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Abstract

Many studies run two-way fixed effects instrumental variable (TWFEIV) regressions,
leveraging variation in the timing of policy adoption across units as an instrument for
treatment. This paper studies the properties of the TWFEIV estimator in staggered in-
strumented difference-in-differences (DID-IV) designs. We show that in settings with the
staggered adoption of the instrument across units, the TWFEIV estimator can be decom-
posed into a weighted average of all possible two-group/two-period Wald-DID estimators.
Under staggered DID-IV designs, a causal interpretation of the TWFEIV estimand hinges
on the stable effects of the instrument on the treatment and the outcome over time. We
illustrate the use of our decomposition theorem for the TWFEIV estimator through an
empirical application.
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1 Introduction

Instrumented difference-in-differences (DID-IV) is a method to estimate the effect of a treat-
ment on an outcome, exploiting variation in the timing of policy adoption across units as an
instrument for the treatment. In a simple setting with two groups and two periods, some units
become exposed to the policy shock in the second period (exposed group), whereas others are
not over two periods (unexposed group). The estimator is constructed by running the fol-
lowing IV regression with the group and post-time dummies as included instruments and the
interaction of the two as the excluded instrument (e.g., Duflo (2001), Field (2007)):

Yi,t = β0 + βi,.Exposedi + β,.tPOSTt + βIVDi,t + ϵi,t.

The resulting IV estimand βIV scales the DID estimand of the outcome by the DID estimand of
the treatment, the so-called Wald-DID estimand (de Chaisemartin and D’Haultfœuille (2018),
Miyaji (2024)). In this two-group/two-period (2× 2) setting, DID-IV designs mainly consist of
a monotonicity assumption and parallel trends assumptions in the treatment and the outcome
between the two groups, and allow for the Wald-DID estimand to capture the local average
treatment effect on the treated (LATET) (de Chaisemartin (2010), Hudson et al. (2017), and
Miyaji (2024)). DID-IV designs have gained popularity over DID designs in practice when
there is no control group or the treatment adoption is potentially endogenous over time (Miyaji
(2024)).

In reality, however, most DID-IV applications go beyond the canonical DID-IV set up,
and leverage variation in the timing of policy adoption across units in more than two periods,
instrumenting for the treatment with the natural variation. The instrument is constructed, for
instance from the staggered adoption of school reforms across countries or municipalities (e.g.
Oreopoulos (2006), Lundborg et al. (2014), Meghir et al. (2018)), the phase-in introduction
of head starts across states (e.g. Johnson and Jackson (2019)), or the gradual adoption of
broadband internet programs (e.g. Akerman et al. (2015), Bhuller et al. (2013)). These policy
changes can be viewed as some natural experiments, but not randomized in reality.

Recently, Miyaji (2024) formalizes the underlying identification strategy as a staggered DID-
IV design. In this design, the treatment adoption is allowed to be endogenous over time, while
the instrument is required to be uncorrelated with time-varying unobservables in the treatment
and the outcome; the assignment of the treatment can be non-staggered across units, while
the assignment of the instrument is staggered across units: they are partitioned into mutually
exclusive and exhaustive cohorts by the initial adoption date of the instrument. The target
parameter is the cohort specific local average treatment effect on the treated (CLATT); this
parameter measures the treatment effects among the units who belong to cohort e and are
induced to the treatment by instrument in a given relative period l after the initial adoption
of the instrument. The identifying assumptions are the natural generalization of those in 2× 2
DID-IV designs.

In practice, empirical researchers commonly implement this design via linear instrumental
variable regressions with time and unit fixed effects, the so-called two-way fixed effects in-
strumental variable (TWFEIV) regressions (e.g., Black et al. (2005), Lundborg et al. (2017),
Johnson and Jackson (2019)):

Yi,t = ϕi. + λt. + βIVDi,t + vi,t, (1)
Di,t = γi. + ζt. + πZi,t + ηi,t. (2)

In contrast to the canonical DID-IV set up, however, the validity of running TWFEIV regres-
sions seems less clear under staggered DID-IV designs. The IV estimate is commonly interpreted
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as measuring the local average treatment effect in the presence of heterogeneous treatment ef-
fects as in Imbens and Angrist (1994), whereas the target parameter is not stated formally.
We know little about how the IV estimator is constructed by comparing the evolution of the
treatment and the outcome across units and over time. Finally, we have no tools to illustrate
the identifying variations in the IV estimate in a given application.

In this paper, we study the properties of two-way fixed effects instrumental variable esti-
mators under staggered DID-IV designs. Specifically, we present the decomposition result for
the TWFEIV estimator, and study the causal interpretation of the TWFEIV estimand under
staggered DID-IV designs.

First, we derive the decomposition theorem for the TWFEIV estimator with settings of
the staggered adoption of the instrument across units. We show that the TWFEIV estimator
is equal to a weighted average of all possible 2 × 2 Wald-DID estimators arising from the
three types of the DID-IV design. First, in an Unexposed/Exposed design, some units are
never exposed to the instrument during the sample period (unexposed group), whereas some
units start exposed at a particular date and remain exposed (exposed group). Second, in an
Exposed/Not Yet Exposed design, some units start exposed earlier, whereas some units are not
yet exposed during the design period (not yet exposed group). Finally, in an Exposed/Exposed
Shift design, some units are already exposed, whereas some units start exposed later at a
particular point during the design period (exposed shift group). The weight assigned to each
Wald-DID estimator reflects all the identifying variations in each DID-IV design: the sample
share, the variance of the instrument, and the DID estimator of the treatment between the two
groups.

Built on the decomposition result, we next uncover the shortcomings of running TWFEIV
regressions under staggered DID-IV designs. We show that the TWFEIV estimand poten-
tially fails to summarize the treatment effects under staggered DID-IV designs due to negative
weights. Specifically, we show that this estimand is equal to a weighted average of all pos-
sible cohort specific local average treatment effect on the treated (CLATT) parameters, but
some weights can be negative. The negative weight problem potentially arises due to the "bad
comparisons" (c.f. Goodman-Bacon (2021)) performed by TWFEIV regressions: the already
exposed units play the role of controls in the Exposed/Exposed Shift design in the first stage
and reduced form regressions. Given the negative result of using the TWFEIV estimand under
staggered DID-IV designs, we also investigate the sufficient conditions for this estimand to at-
tain its causal interpretation. We show that this estimand can be interpreted as causal only if
the effects of the instrument on the treatment and the outcome are stable over time.

We extend our decomposition result in several directions. We first consider non-binary,
ordered treatment. We also derive the decomposition result for the TWFEIV estimand in un-
balanced panel settings. Lastly, we consider the case when the adoption date of the instrument
is randomized across units. In all cases, we show that the TWFEIV estimand potentially fails
to summarize the treatment effects under staggered DID-IV designs due to negative weights.

We illustrate our findings with the setting of Miller and Segal (2019) who estimate the
effect of female police officers’ share on intimate partner homicide rate, leveraging the timing
variation of AA (affirmative action) plans across U.S. counties. In this application, we first
assess the plausibility of the staggered DID-IV design implicitly imposed by Miller and Segal
(2019) and confirm its validity. We then estimate TWFEIV regressions, slightly modifying the
authors’ setting, and apply our DID-IV decomposition theorem to the IV estimate. We find
that the estimate assigns more weights to the Unexposed/Exposed design and less weights to
the other two types of the DID-IV design. Despite the small weight on the Exposed/Exposed
Shift design, we also find that the IV estimate suffers from the substantial downward bias
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arising from the bad comparisons in the Exposed/Exposed Shift design.
Finally, we develop simple tools to examine how different specifications affect the change

in TWFEIV estimates, and illustrate these by revisiting Miller and Segal (2019). In many em-
pirical settings, researchers typically diverge from a simple TWFEIV regression as in equation
(1) and estimate various specifications such as weighting or including time-varying covariates.
We follow Goodman-Bacon (2021) and decompose the difference between the two specifications
into the changes in Wald-DID estimates, the changes in weights, and the interaction of the two.
This decomposition result enables the researchers to quantify the contribution of the changes in
each term to the difference in the overall estimates. In addition, plotting the pairs of Wald-DID
estimates and associated weights obtained from the two specifications allows the researchers to
investigate which components have the significant impact on these contributions.

Overall, this paper shows the negative result of using TWFEIV estimators under staggered
DID-IV designs in more than two periods, and provide tools to illustrate how serious that
concern is in a given application. Specifically, our decomposition result for the TWFEIV
estimator enables the researchers to quantify the bias term arising from the bad comparisons
in Exposed/Exposed Shift designs in the data. Fortunately, Miyaji (2024) recently proposes
the alternative estimation method in staggered DID-IV designs that is robust to treatment
effect heterogeneity. Using such estimation method allows the practitioners to avoid the issue
of TWFEIV estimators in practice, and facilitates the credibility of their empirical findings.

The rest of the paper is organized as follows. The next subsection discusses the related
literature. Section 2 presents our decomposition theorem for the TWFEIV estimator. Section 3
formally introduces staggered instrumented difference-in-differences designs. Section 4 presents
the pitfalls of running TWFEIV regressions under staggered DID-IV designs, and explores the
sufficient conditions for the TWFEIV estimand to attain its causal interpretation. Section
5 describes some of the extensions. Section 6 presents our empirical application. Section 7
explain how different specifications affect the difference in estimates and Section 8 concludes.
All proofs are given in the Appendix.

