, R(M,F0)/Π(F0), we focus on
bounding regret directly and our bounds are not asymptotic, that is, they hold for finite samples.

4. Inference and Robustness
While the revenue and regret guarantees derived in the previous section are useful, it is often crucial
for a firm to to be able to obtain consistent projections for the profit for any given pricing strategy.
This consistency is essential for informing various business activities, such as budget planning and
inventory management, based on reliable profit estimations. In this section, we show how to obtain
consistent and unbiased estimates and conduct inference on the expected profit.

Our results enable unbiased and consistent estimation of and inference on the expected profit not
only of empirically optimal mechanisms but of any given mechanism M ∈M . Moreover, we show
how empirically optimal mechanisms serve a special purpose, in that they can be used to estimate
and conduct inference on the optimal expected profit. With these tools, one can provide confidence
intervals for the expected profit with specific asymptotic coverage for any one mechanism, calculate
probabilistic bounds for regret, or test whether one mechanism yields a higher expected profit than
another.
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4.1. Expected Profit

An immediate consequence of Lipschitz continuity of the firm’s profit function with respect to the
distribution is that, for any mechanism and any consistent estimator of the distribution of types,
one can consistently estimate the expected profit that such a mechanism would generate.

Proposition 3. For any true distribution F0 ∈ F , consistent estimator F̂ ∈ F̂ , and mechanism M ∈
M , we have π(M, F̂(Sn))

p→ π(M,F0). Moreover, if F̂ is an unbiased estimator such as the empirical

distribution function, E
[
π(M, F̂(Sn))

]=π(M,F0), that is, the plug-in estimator is also unbiased.

Proof. By Lemma 1, we have that, ∀F̂ ∈ F̂ and ∀M ∈ M , |π(M, F̂(Sn))−π(M,F0)| ≤ L∥F̂(Sn)−
F0∥∞ p→ 0. Moreover, if F̂ is an unbiased estimator of F0, by linearity of π(M,F) in F , we have that
E
[
π(M, F̂(Sn))

]=π(M,E
[
F̂(Sn)

]
)=π(M,F0).

An important aspect of estimation is the ability to conduct inference. For instance, the firm could
be interested in using statistical inference in order to compare different mechanisms, that is, to test
whether a specific mechanismwould deliver a higher expected profit than another. Another possible
application would be to obtain valid confidence intervals for the expected profit under a particular
mechanism, as it is an arguably crucial tool for the development of routine business activities such
as drawing up budgets under different scenarios, with varying degrees of confidence.

While the firm could potentially derive confidence intervals for the expected profit by adjusting
Proposition 2 and Example 1 to the mechanism it is considering, these bounds would exhibit two
drawbacks when used for this purpose. First, they require knowledge of θ, the upper bound on the
type distribution. Second, and more critically, they generally do not provide the correct asymptotic
coverage, that is, they would be exceedingly conservative.

In order to address these drawbacks, we suggest a simple estimation procedure that does yield
asymptotically valid inference. First, we focus on the empirical distribution function as our esti-
mator, since it admits a functional central limit theorem (by Donsker’s theorem) when properly
centered and rescaled. Then, because profit is linear and continuous in the type distribution, it is
Fréchet differentiable, with derivative given by π̇M(·)=π(M, ·).9 One can thus obtain the asymptotic
distribution of our consistent estimator for the expected profit π(M, F̂(Sn)) by appealing to a simple
functional Delta method result.

Theorem 1. Let F̂ denote the empirical distribution estimator. Then, ∀M ∈M and ∀F0 ∈F , we have

that
p

n
(
π(M, F̂(Sn))−π(M,F0)

) d→ N(0,σ2
M,F0

), whereσ2
M,F0

:= E[
(π̇M(δθ−F0))2]= E[

(π(M,δθ−F0))2],
θ ∼ F0, and δθ the cumulative distribution associated with a Dirac measure at θ.

Theorem 1 states that the distribution of the empirical process,

Gn :=p
n

(
π(M, F̂(Sn))−π(M,F0)

)
,

9The Fréchet derivative π̇M is defined on the space of functions onΘ of bounded variation endowedwith the supremum-
norm. We refer to the appendix for details.

12



converges weakly to N(0,σ2
M,F0

); proof is given in Appendix D. A question then arises of how
to estimate, in practice, the asymptotic distribution in a consistent manner, as it depends on the
unknown distribution F0. We provide two alternatives. One option is the use of a plug-in estimator
for σ2

M,F0
. This can be done directly — as the functional dependence of σ2

M,F0
on F0 is known and

a consistent estimate for F0 is readily available — or by following other plug-in methods as those
in Shao (1993). Another option is to rely on the classical bootstrap to approximate the distribution
of Gn by the distribution of Ĝn := p

n
(
π(M, F̂(Sn

B))−π(M, F̂(Sn))
)
, conditional on Sn, where Sn

B

denotes the resampling of n observations from Sn with uniform weights. That this approach does
in fact consistently estimate the limiting distribution was shown by Parr (1985a, Theorem 4).

We note that other bootstrap methods would also yield consistent estimates, such as subsampling
(bootstrap without replacement) (Politis and Romano, 1994) or Jackknife procedures (Parr, 1985b).
Moreover, given that the Fréchet derivative of profit is sufficientlywell-behaved, under some smooth-
ness assumptions on the true distribution F0, smoothed versions of the bootstrap (Cuevas and Romo,
1997) can also be considered.

4.2. Optimal Profit and Regret

We now extend our statistical inference results, highlighting how empirically optimal mechanisms
can be used to provide a consistent and asymptotically normal estimator for optimal profit.

Given that the firm’s value function is Lipschitz continuous in the distribution and that empirically
optimal mechanisms attain the optimal profit for a consistent estimate of the true distribution, it is
easy to see that one can then use them as a tool to consistently estimate the optimal profit that the
firm would obtain, were it to know F0. We formalize this observation as follows:

Proposition 4. For any true distribution F0 ∈ F and empirically optimal mechanism M̂∗ given by

M̂∗ = M∗ ◦ F̂ , π(M̂∗(Sn), F̂(Sn))
p→Π(F0).

Proof. Similarly to Proposition 3, we again have that, by Lemma 2, Π is Lipschitz continuous and
therefore, |π(M̂∗(Sn), F̂(Sn))−Π(F0)| = |Π(F̂(Sn))−Π(F0)| ≤ L∥F̂(Sn)−F0∥∞ p→ 0.

It is less straightforward that one could take an approach to conducting inference on the optimal
profit similar to that derived for fixed mechanisms. Specifically, this would require proving that the
firm’s value function Π is also Fréchet differentiable.10 We confirm that indeed such an approach is
valid by proving an interesting technical result in this generalized Maskin–Riley setup: an envelope
theorem for the firm’s value function. In other words, our next result — for which the proof is given
in Appendix C — shows that the value function is Fréchet differentiable at any distribution F ∈ F

and that its Fréchet derivative coincides with that of the expected profit at F with the optimal menu
for F .

10In fact, the now standard functional Delta method requires only the weaker notion of Hadamard differentiability; see,
e.g., van der Vaart and Wellner (1996, ch. 3.9). However, the stronger notion of Fréchet differentiability has the benefit
of allowing us to bypass the measurability complications that arise when using weaker notions.
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Theorem 2 (Envelope Theorem). Π is Fréchet differentiable at all F ∈F . Moreover, its Fréchet deriva-

tive at F is given by Π̇F = π̇MF , ∀MF ∈M∗(F).

The proof can be found in Appendix C. We note that Theorem 2 constitutes a much stronger re-
sult than the standard envelope theorem.11 It is exactly owing to delivering on a stronger notion
of differentiability that we obtain asymptotically valid inference. Specifically, defining the empiri-
cal process Ĝn :=p

n
(
Π(F̂(Sn

B))−Π(F̂(Sn))
)
, conditional on Sn, an adapted version of Theorem 1

ensues:

Theorem3. Let F̂ denote the empirical distribution estimator. Then,∀F0 ∈F ,
p

n
(
Π(F̂(Sn))−Π(F0)

) d→
N(0,σ2

F0
), where σ2

F0
= E

[(
Π̇F0(δθ−F0)

)2
]
= E

[
(π(MF ,δθ−F0))2] and θ ∼ F0. Moreover, Ĝn

d→
N(0,σ2

F0
).

In this case, opposite to the case of inference under a fixed mechanism, we do not have a valid
(consistent) plug-in estimator for σ2

F0
, which depends on F0 and, more problematically, also on an

optimal mechanism under the distribution F0, M0 ∈M∗(F0). An important argument in favour of
a bootstrap approach to estimating the asymptotic distribution in this case is that it bypasses this
issue.

Under some conditions, it may make sense to rely on different estimators. For instance, as discussed
in Example 2, when v(θ, x) is multiplicatively separable and F0 is known to be absolutely continuous
and with compact and convex support, the functional form of the solution is exactly known. This
allows for a drastic simplification of the problem from a computational point of view since it dis-
penses with the hurdle of finding the optimal mechanism for a given distribution. Especially in the
context of implementing a bootstrap approach, the gains can be substantial. However, an estimate
of the ironed virtual value depends on a suitable estimate of the density f . Therefore, we find it
especially relevant that, when F0 is known to be absolutely continuous, one can use as an estimator
the simple linear interpolation of the empirical distribution discussed earlier to obtain a bootstrap
estimator for the asymptotic distribution. Further, we note that this extremely simple approach is
not only consistent for the true distribution F0, but also for its density.

Proposition 5. Let F̂ denote the linear interpolation of the empirical distribution estimator. Then, for

any absolutely continuous F0 ∈F , (1)
p

n
(
Π(F̂(Sn))−Π(F0)

) d→ N(0,σ2
F0

), whereσ2
F0

= E
[(
Π̇F0(δθ−F0)

)2
]
;

(2) Ĝn
d→ N(0,σ2

F0
); and (3) ∥ f̂ (Sn)− f0∥1

p−→ 0, where f̂ (Sn) and f0 denote the Radon-Nikodym deriva-

tives of F̂(Sn) and F0, respectively.

Estimating the optimal expected profit may be relevant for investment decisions, as it provides an
upper bound on the return of a given investment. Furthermore, these results can also be used to
estimate regret. As regret, R(M,F), is given by R(M,F)=Π(F)−π(M,F), it is Fréchet differentiable
at any distribution F ∈ F , for any fixed M ∈ M , as the sum of Fréchet differentiable functionals is
11The results in Milgrom and Segal (2002) yield only directional derivatives and are insufficient to deliver asymptotic
normality of our estimator.
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itself Fréchet differentiable. Then, using similar arguments as those in Proposition 4 and Theorem
3, one can conduct inference on regret. Consequently, for any mechanism M ∈M , one can not only
obtain asymptotically valid probabilistic bounds for expected profit, but also for regret.

4.3. Simulation Evidence

To conclude this section, we present empirical evidence on the finite sample properties of our esti-
mators.