1.1 Related literature

Our paper is related to the recent DID-IV literature (de Chaisemartin (2010); Hudson et al.
(2017); de Chaisemartin and D’Haultfœuille (2018); Miyaji (2024)). In this literature, de Chaise-
martin (2010) first formalizes 2×2 DID-IV designs and shows that a Wald-DID estimand identi-
fies the local average treatment effect on the treated (LATET) if the parallel trends assumptions
in the treatment and the outcome, and a monotonicity assumption are satisfied. Hudson et al.
(2017) also consider 2× 2 DID-IV designs with non-binary, ordered treatment settings. Build
on the work in de Chaisemartin (2010), however, de Chaisemartin and D’Haultfœuille (2018)
formalize 2× 2 DID-IV designs differently, and call them Fuzzy DID. Miyaji (2024) compares
2× 2 DID-IV to Fuzzy DID designs and points out the issues embedded in Fuzzy DID designs,
and extends 2×2 DID-IV design to multiple period settings with the staggered adoption of the
instrument across units, which the author calls staggered DID-IV designs. Miyaji (2024) also
provides a reliable estimation method in staggered DID-IV designs that is robust to treatment
effect heterogeneity.

In this paper, we contribute to the literature by showing the properties of two-way fixed
instrumental variable estimators in staggered DID-IV designs. In reality, when empirical re-
searchers implicitly rely on the staggered DID-IV design, they commonly implement this design
via TWFEIV regressions (e.g. Black et al. (2005), Lundborg et al. (2014), Meghir et al. (2018)).
This paper presents the issues of the conventional approach, and provides the sufficient condi-
tions for this estimand to attain its causal interpretation.
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Our paper is also related to a recent DID literature on the causal interpretation of two-way
fixed effects (TWFE) regressions and its dynamic specifications under heterogeneous treatment
effects (Athey and Imbens (2022); Borusyak et al. (2021); de Chaisemartin and D’Haultfœuille
(2020); Goodman-Bacon (2021); Imai and Kim (2021); Sun and Abraham (2021)).

Specifically, this paper is closely connected to Goodman-Bacon (2021), who derives the
decomposition theorem for the TWFE estimator with settings of the staggered adoption of the
treatment across units. In this paper, we establish the decompose theorem for the TWFEIV
estimator with settings of the staggered adoption of the instrument across units, which is a
natural generalization of their theorem 1.

This paper is also closely connected to de Chaisemartin and D’Haultfœuille (2020), who
decompose the TWFE estimand and present the issue of using this estimand under DID designs:
some weights assigned to the causal parameters in this estimand can be potentially negative.
In their appendix, the authors also decompose the TWFEIV estimand and refer to the negative
weight problem in this estimand. Specifically, they apply the decomposition theorem for the
TWFE estimand to the numerator and denominator in the TWFEIV estimand respectively,
and conclude that this estimand identifies the LATE as in Imbens and Angrist (1994) only
if the effects of the instrument on the treatment and outcome are constant across groups and
over time. However, their decomposition result for the TWFEIV estimand has some drawbacks.
First, they do not formally state the target parameter and identifying assumptions in DID-IV
designs. Second, their decomposition result is not based on the target parameter in DID-IV
designs. Finally, the sufficient conditions for this estimand to be interpretable causal parameter
are not well investigated.

In this paper, we investigate the causal interpretation of the TWFEIV estimand more clearly
than that of de Chaisemartin and D’Haultfœuille (2020). Specifically, we first decompose the
TWFEIV estimator into all possible 2 × 2 Wald-DID estimators. We then formally introduce
the target parameter and identifying assumptions in staggered DID-IV designs, built on the
recent work in Miyaji (2024). This allows us to decompose the TWFEIV estimand into a
weighted average of the target parameter in staggered DID-IV designs. Finally, we assess the
causal interpretation of the TWFEIV estimand under a variety of restrictions on the effects of
the instrument on the treatment and outcome, which clarifies the sufficient conditions for this
estimand to attain its causal interpretation.

We note that this paper is distinct from the recent IV literature on the causal interpretation
of two stage least square (TSLS) estimators with covariates under heterogeneous treatment ef-
fects (Słoczyński (2020), Blandhol et al. (2022)). These recent studies investigate the causal
interpretation of the TSLS estimand with covariates under the random variation of the instru-
ment conditional on covariates, and cast doubt on the LATE (or LATEs) interpretation of this
estimand. In this literature, the identifying variations come from the assignment process of the
instrument. In this paper, however, we investigate the causal interpretation of the TWFEIV
estimand (where time and unit dummies can be viewed as covariates) under staggered DID-IV
designs: our identifying variations mainly come from the parallel trends assumptions in the
treatment and the outcome over time.

2 Instrumented difference-in-differences decomposition

In this section, we present a decomposition result for the two-way fixed effects instrumental
variable (TWFEIV) estimator in multiple time period settings with the staggered adoption of
the instrument across units.
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2.1 Set up

We introduce the notation we use throughout this article. We consider a panel data setting
with T periods and N units. For each i ∈ {1, . . . N} and t ∈ {1, . . . , T}, let Yi,t denote the
outcome and Di,t ∈ {0, 1} denote the treatment status, and Zi,t ∈ {0, 1} denote the instrument
status. Let Di = (Di,1, . . . , Di,T ) and Zi = (Zi,1, . . . , Zi,T ) denote the path of the treatment and
the path of the instrument for unit i, respectively. Throughout this article, we assume that
{Yi,t, Di,t, Zi,t}Tt=1 are independent and identically distributed (i.i.d).

We make the following assumption about the assignment process of the instrument.

Assumption 1 (Staggered adoption for Zi,t). For s < t, Zi,s ≤ Zi,t where s, t ∈ {1, . . . T}.
Assumption 1 requires that once units start exposed to the instrument, they remain exposed

to that instrument afterward. In the DID literature, several recent papers impose this assump-
tion on the adoption process of the treatment and sometimes call it the "staggered treatment
adoption", see, e.g., Athey and Imbens (2022), Callaway and Sant’Anna (2021) and Sun and
Abraham (2021).

Given Assumption 1, we can uniquely characterize the instrument path by the time period
when unit i is first exposed to the instrument, denoted by Ei = min{t : Zi,t = 1}. If unit i
is not exposed to the instrument for all time periods, we define Ei = ∞. Based on the initial
exposure period Ei, we can uniquely partition units into mutually exclusive and exhaustive
cohorts e for e ∈ {1, 2, . . . , T,∞}: all the units in cohort e are first exposed to the instrument
at time Ei = e. Hereafter, to ease the notation, we assume that the data contain K cohorts
(K ≤ T ) where e ∈ {1, . . . , k, . . . , K}, and define U as the never exposed cohort Ei = ∞.

Let ne be the relative sample share for cohort e and let Z̄e be the time share of the exposure
to the instrument for cohort e:

ne ≡
∑

i 1{Ei = e}
N

, Z̄e ≡
∑

t 1{t ≥ e}
T

.

We also define nab ≡
na

na + nb

to be the relative sample share between cohort a and b.

In contrast to the staggered adoption of the instrument across units, we allow the general
adoption process for the treatment: the treatment can potentially turn on/off repeatedly over
time. de Chaisemartin and D’Haultfœuille (2020) and Imai and Kim (2021) consider the same
setting in the recent DID literature.

The notations PRE(a), MID(a, b), and POST (a) represent the corresponding time win-
dow, respectively: PRE(a) ≡ [1, a), MID(a, b) ≡ [a, b), and POST (a) ≡ [a, T ]. Let R̄POST (a)

e

be the sample mean of the random variable Ri,t in cohort e during the time window POST (a):

R̄POST (a)
e ≡ 1

T − (a− 1)

T∑
a

[∑
iRi,t1{Ei = e}∑

i 1{Ei = e}

]
.

We define R̄PRE(a)
e and R̄

MID(a,b)
e analogously, representing the sample mean of the random

variable Ri,t in cohort e during the time window PRE(a) and MID(a, b) respectively.

2.2 Decomposing the TWFEIV estimator

We consider a TWFEIV regression in multiple time period settings with the staggered adoption
of the instrument across units:

Yi,t = ϕi. + λt. + βIVDi,t + vi,t, (3)
Di,t = γi. + ζt. + πZi,t + ηi,t. (4)
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By substituting the first stage regression (4) into the structural equation (3), we obtain the
reduced form regression:

Yi,t = ϕi. + λt. + αZi,t + vi,t. (5)

The ratio between the first stage coefficient π̂ and the reduced form coefficient α̂ yields the
TWFEIV estimator β̂IV . By the Frisch-Waugh-Lovell theorem, the IV estimator β̂IV is equal
to the ratio between the coefficient from regressing Yi,t on the double-demeaning variable Z̃i,t

and the coefficient from regressing Di,t on the same variable:

β̂IV =
1

NT

∑
i

∑
t Z̃i,tYi,t

1
NT

∑
i

∑
t Z̃i,tDi,t

, (6)

where Z̃i,t is the double demeaning variable defined below:

Z̃i,t = Zi,t −
1

T

T∑
t=1

Zi,t −
1

N

N∑
i=1

Zi,t +
1

NT

T∑
t=1

N∑
i=1

Zi,t

≡ (Zi,t − Z̄i)− (Z̄t − ¯̄Z).