We conduct Monte Carlo simulations on the empirical coverage of the confidence intervals for ex-
pected profit under a fixed mechanism — uniform pricing, with the price set at 1/2 — and for the
optimal expected profit, using empirically optimal mechanisms for the empirical distribution. We
use the approximation obtained by classic bootstrapping (N out of N), which we have shown to be
asymptotically valid. We show simulation results for confidence levels α ∈ {.1, .05, .01}, with varying
sample size N . For each sample size, we draw 1,000 samples and, for each sample, we estimate the
confidence interval by drawing 1,000 bootstrap samples from the original sample.

We focus on the case where consumers have quasilinear-linear utility and the unit cost is normalized
to zero, as in Bergemann and Schlag (2011) and Carrasco et al. (2018a). We show results for three
different parameterizations of F0 relying on the Beta distribution: Beta(1/4,1/4), Uniform(0,1) and
Beta(4,4).12

In Table 1 we present evidence for the empirical coverage frequency at sample sizes of 500, 1,000
and 2,500. As is immediate upon inspection of the table, our estimators have extremely good fi-
nite sample properties, with the empirical coverage frequencies being very close to the theoretical
asymptotic coverage probability, regardless of which of the three distributions is considered. We
also investigated the behaviour of our estimators under small samples. As Figure 1 shows, they fare
reasonably well for sample sizes between 50 and 300.

We also considered the regret incurred by adopting an empirically optimal mechanism that depends
on the empirical distribution with finite samples. As illustrated in Figure 2, we empirically study the
average regret as a share of the optimal expected profit, that is,

(
Π(F0)−π(M̂∗(Sn),F0)

)
/Π(F0). The

average is taken across 1,000 samples of varying size in increments of 10 observations. Even with
just 50 observations, the empirically optimal mechanism on average attains regret that is under 4%
of the optimal expected profit. For the purpose of comparison, the robust mechanism in Carrasco
et al. (2018a, Section 5.1), relying on an estimate of the mean and assuming knowledge of the upper
bound of the distribution, exhibits average regret no lower than 20% of the optimal expected profit
under any of the three distributions we consider.13

12The empirical coverage results were consistent across other parameterizations and using Beta mixtures or mixtures
with degenerate distributions.

13We observe that for the minimax regret distribution derived in Carrasco et al. (2018a), by construction, the empirically
optimal mechanism will attain the optimal profit with probability one and regardless of the number of samples, and,
therefore, also attain the minimal regret.
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Table 1: Empirical Coverage Frequencies

(a) Profit with Fixed Mechanism

Beta(1/4,1/4) Unif(0,1) Beta(4,4)
1−α .90 .95 .99 .90 .95 .99 .90 .95 .99

N
500 .891 .944 .983 .892 .946 .987 .895 .943 .988

1,000 .901 .934 .985 .901 .946 .986 .896 .953 .985
2,500 .909 .954 .989 .903 .953 .989 .889 .948 .985

(b) Optimal Profit

Beta(1/4,1/4) Unif(0,1) Beta(4,4)
1−α .90 .95 .99 .90 .95 .99 .90 .95 .99

N
500 .881 .933 .989 .894 .945 .983 .895 .950 .987

1,000 .886 .945 .985 .888 .943 .981 .894 .941 .984
2,500 .910 .952 .988 .890 .941 .988 .884 .933 .984

Note: This table shows the frequency with which the estimated confidence interval with asymptotic coverage of 1−α
contained the true expected profit, π(M,F0) in the case of a fixed mechanism and Π(F0) in the case of the optimal ex-
pected profit. The fixed mechanism corresponds to uniform pricing at 1/2. The estimated confidence interval followed
a centred bootstrap procedure with 1,000 samples redrawn with replacement from the original sample with 1,000 itera-
tions, for each sample size N .

5. Extension to Single-Item Auctions
Before concluding, we discuss how to apply some of the insights developed in this paper to the re-
lated setting of single-unit auctions. In particular, we show how simple empirically optimal mech-
anisms in this context exhibit some of the desirable robustness features shown in Section 3.

Suppose that the firm has a single item to auction to M ≥ 2 bidders. The firm values the item at c > 0,
and each bidder i = 1, ..., M is risk-neutral and values the item at θi, drawn independently from the
distribution F0. To make matters simple, we assume that F0 is absolutely continuous with convex
and compact support. In such case, it is well-known that revenue equivalence holds and that a
second-price auction with a reserve price is optimal for the firm, with bidders disclosing their types.
Then, the optimal reserve price when the type distribution F satisfies the same assumptions solves
max
r∈Θ

π(r,F), where π(r,F) = ∫ θ
r dF(2;M) and F(2;M) denotes the distribution of the second-highest

willingness-to-pay, given a distribution of types F and M bidders. That is,

F(2;M)(θ)= M ·F(θ)M−1(1−F(θ))+F(θ)M .

Consider the case where the firm has access to a sample of n observations drawn from F0 and the
reserve price is set before bids are submitted.14 Similar to before, denote an empirically optimal
reserve price r̂∗ as the composition of a consistent estimator, F̂ , of the true distribution F0, based
on the realized sample Sn, and a selection from the set of reserve prices that are optimal for F , r∗.

The next proposition provides an analogue of Propositions 1 and 2 to this specific setting:

Proposition 6. Let r̂∗ be an empirically optimal reserve price given by r̂∗ = r∗◦F̂ . Then, |π(r̂∗(Sn),F0)−
14The same arguments apply when the reserve price is secret and takes into account the bids submitted, as these would
just translate into a larger sample of n+M observations.
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Figure 1: Empirical Coverage Frequencies
Note: This figure shows the frequency with which the estimated confidence interval with asymptotic coverage of 1−α=
.9, .95, .99 contained the true expected profit, π(M,F0) in the case of a fixed mechanism and Π(F0) in the case of the
optimal expected profit. The procedure is as described in the note to Table 1. Sample size N varies between 10 and 300
with increments of 10 observations. The fixed mechanism corresponds to uniform pricing at 1/2.
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Figure 2: Regret of the Empirically Optimal Mechanism as a share of Optimal Profit
Note: This figure shows the average regret of the empirically optimal mechanism as a fraction of the optimal expected
profit under the true distribution F0. The average is taken over 1,000 samples for each sample size N between 10 and
300 with increments of 10 observations.