Note that the TWFEIV regression runs the two-way fixed effects (TWFE) regression twice,
as can be seen in equations (4) and (5). Because we assume the staggered assignment of the
instrument across units, if we focus on the TWFE coefficient on Zi,t in the first stage or the
reduced form regression, we can show that it is equal to a weighted average of all possible 2× 2
DID estimators of the treatment or the outcome from the decomposition result for the TWFE
estimator shown by Goodman-Bacon (2021).

Consider the simple setting where we have only two periods and two cohorts: one cohort
is not exposed to the instrument during the two periods (Ei = U), whereas the other cohort
starts exposed to the instrument in the second period (Ei = 2). In this setting, the TWFEIV
estimator takes the following form, the so-called Wald-DID estimator (de Chaisemartin and
D’Haultfœuille (2018), Miyaji (2024)):

β̂IV =
Ȳ2,2 − Ȳ2,1 − (ȲU,2 − ȲU,1)

D̄2,2 − D̄2,1 − (D̄U,2 − D̄U,1)
,

where R̄a,t is the sample mean of the random variable Ri,t for cohort Ei = a in time t. This
estimator scales the DID estimator of the outcome by the DID estimator of the treatment
between cohort Ei = U and Ei = 2.

The above observations bring us the intuition about how we can decompose the TWFEIV
estimator with settings of the staggered adoption of the instrument across units; we expect
that the TWFEIV estimator can be decomposed into a weighted average of all possible 2 × 2
Wald-DID estimators (instead of DID-estimators).

To clarify this intuition, assume for now that we have only three cohorts, an early exposed
cohort k, a middle exposed cohort l (k < l), and a never exposed cohort U (Ei = ∞). Figure
1 plots the simulated data for the time trends of the average treatment (first stage) and the
average outcome (reduced form) in three cohorts.

From the data structure, we can construct the Wald-DID estimator in three ways. First, we
can compare the evolution of the treatment and the outcome between exposed cohort j = k, l
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Fig. 1. Instrumented difference-in-differences with three cohorts. Notes: This figure plots the simulated data
for the time trends of the average treatment (first stage) and the average outcome (reduced form) with time
length T = 100 in three cohorts: an early exposed cohort k, which is exposed to the instrument at k = 34

100T ;
a middle exposed cohort l, which is exposed to the instrument at l = 80

100T ; a never exposed cohort, U . The
x-axis consists of three time windows: the pre-exposed period for cohort k, [1, k − 1], denoted by PRE(k); the
middle exposed period when the cohort k is already exposed but cohort l is not yet exposed, [k, l− 1], denoted
by MID(k, l); and post-exposed period when cohort l is already exposed, [l, T ], denoted by POST (l). The
effects of the instrument on the treatment and the outcome are 0.15 and 9 in cohort k respectively; 0.1 and 10
in cohort l respectively.

and never exposed cohort U , exploiting the time window POST (j) and PRE(j), which we call
an Unexposed/Exposed design:

β̂2×2
IV,jU ≡

(
ȳ
POST (j)
j − ȳ

PRE(j)
j

)
−
(
ȳ
POST (j)
U − ȳ

PRE(j)
U

)
(
D̄

POST (j)
j − D̄

PRE(j)
j

)
−
(
D̄

POST (j)
U − D̄

PRE(j)
U

) , j = k, l, (7)

≡
β̂2×2
jU

D̂2×2
jU

, j = k, l.

Second, we can construct the Wald-DID estimator, leveraging variation in the timing of the
initial exposure to the instrument between exposed cohorts. Consider an early exposed cohort k
and a middle exposed cohort l. Before period l, the early exposed cohort k is already exposed to
the instrument, while the middle exposed cohort l is not yet exposed to the instrument. In this
setting, we can view that the middle exposed cohort l plays the role of the control group in both
the first stage and the reduced form. From this observation, we can compare the evolution of
the treatment and the outcome between the early exposed cohort k and middle exposed cohort
l, exploiting the time window MID(k, l) and PRE(k), which we call an Exposed/Not Yet
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Exposed design:

β̂2×2,k
IV,kl ≡

(
ȳ
MID(k,l)
k − ȳ

PRE(k)
k

)
−
(
ȳ
MID(k,l)
l − ȳ

PRE(k)
l

)
(
D̄

MID(k,l)
k − D̄

PRE(k)
k

)
−
(
D̄

MID(k,l)
l − D̄

PRE(k)
l

) (8)

≡ β̂2×2,k
kl

D̂2×2,k
kl

.

Finally, if we focus on the middle exposed cohort l, which changes the exposure status from
being unexposed to being exposed at time l, we can regard the early exposed cohort k as the
control group after time l because this cohort is already exposed to the instrument at time l.
We can compare the evolution of the treatment and the outcome between early exposed cohort
k and middle exposed cohort l, exploiting the time window MID(k, l) and POST (l), which we
call an Exposed/Exposed Shift design:

β̂2×2,l
IV,kl ≡

(
ȳ
POST (l)
l − ȳ

MID(k,l)
l

)
−
(
ȳ
POST (l)
k − ȳ

MID(k,l)
k

)
(
D̄

POST (l)
l − D̄

MID(k,l)
l

)
−
(
D̄

POST (l)
k − D̄

MID(k,l)
k

) (9)

≡ β̂2×2,l
kl

D̂2×2,l
kl

.

In each type of the DID-IV design, we have three sources of variation. First, each design
exploits the subsample from all NT observations. The Unexposed/Exposed DID-IV design in
(7) uses two cohorts and all time periods, indicating that the relative sample share is nk + nu.
The Exposed/Not Yet Exposed DID-IV design in (8) uses two cohorts but exploits only the time
periods before period l, so the relative sample share is (1− Z̄l)(nk+nl). The Exposed/Exposed
Shift DID-IV design in (9) uses two cohorts but exploits only the time periods after period k,
so the relative sample share is Z̄k(nk + nl).

Second, the variation in each type of the DID-IV design partly comes from the variation of
the instrument in its subsample. It is equal to the variance of the double demeaning variable
Z̃i,t in each design:

V̂ Z
jU ≡ njU(1− njU)Z̄j(1− Z̄j), j = k, l, (10)

V̂ Z,k
kl ≡ nkl(1− nkl)

(
Z̄k − Z̄l

1− Z̄l

)(
1− Z̄k

1− Z̄l

)
, (11)

V̂ Z,l
kl ≡ nkl(1− nkl)

(
Z̄l

Z̄k

)(
Z̄k − Z̄l

Z̄k

)
, (12)

where the V̂ Z
jU , V̂ Z,k

kl and V̂ Z,l
kl represent the variance of the double demeaning variable Z̃i,t in

Unexposed/Exposed, Exposed/Not Yet Exposed, and Exposed/Exposed Shift DID-IV designs,
respectively. In the staggered DID set up, Goodman-Bacon (2021) also describes the two
variations, that is, the relative sample share and the variance of the double demeaning treatment
variable in each type of the DID designs.

Unlike the staggered DID set up, however, each DID-IV design has an additional source of
the variation; the effect of the instrument on the treatment in the first stage. This comes from
the fact that each DID-IV design allows the noncompliance of receiving the treatment when
units are exposed to the instrument. The amount of this variation is equal to the 2 × 2 DID
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estimator of the treatment in each DID-IV design:

D̂2×2
jU ≡

(
D̄

POST (j)
j − D̄

PRE(j)
j

)
−
(
D̄

POST (j)
U − D̄

PRE(j)
U

)
j = k, l,

D̂2×2,k
kl ≡

(
D̄

MID(k,l)
k − D̄

PRE(k)
k

)
−
(
D̄

MID(k,l)
l − D̄

PRE(k)
l

)
,

D̂2×2,l
kl ≡

(
D̄

POST (l)
l − D̄

MID(k,l)
l

)
−
(
D̄

POST (l)
k − D̄

MID(k,l)
k

)
.

Note that the denominator of the TWFEIV estimator β̂IV in (6), which we denote ĈD,Z

hereafter, measures the covariance between the instrument Zi,t and the treatment Di,t in whole
samples. By some calculations (see the proof of Theorem 1 below), one can show that ĈD,Z

is equal to a weighted average of all possible 2 × 2 DID estimators of the treatment in each
DID-IV design:

ĈD,Z =
∑
k ̸=U

ŵkUD̂
2×2
kU +

∑
k ̸=U

∑
l>k

[ŵk
klD̂

2×2,k
kl + ŵl

klD̂
2×2,l
kl ],

where the weights are:

ŵkU = (nk + nu)
2V̂ Z

kU ,

ŵk
kl = ((nk + nl)(1− Z̄l))

2V̂ Z,k
kl ,

ŵl
kl = ((nk + nl)Z̄k)

2V̂ Z,l
kl .

Hereafter, we refer to ŵkU , ŵk
kl, and ŵl

kl as the first stage weights. This decomposition result
for ĈD,Z is almost identical to that of Goodman-Bacon (2021) for the TWFE estimator under
staggered DID designs, but the slight difference here is that each weight is not scaled by the
variance of the double demeaning variable Z̃it in whole samples.

We now present the decomposition theorem for the TWFEIV estimator under the stag-
gered assignment of the instrument across units. Theorem 1 below is a generalization of the
decomposition result for the TWFE estimator with settings of the staggered assignment of the
treatment across units in Goodman-Bacon (2021).