Π(F0)| p→ 0. Moreover, if F̂ ∈ F̂ is such that ∀Sn ∈ S , P(∥F̂(Sn)−F0∥∞ > δ) ≤ p(n,δ) for some

function p : N×R+ → [0,1], then, (i) P
(|π(r̂∗(Sn), F̂(Sn))−π(r̂∗(Sn),F0)| > δ) ≤ p(n,δ/L); and (ii)

P (R(r̂∗(Sn),F0)> 2δ)≤ p(n,δ/L), where L = 2M(M−1) and Π(F) := supr∈Θπ(r,F).

The key insight is that the expected profit is linear in distribution of the second-order statistic
and that this in turn is Lipschitz continuous in the distribution of types, ∥F(2;M) −G(2;M)∥∞ ≤
2M(M − 1)∥F −G∥∞. For r̂∗ to be empirically optimal, though, we must have that F̂(Sn) is ab-
solutely continuous and has convex and compact support. Similarly to Example 2, when F̂ is the
linearly interpolated empirical distribution we have that p(n,δ) = 2exp(−2n(δ−1/n)2), delivering
regret and confidence bounds.15

As this application illustrates, our results on the robustness properties of empirically optimal mech-
anisms extend naturally to auction settings. There is, however, a natural limitation in extending our
results on inference: expected profit is linear in the distribution of the second-order statistic, not in
the distribution of types themselves.

6. Concluding Remarks
This paper has studied two separate but related questions. The first is how a firm should price when
uncertain about the distribution of consumers’ willingness-to-pay. The second is how to conduct
inference regarding the expected profit, both under any fixed pricing strategy and for the optimal
profit. When the firm has access to a sample of consumers’ valuations, we have shown that adopt-
ing an extremely simple approach — estimating the distribution using the sample and then pricing

15Cole and Roughgarden (2014) provide alternative sample-complexity bounds for this problem, characterizing the
asymptotic number of samples needed to achieve (1−ϵ) share of the optimal profit.
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optimally for the estimated distribution — yields attractive robustness properties, in particular ob-
taining probabilistic lower bounds both for the expected profit and for regret. On the other hand,
we provided a toolkit to conduct inference for the profit. This enables practitioners to obtain con-
fidence intervals not only for expected profit but also, for example, for the difference in profit that
two different mechanisms induce. More generally, this allows for a data-based approach to robust
mechanism design, where robustness properties are inferred from available data.

One important concern that we have not discussed is how to obtain such a sample. In order to elicit
types (i.e., generate a sample), the firm could for instance conduct market research and elicit such
a sample by means of a mechanism that induces each type to self-select to a different pair of quan-
tity and price.16 Indeed, this is common practice: beyond gathering qualitative information about
consumers’ preferences from surveys, focus groups, or interviews, many consultancy firms also ex-
perimentally elicit consumers’ types using incentive-compatible mechanisms in what is known in
the industry under the umbrella term of ‘experimental auctions’ — even though sometimes it simply
corresponds to the BDM mechanism (Becker, Degroot and Marschak, 1964).17 This market research
can then lead to the original sample or expand an existing sample — in which case a cost-benefit
analysis on the net value of acquiring additional observations may come into play.

One interesting avenue for future research considers the dynamical choice of information combin-
ing sampling and experimentation. While, under some conditions, optimal experimentation also
asymptotically attains the optimal profit (see, e.g., Aghion et al., 1991), the implied cost is often dis-
tinct. Naturally, the interplay between these two sources of information will dictate when and how
much market research a firm does to optimise its pricing, compared to learning-by-doing.
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Appendix.

Appendix A. Existence of optimal mechanisms for arbitrary type distribu-

tions

Lemma 3. M∗(F) ̸= ; for all F ∈F .

Proof. Define p := max(θ,x)∈Θ×X v(θ, x) and endow the power set of X × [0, p] with the Hausdorff
metric. It is well-known that with the topology induced by the Hausdorff metric, the set of all com-
pact subsets of X × [0, p], denoted by K (X × [0, p]), is itself compact. Define the set of mechanisms
MIR as

MIR :=
{

M ∈M : max
(x,p)∈M

p ≤ p
}
⊆K (X × [0, p]).

Clearly, MIR is closed, and therefore also compact. Since v(·, ·) is continuous and clearly so is the
mapping Θ×MIR ∋ (θ, M) 7→ M∪ (0,0), we have by the Berge’s maximum theorem that the corre-
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spondence MIC :Θ×MIR â X × [0, p] such that

(θ, M) 7→MIC(θ, M)= argmax
(x,p)∈M∪(0,0)

v(θ, x)− p

is non-empty, compact valued and upper hemicontinuous. Applying the maximum theorem once
again, we obtain that the value function γ :Θ×MIR →R where

(θ, M) 7→ γ(θ, M)= max
(x,p)∈MIC(θ,M)

p− c(x)

is upper semicontinuous, i.e., for any (θ0, M0) ∈ Θ×MIR , limsup(θ,M)→(θ0,M0)γ(θ, M) ≤ γ(θ0, M0).
Now, since γ is bounded, we can apply (reverse) Fatou’s Lemma to obtain that for any M0 ∈MIR ,

limsup
Mn→M0

∫
γ(θ, Mn)dF(θ)≤

∫
limsup
Mn→M0

γ(θ, Mn)dF(θ)≤
∫
γ(θ, M0)dF(θ).

This proves that the mapping (F, M) 7→ ∫
γ(·, M)dF is upper semicontinuous in M for every F ∈F .

Therefore, since MIR is compact, the extreme value theorem guarantees the existence of M∗ ∈
argmaxM∈MIR

π(M,F)= argmaxM∈M π(M,F) for all F ∈F , where the latter equality comes from
the fact that (x, p) ∈ X × (p,∞) will never be chosen over (0,0).

Appendix B. Proof of Lemma 1

We first state two results that will prove useful in determining the Lipschitz continuity of π(M,F) in
F ∈ F . Let P :=

{
P = θ0, . . . ,θnP : θ = θ0 ≤ θ1 ≤ ·· · ≤ θnP = θ

}
and V ( f ) := supP∈P

∑nP−1
i=0 | f (θi+1)−

f (θi)|, where V ( f ) denotes the total variation of a function f :Θ→R. We have:

Lemma 4 (Beesack-Darst-Pollard Inequality (Darst and Pollard, 1970; Beesack, 1975)). Let f , g,h be

real-valued functions on a compact interval I = [a,b] ⊂ R, where h is of bounded variation with total

variation V (h) on I and such that
∫ b

a f dg and
∫ b

a hdg both exist. Then,

m
∫ b

a
f dg+V (h) sup

a≤a′≤b′≤b

∫ b′

a′
f dg ≥

∫ b

a
hf dg ≥ m

∫ b

a
f dg+V (h) inf

a≤a′≤b′≤b

∫ b′

a′
f dg,

where m = inf {h(x) : x ∈ I}.

The following is a standard result in the mechanism design literature based on Mirrlees (1971) and
Milgrom and Segal (2002).

Lemma 5. The choices from a menu M ∈ M satisfy (x(θ), p(θ)) ∈ argmax
(x,p)∈M∪{(0,0)}

u(θ, x, p) if, and only

if, x(·) is nondecreasing, x(θ)= 0 and p(θ)= v(θ, x(θ))−∫ θ
θ v1(s, x(s))ds.

For any F ∈ F , we can thus rewrite the problem — with some abuse of notation — by choosing
directly a function x from the set X , where X :=

{
x : [θ,θ]→ X , x is nondecreasing and x(θ)= 0

}
,

in order to maximize profit, given by

π(x,F) :=
∫
Θ

(
v(θ, x(θ))−

∫ θ

θ
v1(s, x(s))ds− c(x(θ))

)
dF(θ).

Consider the normed vector space (BV (Θ),∥ ·∥∞), where BV (Θ) := {g :Θ→R | V (g) <∞}. For any
fixed M ∈M , consider its corresponding allocation function x ∈X and extend the functional π(M, ·)
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to BV (Θ) by defining

π(M,H)=
∫
Θ

(
v(θ, x(θ))−

∫ θ

θ
v1(s, x(s))ds− c(x(θ))

)
dH(θ), ∀H ∈ BV (Θ).

Clearly, π(M,F)=π(M,F) for all F ∈F . Moreover, note that for all F,G ∈ BV (Θ),

|π̄(M,F)− π̄(M,G)| =
∣∣∣∣∫
Θ

(
v(θ, x(θ))−

∫ θ

θ
v1(s, x(s))ds− c(x(θ))

)
d(F −G)(θ)

∣∣∣∣
≤

∣∣∣∣∫
Θ

h1 d(F −G)(θ)
∣∣∣∣+ ∣∣∣∣∫

Θ
h2(θ)d(F −G)(θ)

∣∣∣∣
where h1(θ) := v(θ, x(θ)) and h2(θ) := ∫ θ

θ v1(s, x(s))ds+ c(x(θ)). As both v and x are nondecreasing,
we have that, for any x(·),

V (h1)= v(θ, x(θ))−v(θ, x(θ))≤ v(θ, x)=: L1 <∞.

As v is supermodular and nondecreasing in θ and c is increasing and convex,

V (h2)=
∫ θ

θ
v1(s, x(s))ds+ c(x(θ))− c(x(θ))≤ (θ−θ) ·max

θ′∈Θ
v1(θ′, x)+ c(x)=: L2 <∞

Moreover, we note that infθ∈Θh1(θ) = v(θ, x(θ)) = 0 and infθ∈Θh2(θ) = ∫ θ
θ

v1(s, x(s))ds+ c(x(θ)) =
c(0)= 0. Hence, for hi, with mi := infθ∈Θhi(θ), i = 1,2, and letting H(θ)= F(θ)−G(θ),∣∣∣∣∣

∫ θ

θ
hi(θ)dF(θ)−

∫ θ

θ
hi(θ)dG(θ)

∣∣∣∣∣=
∣∣∣∣∣
∫ θ

θ
hi(θ)d[F(θ)−G(θ)]

∣∣∣∣∣
≤max

mi[H(θ)−H(θ)]+V (hi) sup
θ≤α<β≤θ

∫ β

α
dH , −mi[H(θ)−H(θ)]−V (hi) inf

θ≤α<β≤θ

∫ β

α
dH


=V (hi) ·max

 sup
θ≤α<β≤θ

∫ β

α
dH , sup

θ≤α<β≤θ
−

∫ β

α
dH


=V (hi) ·max

 sup
θ≤α<β≤θ

H(β)−H(α) , sup
θ≤α<β≤θ

H(α)−H(β)


≤V (hi) · sup

θ≤α<β≤θ
|H(α)|+ |H(β)| = 2 ·V (hi) · ∥F −G∥∞

Combining the preceding inequalities results in |π̄(M,F)− π̄(M,G)| ≤ 2(L1+L2)∥F −G∥∞, ∀F,G ∈
BV (Θ), M ∈M . The result is then obtained by restricting the domain to F .