Theorem 1 (Instrumented Difference-in-Differences Decomposition Theorem). Suppose that
there exist K cohorts, e = 1, . . . , k, . . . , K. The data may also contain a never exposed cohort
U . Then, the two-way fixed effects instrumental variable estimator β̂IV in (6) is a weighted
average of all possible 2× 2 Wald-DID estimators.

β̂IV =

[∑
k ̸=U

ŵIV,kU β̂
2×2
IV,kU +

∑
k ̸=U

∑
l>k

ŵk
IV,klβ̂

2×2,k
IV,kl + ŵl

IV,klβ̂
2×2,l
IV,kl

]
.

The 2× 2 Wald-DID estimators are:

β̂2×2
IV,kU ≡

(
ȳ
POST (k)
k − ȳ

PRE(k)
k

)
−
(
ȳ
POST (k)
U − ȳ

PRE(k)
U

)
(
D̄

POST (k)
k − D̄

PRE(k)
k

)
−
(
D̄

POST (k)
U − D̄

PRE(k)
U

) ,
β̂2×2,k
IV,kl ≡

(
ȳ
MID(k,l)
k − ȳ

PRE(k)
k

)
−
(
ȳ
MID(k,l)
l − ȳ

PRE(k)
l

)
(
D̄

MID(k,l)
k − D̄

PRE(k)
k

)
−
(
D̄

MID(k,l)
l − D̄

PRE(k)
l

) ,
β̂2×2,l
IV,kl ≡

(
ȳ
POST (l)
l − ȳ

MID(k,l)
l

)
−
(
ȳ
POST (l)
k − ȳ

MID(k,l)
k

)
(
D̄

POST (l)
l − D̄

MID(k,l)
l

)
−
(
D̄

POST (l)
k − D̄

MID(k,l)
k

) .
9



The weights are:

ŵIV,kU =
ŵkUD̂

2×2
kU

ĈD,Z

ŵk
IV,kl =

ŵk
klD̂

2×2,k
kl

ĈD,Z

ŵl
IV,kl =

ŵl
klD̂

2×2,l
kl

ĈD,Z
.

and sum to one, that is, we have
∑

k ̸=U wIV,kU +
∑

k ̸=U

∑
l>k[w

k
IV,kl + wl

IV,kl] = 1.

Proof. See Appendix A.

Theorem 1 shows that when the assignment of the instrument is staggered across units,
the TWFEIV estimator is a weighted average of all possible 2 × 2 Wald-DID estimators. If
there exist K cohorts in the data, we have K2 − K Wald-DID estimators, which come from
either Exposed/Not Yet Exposed designs as in (8) or Exposed/Exposed shift designs as in (9).
If the data contains a never exposed cohort U , we have additionally K Wald-DID estimators,
which come from Unexposed/Exposed designs as in (7). If both situations occur, the TWFEIV
estimator equals a weighted average of K2 Wald-DID estimators.

The weight assigned to each Wald-DID estimator consists of three parts: the relative sample
share squared, the variance of the double demeaning variable Z̃i,t, and the DID estimator of the
treatment in each DID-IV design. The first part depends on the sample share of two cohorts and
the timing of the initial exposure date. The second part reflects the variation of the instrument
in the subsample, represented by (10)-(12), and depends on the relative sample share between
two cohorts and the timing of the initial exposure date. Finally, the remaining part reflects
variation in the evolution of the treatment between the two cohorts. Note that the weight is
not guaranteed to be non-negative in finite sample settings: although the first and second parts
are always non-negative, the DID estimator of the treatment can be potentially negative in the
data.

Theorem 1 also shows that if we subset the data containing only two cohorts (cohorts k and
l), the TWFEIV estimator β2×2

IV,kl in the subsample can be written as:

β2×2
IV,kl =

ŵk
klD̂

2×2,k
kl

ŵk
klD̂

2×2,k
kl + ŵl

klD̂
2×2,l
kl

β2×2,k
IV,kl +

ŵl
klD̂

2×2,l
kl

ŵk
klD̂

2×2,k
kl + ŵl

klD̂
2×2,l
kl

β2×2,l
IV,kl .

The TWFEIV estimator β2×2
IV,kl is a weighted average of the Wald-DID estimators which come

from either Exposed/Not Yet Exposed design or Exposed/Exposed Shift design, and the weight
assigned to each Wald-DID estimator reflects the first stage weight and the DID estimator of
the treatment in each DID-IV design.

To make the DID-IV decomposition theorem concrete, we provide a simple numerical ex-
ample. Suppose we have three cohorts with equal sample size, as shown in Figure 1. In this
figure, we set an early exposed period k and a middle exposed period l such that Z̄k = 0.67 and
Z̄l = 0.21. We assume that the effect of the instrument on the treatment is 0.15 in cohort k and
0.1 in cohort l over time. This means that the units in cohort k are more induced to the treat-
ment by the instrument than those in cohort l and the effects are stable in both cohorts. The
DID estimates of the treatment are {D̂2×2

kU , D̂2×2
lU , D̂2×2,k

kl , D̂2×2,l
kl } = {0.15, 0.1, 0.15, 0.1}. We also

assume that the effect of the instrument on the outcome through treatment is 9 in cohort k and
10 in cohort l over time. The DID estimates of the outcome are {Ŷ 2×2

kU , Ŷ 2×2
lU , Ŷ 2×2,k

kl , Ŷ 2×2,l
kl } =
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{9, 10, 9, 10}. Dividing the DID estimate of the treatment by the DID estimate of the outcome
yields the Wald-DID estimate: {β̂2×2

kU , β̂2×2
lU , β̂2×2,k

kl , β̂2×2,l
kl } = {60, 100, 60, 100}. The Wald-DID

estimate is larger in cohort l than that of cohort k, though as we already noted, the effect of
the instrument on the treatment is larger in cohort k than that of cohort l.

The DID estimates of the treatment and the exposure timing determine the amount of the
weight assigned to each Wald-DID estimate, holding the sample size equal across cohorts. In the
above setting, the resulting weights are {ŵIV,kU , ŵIV,lU , ŵ

k
IV,kl, ŵ

l
IV,kl} = {0.28, 0.12, 0.40, 0.20}.

In Unexposed/Exposed designs, we have ŵIV,kU > ŵIV,lU for two reasons. First, the DID
estimate of the treatment is larger in cohort k than that of cohort l, that is, we have D̂2×2

kU =

0.15 > 0.1 = D̂2×2
lU . Second, the time period k is closer to the middle in the whole period

than the time period l, that is, we have Z̄k(1− Z̄k) = 0.22 > 0.17 = Z̄l(1− Z̄l), which implies
ŵkU > ŵlU in the first stage weight. By the similar argument, we have ŵk

IV,kl > ŵl
IV,kl between

Exposed/Not Yet Exposed and Exposed/Exposed Shift designs: we have D̂2×2,k
kl = 0.15 >

0.1 = D̂2×2,l
kl and ŵk

kl > ŵl
kl in the first stage weight. If the DID estimates of the treatment

are equal between the two designs, the exposure timing matters: we have ŵIV,kU < ŵk
IV,kl

and ŵIV,lU < ŵl
IV,kl. The DD estimates are the same in each comparison, that is, we have

D̂2×2
kU = D̂2×2,k

kl and D̂2×2
lU = D̂2×2,l

kl . However, the different initial exposure date yields different
weights in the first stage, that is, we have ŵkU < ŵk

kl and ŵlU < ŵl
kl, which make the difference

above the two comparisons.
In this numerical example, the simple average of the Wald-DID estimates is 80 and the

weighted average is 100× 3
5
+60× 2

5
= 84 where the weight assigned to the Wald-DID estimate

reflects the relative amount of the DID estimate of the treatment. The TWFEIV estimate,
however, is β̂IV = 60× (0.28+0.40)+100× (0.12+0.20) = 72.8 because it assigns more weights
on the smaller Wald-DID estimate.

Theorem 1 is a decomposition result for the TWFEIV estimator and not for the estimand.
Related to the work in this paper, de Chaisemartin and D’Haultfœuille (2020) decompose the
TWFE estimand and present the issue regarding the use of this estimand under DID designs:
some weights assigned to the causal parameters in this estimand can be potentially negative. In
their appendix, the authors also decompose the TWFEIV estimand, and refer to the negative
weight problem in this estimand. Specifically, they apply their decomposition theorem for the
TWFE estimand to the numerator and the denominator of the TWFEIV estimand respectively,
and conclude that this estimand identifies the local average treatment effect as in Imbens and
Angrist (1994) only if the effects of the instrument on the treatment and the outcome are
homogeneous across groups and over time. In fact, the population coefficients on the instrument
in the first stage and the reduced form regressions take the form of the TWFE estimand and
their decomposition theorem for the TWFE estimand is also applicable to the analysis of the
TWFEIV estimand. However, the way of their decomposition for the TWFEIV estimand
has some drawbacks. First, they do not formally state the target parameter and identifying
assumptions in DID-IV designs. Second, their decomposition for the TWFEIV estimand is not
based on the target parameter in DID-IV designs. Finally, the sufficient conditions for this
estimand to have its causal interpretation are not well explored.