Appendix C. Proof of Theorem 2

LetY be a normed vector spacewith an open subsetA ⊆Y . As is standard, we denote the dual space
of Y by Y ∗. Before we prove the main result, let us recall two different notions of differentiability:

Definition 1 (Gateaux Differentiability). A functional T : Y →R is Gateaux differentiable at F ∈Y

if there exists a linear functional ṪF ∈Y ∗ such that for all H ∈Y ,

ṪF (H)= lim
t→∞

T(F + tH)−T(F)
t

.

Definition 2 (Fréchet Differentiability). A functional T : Y → R is Fréchet differentiable at F ∈ Y
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if there is a linear continuous functional ṪF defined on Y such that

lim
∥H∥→0

|T(F +H)−T(F)− ṪF (H)|
∥H∥ = 0.

Note that if T is Gateaux differentiable at F ∈ Y , then its derivative is unique. Moreover, if it is
Fréchet differentiable at F ∈Y , it is Gateaux differentiable and its derivatives agree.

An important generalization of Gateaux differential for the case of convex and continuous function-
als is that of a subdifferential.

Definition 3. The subdifferential of T : Y →R at F ∈Y is the set

∂T(F) := {
D ∈Y ∗ : T(G)≥ T(F)+D(G−F) for each G ∈Y

}
.

Since the normed linear space (BV (Θ),∥·∥∞) is a metric space, and thus BV (Θ) is open, the following
lemma guarantees that ∂T is nonempty:

Lemma 6 (Theorem 3.3.1. Niculescu and Persson (2018)). If T : A → R is a continuous and convex

functional, then ∂T(a) ̸= ;, for all a ∈A .

The next result shows why subdifferentials can be thought of as a generalization of Gateaux differ-
entials.

Lemma 7 (Proposition 3.6.9. Niculescu and Persson (2018)). Let T : A → R be a continuous and

convex functional. T is Gateaux differentiable at a ∈A if and only if ∂T(a) is a singleton.

In what follows, we borrow from the proof strategy of Theorem 2 in Battauz, Donno and Ortu (2015),
although their conditions do not directly apply to our problem.

First fix M ∈M and notice that π(M, ·) : BV (Θ)→R is a linear functional. Therefore, it has a Fréchet
derivative. In fact, for all F,H ∈ BV (Θ),

lim
∥H∥∞→0

|π̄(M,F +H)− π̄(M,F)− π̄(M,H)|
∥H∥∞

= lim
∥H∥∞→0

|π̄(M,F)+ π̄(M,H)− π̄(M,F)− π̄(M,H)|
∥H∥∞

= 0.

This implies that the Fréchet derivative of π̄(M,F) is independent of F and given by π̇M(·)= π̄(M, ·).
Therefore, π̄(M, ·) is also Gateaux differentiable, with Gateaux derivative at F given by π̄(M, ·).
Define the functionalΠ : BV (Θ)→R byΠ(H)= sup

M∈M
π(M,H),∀H ∈ BV (Θ). Since the set {π(M,H) : M ∈M }

is bounded for any H ∈ BV (Θ), it is clear that Π(H)<∞. Furthermore, it is immediate that Π(F)=
Π(F) for all F ∈F .

As π(M,H) is linear in H for any M, one immediately has that Π̄ is convex in H ∈ BV (Θ), as the
supremum of a family of linear functionals. Moreover, from the proof of Lemma 2, it is easy to see
that Π remains Lipschitz continuous. Therefore, by Lemma 6, ∂Π̄(H) ̸= ; for any H ∈ BV (Θ).

By Lemma 3, M∗(F) ̸= ; for any F ∈F . Fix any F ∈F . Take any D ∈ ∂Π̄(F) and any MF ∈M∗(F).
Note, for any G ∈ BV (Θ), that π̄(MF ,F)− π̄(MF ,G) ≥ Π̄(F)− Π̄(G) ≥ D(F −G), hence ∂Π̄(F) ⊆
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∂π̄(MF ,F) and, as π̄(MF , ·) is continuous and linear, by Lemma 7, ∂π̄(MF ,F)= {
π̇MF

}
. Then, for any

G ∈ BV (Θ),

π̄(MF ,F)− π̄(MF ,G)≥ Π̄(F)− Π̄(G)≥ π̇MF ,F (F −G)

⇐⇒ π̄(MF ,F)− π̄(MF ,G)− π̇MF (F −G)≥ Π̄(F)− Π̄(G)− π̇MF (F −G)≥ 0

=⇒ |π̄(MF ,F)− π̄(MF ,G)− π̇MF (F −G)| ≥ |Π̄(F)− Π̄(G)− π̇MF (F −G)| ≥ 0.

By Fréchet differentiability of π̄(MF , ·), we then have that ∀{Gn}n such that ∥Gn −F∥∞ → 0,

0≤ |Π̄(Gn)− Π̄(F)− π̇MF (Gn −F)|
∥Gn −F∥∞

≤ |π̄(MF ,Gn)− π̄(MF ,F)− π̇MF (Gn −F)|
∥Gn −F∥∞

→ 0

and, consequently, Π̄ is Fréchet differentiable at F ∈F . As F was arbitrary, we have that Π̄ is Fréchet
differentiable at any F ∈F .

Appendix D. Proof of Theorems 1 and 3

We will prove Theorem 3. The proof for Theorem 1 is virtually the same.

By Theorem 2, Π(F) is Fréchet differentiable at any F ∈ F and, thus, it can be written as Π(F) =
Π(F0)+ Π̇F0(F −F0)+ o(∥F −F0∥∞). Furthermore, we note that F̂ is an unbiased estimator of F0

and then, by linearity,

E

[
1
n

n∑
i=1

π(M∗(F0),δθi )

]
= E[

π(M∗(F0), F̂(Sn))
]=π(

M∗(F0),E
[
F̂(Sn)

])=π(M∗(F0),F0),

where δθ denotes the cumulative distribution function associated with a Dirac delta measure at θ
and θi is the i-th observation in the sample Sn. Thus,

p
n

(
Π(F̂(Sn))−Π(F0)

)= 1p
n

n∑
i=1

(
π(M∗(F0),δθi )−π(M∗(F0),F0)

)+p
n · o(∥F̂(Sn)−F0∥∞)

= 1p
n

n∑
i=1

(
π(M∗(F0),δθi )−π(M∗(F0),F0)

)+p
n · ∥F̂(Sn)−F0∥∞ · o(∥F̂(Sn)−F0∥∞)

∥F̂(Sn)−F0∥∞
= 1p

n

n∑
i=1

(
π(M∗(F0),δθi )−π(M∗(F0),F0)

)+Op(1) · o(1) d→ N(0,σ2
F0

),

where σ2
F0

= E
[(
Π̇F0(δθ−F0)

)2
]
.

Finally, following Parr (1985a), we have that

Ĝn =pn
(
Π(F̂(Sn

B))−Π(F̂(Sn))
)=p

n
({
Π(F0)+ Π̇F0(F̂(Sn

B)−F0)+ o(∥F̂(Sn
B)−F0∥∞)

}
−{
Π(F0)+ Π̇F0(F̂(Sn)−F0)+ o(∥F̂(Sn)−F0∥∞)

})
=pn

(
Π̇F0(F̂(Sn

B)− F̂(Sn))+ o(∥F̂(Sn
B)−F0∥∞)+ o(∥F̂(Sn)−F0∥∞)

)
=pn

(
Π̇F0(F̂(Sn

B)− F̂(Sn))+ o(∥F̂(Sn
B)− F̂(Sn)∥∞)+ o(∥F̂(Sn)−F0∥∞)

)
,

wherewe used Fréchet differentiability to obtain a first-order vonMises expansion ofΠ in the second
equality, linearity of Π̇F0 in the third and the triangle inequality in the last. As, F̂(Sn

B) and F̂(Sn)

denote empirical distributions of F̂(Sn) and F0, by the Dvoretzky, Kiefer and Wolfowitz’s (1956)
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inequality, we have that

Ĝn =p
nΠ̇F0(F̂(Sn

B)− F̂(Sn))+ op(1)= 1p
n

n∑
i=1

(
π(M∗(F0),δθB

i
)−π(M∗(F0), F̂(Sn))

)
+ op(1)

As E
[
π(M∗(F0),δθB

i
) | Sn

]
= π(M∗(F0), F̂(Sn)) and E

[(
π(M, F̂(Sn

B))
)2

]
= σ2

F0
< ∞, by the central

limit theorem in Bickel and Freedman (1981), we have that Ĝn
d→G0. Finally, as the limiting distri-

bution is continuous, convergence is uniform.

Appendix E. Proof of Proposition 5

Let F̂E denote the empirical distribution estimator. By Lemmas 2 and 10, Π(F̂(Sn)) =Π(F̂E(Sn))+
Op(n−1). As such, (1) follows from the observation that pn

{
Π(F̂(Sn))−Π(F0)

}
=p

n
{
Π(F̂E(Sn))−Π(F0)

}+Op(n−1/2), which, together with Slutsky’s theorem and Theorem 3 im-
plies pn

{
Π(F̂(Sn))−Π(F0)

} d→ N(0,σ2
F0

). (2) results from the analogous observation that:

Ĝn =p
n

(
Π(F̂(Sn

B))−Π(F̂(Sn))
)=p

n
(
Π(F̂E(Sn

B))−Π(F̂E(Sn))
)
+Op(n−1/2) d→ N(0,σ2

F0
).

For (3), we first prove the following lemmas:

Lemma 8. Consider distribution functions F, F1, F2, . . . such that ∥Fn(t)−F(t)∥∞ a.s.−−→ 0 for all t ∈R.
For all n ∈N, let µn be the measure on (R,B(R)) induced by Fn and µ be the measure induced by F .

Then µn(A)→µ(A) for all A ∈B(R) almost surely.

Proof. Let
{
I j := (a j,b j]⊆R | j ∈N}

be a collection of disjoint intervals, and denote I = ⋃∞
j=1 I j .

Then, since for any n ∈N, µn and µ are finite measures,∣∣µn(I)−µ(I)
∣∣= ∣∣∣∣∣ ∞∑

j=1
µn(I j)−

∞∑
j=1

µ(I j)

∣∣∣∣∣=
∣∣∣∣∣ ∞∑

j=1
Fn(b j)−Fn(a j)−

∞∑
j=1

F(b j)−F(a j)

∣∣∣∣∣
=

∣∣∣∣∣ ∞∑
j=1

(
Fn(b j)−F(b j)

)− (
Fn(a j)−F(a j)

)∣∣∣∣∣≤ ∞∑
j=1

∣∣Fn(b j)−F(b j)
∣∣+ ∣∣Fn(a j)−F(a j)

∣∣≤ ∞∑
j=1

2sup
t∈R

|Fn(t)−F(t)|

Let cn = supt∈R |Fn(t)− F| → 0. Then, there exists a monotone convergent subsequence cnk =
2supt∈R

∣∣Fnk (t)−F(t)
∣∣→ 0 as k →∞. Therefore, by the monotone convergence theorem,

lim
k→∞

∣∣µnk (I)−µ(I)
∣∣≤ lim

k→∞
∑
j=1

2sup
t∈R

∣∣Fnk (t)−F(t)
∣∣= ∑

j=1
lim
k→∞

2sup
t∈R

∣∣Fnk (t)−F(t)
∣∣= 0.