In the following section, we explore the causal interpretation of the TWFEIV estimand un-
der staggered DID-IV designs. In section 3, we first define the target parameter and identifying
assumptions in staggered DID-IV designs. In section 4, based on the decomposition theorem
for the TWFEIV estimator, we then provide the causal interpretation of the TWFEIV esti-
mand under staggered DID-IV designs. Finally, we investigate the sufficient conditions for this
estimand to attain its causal interpretation under staggered DID-IV designs.
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3 Staggered instrumented difference-in-differences

In this section, we formalize the staggered instrumented difference-in-differences (DID-IV), built
on the recent work in Miyaji (2024). We first introduce the additional notation. We then define
the target parameter and identifying assumptions in staggered DID-IV designs.

3.1 Notation

First, we introduce the potential outcomes framework. Let Yi,t(d, z) denote the potential out-
come in period t when unit i receives the treatment path d ∈ S(D) and the instrument path
z ∈ S(Z). Similarly, let Di,t(z) denote the potential treatment status in period t when unit i
receives the instrument path z ∈ S(Z).

Assumption 1 allows us to rewrite Di,t(z) by the initial adoption date Ei = e. Let De
i,t

denote the potential treatment status in period t if unit i is first exposed to the instrument in
period e. Let D∞

i,t denote the potential treatment status in period t if unit i is never exposed
to the instrument. Hereafter, we call D∞

i,t the "never exposed treatment". Since the adoption
date of the instrument uniquely pins down one’s instrument path, we can write the observed
treatment status Di,t for unit i at time t as

Di,t = D∞
i,t +

∑
1≤e≤T

(De
i,t −D∞

i,t) · 1{Ei = e}.

We define Di,t −D∞
i,t to be the effect of the instrument on the treatment for unit i at time

t, which is the difference between the observed treatment status Di,t to the never exposed
treatment status D∞

i,t . Hereafter, we refer to Di,t − D∞
i,t as the individual exposed effect in

the first stage. In the DID literature, Callaway and Sant’Anna (2021) and Sun and Abraham
(2021) define the effect of the treatment on the outcome in the same fashion.

Next, we introduce the group variable which describes the type of unit i at time t, based
on the reaction of potential treatment choices at time t to the instrument path z. Let Gi,e,t ≡
(D∞

i,t , D
e
i,t)(t ≥ e) be the group variable at time t for unit i and the initial exposure date e.

Specifically, the first element D∞
i,t represents the treatment status at time t if unit i is never

exposed to the instrument Ei = ∞ and the second element De
i,t represents the treatment status

at time t if unit i starts exposed to the instrument at Ei = e. Following to the terminology
in Imbens and Angrist (1994), we define Gi,e,t = (0, 0) ≡ NTe,t to be the never-takers, Gi,e,t =
(1, 1) ≡ ATe,t to be the always-takers, Gi,e,t = (0, 1) ≡ CMe,t to be the compliers and Gi,e,t =
(1, 0) ≡ DFe,t to be the defiers at time t and the initial exposure date e.

Finally, we make a no carryover assumption on potential outcomes Yi,t(d, z).

Assumption 2 (No carryover assumption).

∀z ∈ S(Z),∀d ∈ S(D), ∀t ∈ {1, . . . , T}, Yi,t(d, z) = Yi,t(dt, z),

where d = (d1, . . . , dT ) is the generic element of the treatment path Di.

This assumption requires that potential outcomes Yi,t(d, z) depend only on the current
treatment status dt and the instrument path z. In the DID literature, several recent papers
impose this assumption with settings of a non-staggered treatment; see, e.g., de Chaisemartin
and D’Haultfœuille (2020) and Imai and Kim (2021). Although it can be possible to weaken this
assumption by introducing the treatment path d in potential outcomes Yi,t(d, z), this requires
the cumbersome notation and complicates the definition of our target parameter, thus is beyond
the scope of this paper.

Henceforth, we keep Assumption 1 and 2. In the next section, we define the target parameter
in staggered DID-IV designs.
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3.2 Target parameter in staggered DID-IV designs

Our target parameter in staggered DID-IV designs is the cohort specific local average treatment
effect on the treated (CLATT) defined below.

Def. The cohort specific local average treatment effect on the treated (CLATT) at a given
relative period l from the initial adoption of the instrument is

CLATTe,l = E[Yi,e+l(1)− Yi,e+l(0)|Ei = e,De
i,e+l > D∞

i,e+l]

= E[Yi,e+l(1)− Yi,e+l(0)|Ei = e, CMe,e+l].

This parameter measures the treatment effects at a given relative period l from the initial
instrument adoption date Ei = e, for those who belong to cohort e, and are the compliers
CMe,e+l, that is, who are induced to treatment by instrument at time e + l. Each CLATTe,l

can potentially vary across cohorts and over time, as it depends on cohort e, relative period l,
and the compliers CMe,e+l.

3.3 Identifying assumptions in staggered DID-IV designs

In this section, we state the identifying assumptions in staggered DID-IV designs based on
Miyaji (2024).

Assumption 3 (Exclusion Restriction in multiple time periods).

∀z ∈ S(Z), ∀dt ∈ S(Dt),∀t ∈ {1, . . . , T}, Yi,t(d, z) = Yi,t(d) a.s.

Assumption 3 requires that the path of the instrument does not directly affect the potential
outcome for all time periods and its effects are only through treatment. Given Assumption 2
and Assumption 3, we can write the potential outcome Yi,t(d, z) as Yi,t(dt) = Di,tYi,t(1) + (1−
Di,t)Yi,t(0).

Here, we introduce the potential outcomes at time t if unit i is assigned to the instrument
path z ∈ S(Z):

Yi,t(Di,t(z)) ≡ Di,t(z)Yi,t(1) + (1−Di,t(z))Yi,t(0).

Since the exposure timing Ei completely determines the path of the instrument, we can write
the potential outcomes for cohort e and cohort ∞ as Yi,t(De

i,t) and Yi,t(D∞
i,t), respectively. The

potential outcome Yi,t(De
i,t) represents the outcome status at time t if unit i is first exposed to

the instrument at time e and the potential outcome Yi,t(D∞
i,t) represents the outcome status at

time t if unit i is never exposed to the instrument. Hereafter, we refer to Yi,t(D∞
i,t) as the "never

exposed outcome".

Assumption 4 (Monotonicity Assumption in multiple time periods).

Pr(De
i,e+l ≥ D∞

i,e+l) = 1 or Pr(De
i,e+l ≤ D∞

i,e+l) = 1 for all e ∈ S(Ei) and for all l ≥ 0.

This assumption requires that the instrument path affects the treatment adoption behavior
in a monotone way for all relative periods after the initial exposure. Recall that we define
Di,t −D∞

i,t to be the effect of the instrument on the treatment for unit i at time t. Assumption
4 requires that the individual exposed effect in the first stage is non-negative (or non-positive)
for all i and all the time periods after the initial exposure. This assumption implies that the
group variable Gi,e,t ≡ (D∞

i,t , D
e
i,t) can take three values with non-zero probability for all e and

all t ≥ e. Hereafter, we consider the type of the monotonicity assumption that rules out the
existence of the defiers DFe,t for all t ≥ e in any cohort e.
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Assumption 5 (No anticipation in the first stage).

De
i,e+l = D∞

i,e+l a.s. for all units i, for all e ∈ S(Ei) and for all l < 0.

Assumption 5 requires that the potential treatment choice for the treatment in any l period
before the initial exposure to the instrument is equal to the never exposed treatment. This
assumption restricts the anticipatory behavior before the initial exposure in the first stage.

Assumption 6 (Parallel Trends Assumption in the treatment in multiple time periods).

For all s ̸= t, E[D∞
i,t −D∞

i,s|Ei = e] is same for all e ∈ S(Ei).

Assumption 6 is a parallel trends assumption in the treatment in multiple periods and
multiple cohorts. This assumption requires that the trends of the treatment across cohorts
would have followed the same path, on average, if there is no exposure to the instrument.
Assumption 6 is analogous to that of Callaway and Sant’Anna (2021) and Sun and Abraham
(2021) in DID designs: both papers impose the same type of the parallel trends assumption on
untreated outcomes with settings of multiple periods and multiple cohorts.

Assumption 7 (Parallel Trends Assumption in the outcome in multiple time periods).

For all s < t, E[Yi,t(D
∞
i,t)− Yi,s(D

∞
i,s)|Ei = e] is same for all e ∈ S(Ei).

Assumption 7 is a parallel trends assumption in the outcome with settings of multiple
periods and multiple cohorts. This assumption requires that the expectation of the never
exposed outcome across cohorts would have followed the same evolution if the assignment of
the instrument had not occurred. From the discussions in Miyaji (2024), we can interpret that
this assumption requires the same expected time gain across cohorts and over time: the effects
of time on outcome through treatment are the same on average across cohorts and over time.

4 Causal interpretation of the TWFEIV estimand

In this section, we explore the causal interpretation of the TWFEIV estimand under staggered
DID-IV designs. In section 4.1, we first define the main building block parameter in the
first stage and reduced form regressions, respectively. In section 4.2, we then interpret the
TWFEIV estimand under staggered DID-IV designs, and show that this estimand potentially
fails to summarize the treatment effects. In section 4.3, given the negative result of using
the TWFEIV estimand under staggered DID-IV designs, we describe the various restrictions
on main building block parameter in each stage regression. In section 4.4, as a preparation,
we then describe the causal interpretation of the denominator in the TWFEIV estimand under
these restrictions. In section 4.5, we finally investigate the sufficient conditions for the TWFEIV
estimand to attain its causal interpretation.

4.1 Main building block parameter in each stage regression

As we already mentioned in section 2, the TWFEIV regression employs the TWFEIV regression
twice in the first stage and reduced form regressions. In this section, we define the main building
block parameter in each stage regression.

In the first stage regression, our building block parameter is the average of individual exposed
effect at a given relative period l from the initial exposure to the instrument in cohort e. We
call this the cohort specific average exposed effect on the treated in the first stage (CAET1

e,l)
defined below.
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Def. The cohort specific average exposed effect on the treated in the first stage (CAET1) at a
given relative period l from the initial adoption of the instrument is

CAET 1
e,l = E[Di,e+l −D∞

i,e+l|Ei = e].

We use the superscript 1 to make it clear that we define this parameter for the first stage
regression. In the recent DID literature, Sun and Abraham (2021) define their main building
block parameter in staggered DID designs in a similar fashion and call it the cohort specific av-
erage treatment effect on the treated. Callaway and Sant’Anna (2021) call the same parameter
the group-time average treatment effect.

If the treatment is binary and monotonicity assumption (Assumption 4) holds, the CAET1
e,l

is equal to the share of the compliers CMe,e+l in cohort e at period e+ l:

CAET 1
e,l = E[De

i,e+l −D∞
i,e+l|Ei = e]

= Pr(CMe,e+l|Ei = e).

In the reduced form regression, our building block parameter is the average of individual
effect of the instrument on the outcome through treatment at a given relative period l from the
initial exposure to the instrument in cohort e. We call this the cohort specific average intention
to exposed effect on the treated in the reduced form (CAIETe,l) defined below.

Def. The cohort specific average intention to exposed effect on the treated in the reduced form
(CAIET) at a given relative period l from the initial adoption of the instrument is

CAIETe,l = E[Yi,e+l(Di,e+l)− Yi,e+l(D
∞
i,e+l)|Ei = e].

If we assume the identifying assumptions in staggered DID-IV designs (Assumptions 1 to
7), this parameter is equal to a product of the CLATTe,l and CAET1

e,l:

CAIETe,l = E[Yi,e+l(D
e
i,e+l)− Yi,e+l(D

∞
i,e+l)|Ei = e]

= E[(De
i,e+l −D∞

i,e+l)(Yi,e+l(1)− Yi,e+l(0))|Ei = e]

= E[Yi,e+l(1)− Yi,e+l(0)|Ei = e, CMe,e+l] · Pr(CMe,e+l|Ei = e)

= CLATTe,l · CAET 1
e,l. (13)

In other words, if we scale the CAIETe,l in the reduced form by the CAET1
e,l in the first stage, we

obtain the CLATTe,l, which is the reason why we call this the cohort specific average "intention
to exposed effect" on the treated in the reduced form.

4.2 Interpreting the TWFEIV estimand under staggered DID-IV designs

We now interpret the TWFEIV estimand under staggered DID-IV designs based on the DID-IV
decomposition theorem derived in section 2 and the main building block parameters defined in
the previous section. This section presumes the monotonicity assumption (Assumption 4) to
clarify the interpretation of each notation defined below.

First, we introduce the additional notation. Let CLATTCM
k (W ) denote a weighted average

of each CLATTk,t in the time window W (with TW periods) where the weight reflects the
relative amount of the exposed effect in the first stage in cohort k at period t:

CLATTCM
k (W ) ≡

∑
t∈W

CAET 1
k,t∑

t∈W CAET 1
k,t

CLATTk,t

=
∑
t∈W

Pr(CMk,t|Ei = k)∑
t∈W Pr(CMk,t|Ei = k)

CLATTk,t.
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The first equality holds because we have a binary treatment and assume the monotonicity
assumption (Assumption 4). Each weight assigned to each CLATTk,t reflects the relative share
of the compliers at period t in cohort k during the time window W . We call this the compliers
weighted scheme. This would be one of the reasonable weighting schemes for two reasons.
First, the weight is designed to be larger in the period when the proportion of the compliers
is higher in cohort k. Second, the sum of the weight is one by construction: the proportion of
the compliers in each period in cohort k is divided by the total amount of the compliers in the
time window W in cohort k.

We also define the similar notation CLATTk(W ), in which the proportion of the compliers
in cohort k at period t is divided by the time length TW :

CLATTk(W ) ≡ 1

TW

∑
t∈W

CAET 1
k,tCLATTk,t

=
1

TW

∑
t∈W

Pr(CMk,t|Ei = k)CLATTk,t.

We call this the time-corrected weighting scheme. In contrast to CLATTCM
k (W ), the weight

assigned to each CLATTk,t can be inappropriate: each weight does not reflect the relative share
of the compliers in cohort k at period t. In addition, the sum of each weight is not equal to
one in general.

Theorem 2 below shows the probability limit of the TWFEIV estimator β̂IV under staggered
DID-IV designs (Assumptions 1-7).

Theorem 2. Suppose Assumptions 1-7 hold. Then, the TWFEIV estimand βIV consists of
two terms:

β̂IV =

[∑
k ̸=U

ŵIV,kU β̂
2×2
IV,kU +

∑
k ̸=U

∑
l>k

ŵk
IV,klβ̂

2×2,k
IV,kl + ŵl

IV,klβ̂
2×2,l
IV,kl

]
p−→ WCLATT −∆CLATT.

where we define:

WCLATT ≡
∑
k ̸=U

wIV,kUCLATT
CM
k (POST (k)) +

∑
k ̸=U

∑
l>k

wk
IV,klCLATT

CM
k (MID(k, l))

+
∑
k ̸=U

∑
l>k

σl
IV,kl · CLATTl(POST (l))

∆CLATT ≡
∑
k ̸=U

∑
l>k

σl
IV,kl · [CLATTk(POST (l))− CLATTk(MID(k, l))] .

The weights wIV,kU and wk
IV,kl are the probability limit of ŵIV,kU and ŵk

IV,kl, respectively. The

weight σl
IV,kl is the probability limit of ŵl

kl

ĈD,Z
̸= ŵl

klD̂
2×2,l
kl

ĈD,Z
= ŵl

IV,kl. The specific expressions for
each weight are shown in equations (49), (50), and (51) in Appendix B.

Proof. See Appendix B.

Theorem 2 shows that the TWFEIV estimand βIV consists of two terms (WCLATT and
∆CLATT ) and potentially fails to aggregate the treatment effects under staggered DID-IV
designs.
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The first term WCLATT is a positively weighted average of each CLATTk,t for the post-
exposed period in cohort k. We call this a weighted average cohort specific local average
treatment effect on the treated (WCLATT ) parameter. The first and the second terms in
the WCLATT use the compliers weighted scheme, but the third term in WCLATT uses the
time-corrected one.

Although WCLATT can be a causal parameter, the amount of this parameter may be diffi-
cult to interpret in practice for two reasons. First, the weight σl

IV,kl assigned to CLATTl(POST (l))
reflects only the sample share and the variation of the instrument, and does not reflect the vari-
ation of the treatment D2×2,l

kl in the first stage. Because the other weights, wIV,kU and wk
IV,kl

precisely reflect all the variations in each DID-IV design, this asymmetry can break the implica-
tion of the magnitude of this parameter in a given application. Second, the CLATTl(POST (l))
in the third term is a weighted average of CLATTk,t for the post exposed periods in cohort k,
but the weight assigned to each CLATTk,t seems not reasonable: it does not reflect the relative
share of the compliers in period t in cohort k and the sum of the weight is not equal to one.

The problem of the WCLATT is due to the "bad comparisons" in the first stage TWFE
regression: when we compare the evolution of the treatment in Exposed/Exposed Shift designs,
we use already exposed cohorts as controls. In these comparisons, we should offset the DID
estimator of the treatment in each weight in Exposed/Exposed Shift designs by the one appeared
in the denominator of the corresponding Wald-DID estimator, which produces the weight σl

IV,kl

and CLATTl(POST (l)) in the third term.
The second term ∆CLATT is a weighted sum of the differences in the positively weighted

average of each CLATTk,t from the exposed period k to before period l(k < l) and after
period l in the already exposed cohort k. This term fails to properly aggregate the treatment
effects because the CLATTk(POST (l)) is canceled out by the CLATTk(MID(k, l)) in each
cohort k. This problem arises due to the "bad comparisons" in the reduced form TWFE
regression: when we compare the evolution of the outcome in Exposed/Exposed Shift designs,
we use already exposed cohorts as controls. In these comparisons, we subtract their expected
trends of unexposed potential outcomes and average intention exposed effects, which yields the
∆CLATT .

Overall, this section shows that the TWFEIV estimand potentially fails to summarize the
treatment effects under staggered DID-IV designs. In the next section, we first describe various
restrictions on main building block parameters in the first stage and the reduced form regres-
sions. Given these restrictions on exposed effect heterogeneity, we then explore the sufficient
conditions for the TWFEIV estimand to be causally interpretable parameter.

4.3 Restrictions on exposed effect heterogeneity

First, we describe the restrictions on the CAET1
e,l in the first stage regression.

Assumption 8 (Exposed effect homogeneity across cohorts in the first stage). For each relative
period l, CAET 1

e,l does not depend on cohort e and is equal to AET 1
l .

Assumption 8 requires that the exposed effects in the first stage depend on only the relative
time period l after the initial exposure to the instrument and do not depend on the cohort e.
This assumption does not exclude the dynamic effects of the instrument on the treatment, but
requires that the exposed effects are the same across cohorts for all relative periods.