This implies there exists a convergent subsequence µnk (I)→µ(I).

Now take any convergent subsequence µnm(I) of µn(I), which we will denote by µm(I). We have∣∣µm(I)−µ(I)
∣∣≤ ∞∑

j=1
2sup

t∈R
|Fm(t)−F(t)| .

Then cm = 2supt∈R |Fm(t)−F(t)| → 0 has a monotone convergent subsubsequence cmr . We can
thus apply the monotone convergence theorem once again to conclude that

∣∣µmr (I)−µ(I)
∣∣ → 0 as

r →∞. Since the subsequence µm(I) is convergent by assumption, it must converge to the limit of
each of its subsequences, and we have lim

m→∞µm(I)=µ(I).

Therefore, every convergent subsequence of µn(I) converges to µ(I). Since
(
µn(I)

)
n∈N is bounded,
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this implies that limn→∞µn(I) = µ(I), and thus limn→∞µn is a pre-measure that agrees with µ

in the ring formed by disjoint unions of intervals of the type (a,b], b > a. Therefore, since µ is σ-
finite, Carathéodory’s extension theorem implies that limn→∞µn must agree with µ onB(R) almost
surely.

Lemma 9. Let {Fn :Θ→ [0,1] | n ∈N} be a sequence of absolutely continuous distribution functions

with Radon-Nikodymderivatives given by fn. If there exists a distribution function F such that ∥Fn −F∥∞ →
0, then it is absolutely continuous with Radon-Nikodym derivative f and ∥ fn − f ∥1 → 0.

Proof. As ∀n ∈N, Fn is absolutely continuous and Θ has finite Lebesgue measure, then the Radon-
Nikodym derivatives { fn}n∈N are uniformly integrable with respect to the Lebesgue measure. Let µ
be the measure associated with F . By the Vitali-Hahn-Saks theorem and Lemma 8, we have that

lim
n→∞

∫
A

fn(θ)dθ =µ(A)

for all A ∈ B(Θ). Since { fn}n∈N is uniformly integrable, the Dunford-Pettis theorem implies that
every subsequence of { fn}n∈N has a convergence subsubsequence converging to g in L1(Θ). Denote
such a subsubsequence by { fnk }k∈N. Then, for every A ∈B(R),∫

A
g(θ)dθ = lim

k→∞

∫
A

fnk dθ = lim
k→∞

µnk (A)=
∫

A
f (θ)dθ.

This implies that f = g almost surely and ∥ fn − f ∥1 → 0.

Given that, {F̂(Sn)}n∈N is absolutely continuous with probability 1 and ∥F̂(Sn)−F0∥∞ a.s.→ 0, the
previous lemmas imply that ∥ fn − f0∥1

p→ 0, which concludes the proof for (3).

Appendix F. Proof of Proposition 6

First, we note that π(r,F) is Lipschitz continuous in F , with a Lipschitz constant that is independent
of r. Note that

|π(r,F)−π(r,G)| =
∣∣∣∣∫
Θ

1θ≥r d(F(2;M) −G(2;M))
∣∣∣∣≤ ∥F(2;M) −G(2;M)∥∞

= sup
θ∈Θ

|M · (F(θ)M−1 −G(θ)M−1)+ (M−1) · (G(θ)M −F(θ)M)|

≤ M ·sup
θ∈Θ

|F(θ)M−1 −G(θ)M−1|+ (M−1) ·sup
θ∈Θ

|F(θ)M −G(θ)M)|

≤ 2M(M−1)∥F −G∥∞.

where the first inequality uses the Beesack-Darst-Pollard inequality — see Lemma 4. By the same
arguments as in Lemma 2, we have thatΠ(F) := supr∈Θπ(r,F) is also Lipschitz continuous in F and,
by those made in Propositions 1 and 2, the result follows.

Appendix G. Other Proofs

Let the linearly interpolated empirical cumulative distribution be given by

F̂(Sn)(θ)=
n−1∑
k=0

1{θ(k)≤θ<θ(k+1)}
1
n

θ−θ(k)

θ(k+1) −θ(k)
+1{θ(n)≤θ},
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where θ(k) denotes the k-th smallest observation in the sample Sn and θ(0) = θ. The following holds:

Lemma 10. For any absolutely continuous F0 ∈F , (1) ∥F̂(Sn)−F0∥∞ a.s.→ 0 and (2) with probability

1, F̂(Sn) ∈F , F̂(Sn) has convex support and is absolutely continuous.

Proof. Note that, with probability 1, any sampled value θi > θ as F0 is absolutely continuous and
so F̂(Sn) is well defined. By construction, F̂(Sn) has convex support and is absolutely continu-
ous. As the probability that any two sampled observations have the same value is null, we have
that, with probability 1, ∥F̂(Sn)− F̂E(Sn)∥∞ = 1/n where F̂E denotes the empirical cumulative
distribution and, with probability 1, ∥F̂(Sn)−F0∥∞ = ∥F̂E(Sn)−F0∥∞ + 1/n. Consequently, as
∥F̂E(Sn)−F0∥∞ a.s.→ 0 and as F0 is absolutely continuous, then the result follows.
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