Assumption 9 (Stable exposed effect over time within cohort in the first stage). For each
cohort e, CAET 1

e,l does not depend on the relative time period l and is equal to CAET 1
e .
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Assumption 9 rules out the dynamic effects of the instrument on the treatment within cohort
e in the first stage regression. Assumption 9 permits the heterogeneous exposed effects across
cohort e, but requires the homogeneous exposed effects over time after the initial adoption of
the instrument within cohort e.

The recent DID literature imposes the similar restrictions as in Assumption 8 and Assump-
tion 9 on treatment effects. Sun and Abraham (2021) assume that "each cohort experiences the
same path of treatment effects", which is in line with Assumption 8. Goodman-Bacon (2021)
requires heterogeneous treatment effects to either be "constant over time but vary across units"
or "vary over time but not across units". The former corresponds to Assumption 9 and the
latter corresponds to Assumption 8.

Next, we describe the restrictions on the CAIETe,l in the reduced form regression. Following
to Assumption 8 and Assumption 9 on the CAET1

e,l, we consider Assumption 10 and Assumption
11 below.

Assumption 10 (Exposed effect homogeneity across cohorts in the reduced form). For each
relative period l, CAIETe,l does not depend on cohort e and is equal to AIETl.

Assumption 11 (Stable exposed effect over time within cohort in the reduced form). For each
cohort e, CAIETe,l does not depend on the relative time period l and is equal to CAIETe.

Assumption 10 requires that the evolution of the average intention to exposed effect after the
initial exposure is the same across cohorts. Assumption 11 requires that the average intention
to exposed effects are stable over time in all relative periods within cohort e.

Note that given Assumption 8 and Assumption 10, we have the following restriction on the
CLATTe,l, which follows from equation (13) in section 4.1.

Assumption 12 (Treatment effect homogeneity across cohorts for CLATTe,l). For each relative
period l, CLATTe,l does not depend on cohort e and is equal to LATTl.

Similarly, given Assumption 9 and Assumption 11, we have the following restriction on the
CLATTe,l.

Assumption 13 (Stable treatment effect over time within cohort for CLATTe,l). For each
cohort e, CLATTe,l does not depend on the relative time period l and is equal to CLATTe.

4.4 The denominator in the TWFEIV estimand

In this section, we first interpret the denominator in the TWFEIV estimand under various
restrictions considered in section 4.3. This section is a preparation for the next section, in
which we analyze the TWFEIV estimand itself.

As we already noted, the denominator in the TWFEIV estimator (see equation (6)), ĈD,Z

can be decomposed into a weighted average of all possible 2×2 DID estimators of the treatment.
In the following discussion, we show that this estimand can potentially fail to aggregate the
effects of the instrument on the treatment in the first stage regression without additional re-
strictions. We then briefly describe the interpretation of this estimand by imposing Assumption
8 or Assumption 9, and state the implications.

First, we introduce the additional notation. Let CAET1
k(W ) denote an equally weighted

average of the CAET1
k,t in the time window W (with TW period length):

CAET 1
k (W ) ≡ 1

TW

∑
t∈W

CAET 1
k,t.
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If we assume Assumption 4 (monotonicity assumption), CAET1
k(W ) is an equally weighted

average of the fraction of the compliers in cohort k in the time window W . For instance, the
CAET1

k(POST (k)) is an equally weighted average of the CAET1
k during the periods after the

initial exposure date k and rewritten as

CAET 1
k (POST (k)) =

1

T − (k − 1)

T∑
t=k

CAET 1
k,t

=
1

T − (k − 1)

T∑
t=k

Pr(CMk,t|Ei = k).

Lemma 1 below shows the probability limit of the denominator ĈD,Z under staggered DID-
IV designs. This lemma is mainly based on the result of Goodman-Bacon (2021), who shows
the probability limit of the two-way fixed effects estimator under staggered DID designs. The
slight difference here is that each weight assigned to each CAET1

k(W ) in CD,Z is not divided
by the probability limit of the grand mean 1

NT

∑
i

∑
t Z̃it.

Lemma 1. Suppose Assumptions 1-7 hold. Then, the probability limit of the denominator of
the TWFEIV estimator, CD,Z consists of two terms:

ĈD,Z =
∑
k ̸=U

ŵkUD̂
2×2
kU +

∑
k ̸=U

∑
l>k

[ŵk
klD̂

2×2,k
kl + ŵl

klD̂
2×2,l
kl ]

p−→ WCAET −∆CAET 1.

where we define:

WCAET ≡
∑
k ̸=U

wkUCAET
1
k (POST (k)) +

∑
k ̸=U

∑
l>k

wk
klCAET

1
k (MID(k, l)) + wl

klCAET
1
l (POST (l)),

∆CAET 1 ≡
∑
k ̸=U

∑
l>k

wl
kl

[
CAET 1

k (POST (l))− CAET 1
k (MID(k, l))

]
.

The weights wkU ,wk
kl and wl

kl are the probability limit of ŵkU , ŵ
k
kl and ŵl

kl defined in section
3 respectively, and are non-negative. The specific expressions in each weight are shown in
equations (35)-(37) in Appendix B.

Proof. See Appendix B.

Lemma 1 shows that we can decompose CD,Z into two terms. The first term is a positively
weighted average of each CAET1

k,t during the periods after the initial exposure in exposed
cohorts, allowing for its causal interpretation. Following the terminology in Goodman-Bacon
(2021), we call this a weighted average cohort specific exposed effect on the treated (WCAET)
parameter.

The second term ∆CAET1 is equal to the sum of the difference in the positively weighted
average of exposed effect CAET1

k,t from the exposed period k to before period l (k < l) and
after period l in the already exposed cohort k. This term fails to properly aggregate the causal
parameter in the first stage because some exposed effects are canceled out by other exposed
effects.

Lemma 1 implies that if we assume only Assumptions 1-7, the probability limit of the de-
nominator in the TWFEIV estimand, CD,Z generally fails to properly summarize the exposed
effects in the first stage due to the second term ∆CAET1. This problem arises from the "bad

19



comparisons" performed by the TWFE regression in the first stage: we treat the already ex-
posed cohorts as control groups in the Exposed/ Exposed Shift designs. In these comparisons,
we should subtract their expected trends of unexposed potential treatment choices and their ex-
pected exposed effects, which yields the second term ∆CAET1. In the DID literature, Borusyak
et al. (2021), de Chaisemartin and D’Haultfœuille (2020), and Goodman-Bacon (2021) point
out the same issue for the TWFE estimand in staggered DID designs.

Based on the negative result shown in Lemma 1, we consider the restrictions on exposed
effect heterogeneity in the first stage regression. The conclusion here is that CD,Z properly
aggregates each CAET 1

k,t only if Assumption 9 holds, that is, the exposed effects are stable
over time within cohort e. Because Goodman-Bacon (2021) have already made the same point
for the TWFE estimand, we briefly summarize the interpretation of CD,Z under Assumption
8 or Assumption 9 in the following. For the more detailed discussions, see section 3.1 in
Goodman-Bacon (2021).

Interpreting CD,Z under Assumption 8 only

Even when Assumption 8 holds, that is, the exposed effects are the same across cohorts but
vary over time in the first stage, we have ∆CAET1 ̸= 0 in general. This implies that if we
impose only Assumption 8, we cannot generally interpret the CD,Z as measuring the positively
weighted average of exposed effects in the first stage.

Interpreting CD,Z under Assumption 9 only

If Assumption 9 holds, that is, the exposed effects are stable over time within cohort e in the
first stage, we have CAET 1

k (W ) = CAET 1
k . This implies that the second term ∆CAET1 is

equal to zero:

∆CAET 1 =
∑
k ̸=U

∑
l>k

wl
kl

[
CAET 1

k − CAET 1
k

]
= 0.

Thus, CD,Z simplifies to:

CD,Z = WCAET

=
∑
k ̸=U

CAET 1
k

[
wkU +

k−1∑
j=1

wk
jk +

K∑
j=k+1

wk
kj

]
︸ ︷︷ ︸

≡wk

.

CD,Z weights each CAET1
k positively across cohorts under Assumption 9 only. We note, how-

ever, that each weight assigned to each CAET1
k, wk is not equal to the sample share in cohort

k, but is a function of the sample share and the timing of the initial exposure date.

In this section, we have considered whether the denominator in the TWFEIV estimand
properly aggregates the exposed effects in the first stage. We have two implications. First, if
we do not impose Assumption 9, the weight assigned to each 2× 2 Wald-DID in the TWFEIV
estimand may not be properly normalized because the numerator in each weight is divided by
CD,Z , and the denominator potentially fail to aggregate the exposed effects in the first stage.
Second, if we do not impose Assumption 9, some weights assigned to 2×2 Wald-DID estimands
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can be potentially negative. This is because the DID estimand of the treatment forms the part
of each weight and can be negative due to the "bad comparisons" in the first stage regression.

From the discussion so far, hereafter, we impose Assumption 9 when we consider the re-
strictions on exposed effect heterogeneity in the first stage.

4.5 Interpreting the TWFEIV estimand under additional restrictions

We now describe the interpretation of the TWFEIV estimand under additional restrictions.

Interpretation under Assumption 9 only

First, we consider imposing Assumption 9 only, that is, we assume only the stable exposed
effect over time in the first stage. If Assumption 9 holds, the CLATTCM

k (W ) simplifies to an
equally weighted average of CLATTk,t:

CLATTCM
k (W ) =

∑
t∈W

Pr(CMk,t|Ei = k)∑
t∈W Pr(CMk,t|Ei = k)

CLATTk,t

=
1

TW

∑
t∈W

CLATTk,t

≡ CLATT eq
k (W ).

The CLATT eq
k (W ) weights each CLATTk,t equally in the time window W and the weight sum

to one by construction. We call this an equal weighting scheme.
Lemma 2 presents the interpretation of the TWFEIV estimand under staggered DID-IV

designs and Assumption 9.

Lemma 2. Suppose Assumptions 1-7 hold. If Assumption 9 holds additionally, the TWFEIV
estimand βIV consists of two terms:

βIV = WCLATT −∆CLATT.

where we define:

WCLATT ≡
∑
k ̸=U

wIV,kUCLATT
eq
k (POST (k)) +

∑
k ̸=U

∑
l>k

wk
IV,klCLATT

eq
k (MID(k, l))

+
∑
k ̸=U

∑
l>k

wl
IV,klCLATT

eq
l (POST (l)),

∆CLATT ≡
∑
k ̸=U

∑
l>k

σl
IV,kl · [CLATTk(POST (l))− CLATTk(MID(k, l))] .

The weights wIV,kU , wk
IV,kl and wl

IV,kl are the probability limit of ŵIV,kU , ŵk
IV,kl and ŵl

IV,kl

respectively, and are non-negative. The specific expressions for these weights are shown in
equations (54), (55), and (59) in Appendix B. The weight σl

IV,kl is already defined in Theorem
2.

Proof. See Appendix B.

Lemma 2 shows that Assumption 9 is not sufficient for the TWFEIV estimand to attain
its causal interpretation. If the exposed effects in the first stage are stable over time, we can
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interpret the first term WCLATT causally and its interpretation seems clear: this parame-
ter is a positively weighted average of each CLATT eq

k (W ) and each weight assigned to each
CLATT eq

k (W ) reflects all the variations in each DID-IV design. However, the second term
∆CLATT still remains, which contaminates the causal interpretation of the TWFEIV esti-
mand.

Interpretation under Assumption 9 and Assumption 10

Next, we assume Assumption 9 and Assumption 10 additionally. Even in this case, we still
have the second term ∆CLATT ̸= 0 in general. This implies that the TWFEIV estimand
identifies WCLATT − ∆CLATT , that is, this estimand does not generally attain its causal
interpretation.

Interpretation under Assumption 9 and Assumption 11

As we already noted in section 4.2, if we assume Assumption 9 and Assumption 11 additionally,
we have Assumption 13, that is, CLATTe,t = CLATTe holds. Then, we obtain the following
Lemma.

Lemma 3. Suppose Assumptions 1-7 hold. In addition, if Assumption 9 and Assumption 11
hold, the TWFEIV estimand βIV is:

βIV =
∑
k ̸=U

CLATTk

[
wIV,kU +

k−1∑
j=1

wk
IV,jk +

K∑
j=k+1

wk
IV,kj

]
︸ ︷︷ ︸

≡wk,IV

.

where the weights wIV,kU , wk
IV,kj and wk

IV,jk are the probability limit of ŵIV,kU , ŵk
IV,kj and ŵk

IV,jk

respectively.

Proof. See Appendix B.

If Assumption 9 and Assumption 11 are satisfied, the TWFEIV estimand is a positively
weighted average of each CLATTk across exposed cohorts, which implies that we can interpret
this estimand causally. However, at the same time, we also note that the weight wk,IV assigned
to each CLATTk does not reflect only the cohort share and the fraction of the compliers, but
is a function of the cohort share, the fraction of the compliers, and the timing of the initial
exposure to the instrument.

5 Extensions

This section briefly describes the extensions in section 4. We consider a non-binary, ordered
treatment and unbalanced panel settings. It also includes the case when the adoption date
of the instrument is randomized across units. For the proofs and the specific discussions, see
Appendix C.

Non-binary, ordered treatment

Up to now, we have considered only the case of a binary treatment. When treatment takes a
finite number of ordered values, Di,t ∈ {0, 1, . . . , J}, our target parameter in staggered DID-IV
design is the cohort specific average causal response on the treated (CACRT) defined below.
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Def. The cohort specific average causal response on the treated (CACRT) at a given relative
period l from the initial adoption of the instrument is

CACRTe,l ≡
J∑

j=1

we
e+l,j · E[Yi,e+l(j)− Yi,e+l(j − 1)|Ei = e,De

i,e+l ≥ j > D∞
i,e+l]

where the weights we
e+l,j are:

we
e+l,j =

Pr(De
i,e+l ≥ j > D∞

i,e+l|Ei = e)∑J
j=1 Pr(D

e
i,e+l ≥ j > D∞

i,e+l|Ei = e)
.

The CACRT is a weighted average of the effect of a unit increase in treatment on outcome,
for those who are in cohort e and induced to increase treatment by instrument at a relative
period l after the initial exposure. This parameter is similar to the average causal response
(ACR) considered in Angrist and Imbens (1995), but the difference here is that there exist
dynamic effects in the first stage, and each weight we

e+l,j and the associated causal parameters
in CACRT are conditioned on Ei = 1.

If we have a non-binary, ordered treatment, one can show that we have Theorem 2 and Lem-
mas 2-3 in section 4, which replace CLATTe,k with CACRTe,k. Note that our decomposition
result for the TWFEIV estimator is unchanged under non-binary, ordered treatment settings.

Unbalanced panel case

Throughout sections 2 to 4, we have considered a balanced panel setting. If we assume an
unbalanced panel (or repeated cross section) setting, we obtain the following theorem.

Theorem 3. Suppose Assumptions 1-7 hold. If we assume a binary treatment and an un-
balanced panel setting, the population regression coefficient βIV is a weighted average of each
CLATTe,t in all relative periods after the initial exposure across cohorts with potentially some
negative weights:

βIV =
∑
e

∑
t≥e

we,t · CLATTe,t.

where the weight we,t is:

we,t =
E[Ẑi,t|Ei = e] · ne,t · CAET 1

e,t∑
e

∑
t≥eE[Ẑi,t|Ei = e] · ne,t · CAET 1

e,t

,

where E[Ẑi,t|Ei = e] is the population residuals from regression Zi,t on unit and time fixed
effects in cohort e and ne,t is the population share for cohort e at time t. The weights sum to
one.

Proof. See Appendix C.

Theorem 3 shows that the population regression coefficient βIV is a weighted average of
all possible CLATTe,t across cohorts, but some weights can be negative. Theorem 3 is related
to de Chaisemartin and D’Haultfœuille (2020), who show the decomposition theorem for the
TWFEIV estimand when the assignment of the instrument is non-staggered and a no carry
over assumption is satisfied in the first stage regression. Theorem 3 instead considers the case
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when the assignment of the instrument is staggered and there exist dynamic effects in the first
stage. Theorem 3 assumes a binary treatment, but a non-binary, ordered treatment case is easy
to extend: one can obtain the theorem which replaces CLATTe,t with CACRTe,t.

If one wants to check the validity of the TWFEIV estimator in a given application, one can
estimate each weight by constructing the consistent estimator for CAET 1

e,t. If there does not
exist a never exposed cohort, however, it is not feasible to obtain the consistent estimator for
CAET 1

l,t in the last exposed cohort l = max{Ei}. In Appendix C, we provide another repre-
sentation of the decomposition theorem, in which we can estimate each weight consistently and
quantify the bias term arising from the bad comparisons performed by TWFEIV regressions.

Random assignment of the adoption date

In practice, researchers may use the TWFEIV regression when the adoption date of the instru-
ment is randomized across units (e.g., Randomized control trial). In Appendix C, we consider
the causal interpretation of the TWFEIV estimand under the random assignment assumption.
In the DID literature, a similar issue is analyzed in Athey and Imbens (2022): they investigate
the causal interpretation of the TWFE estimand when the adoption date of the treatment is
randomized across units.

First, we define the random assignment assumption of the adoption date Ei.

Assumption 14 (Random assignment assumption of adoption date Ei). For all t ∈ {1, . . . , T}
and all z ∈ S(Z), Ei is independent of potential outcomes:

(Yi,t(1), Yi,t(0), Di,t(z))⊥⊥Ei.

When the assignment of the adoption date is totally randomized, our target parameter is
the local average treatment effect (LATE) defined below.

Def. The local average treatment effect (LATE) at a given relative period l from the initial
adoption of the instrument is

LATEe,l = E[Yi,e+l(1)− Yi,e+l(0)|CMe,e+l].

Unlike the CLATT, this parameter is not conditioned on the adoption date Ei due to the
independence assumption. The causal parameter in the first stage, CAET 1

e,l, is also simplified
to the average exposed effect (AE1

e,l) defined below:

CAET 1
e,l = E[Di,e+l −D∞

i,e+l]

≡ AE1
e,l.

If Assumptions 1- 7 and Assumption 14 hold, one can obtain the theorem and lemmas in
section 4, which replace CAET 1

k,t and CLATTk,t with AE1
k,t and LATEk,t, respectively. This

implies that even when the adoption date of the instrument is randomized, we cannot interpret
the TWFEIV estimand causally in general, and the causal interpretation requires the stable
exposed assumptions in both the first stage and reduced form regressions.

6 Application

In this section, we illustrate our DID-IV decomposition theorem in the setting of Miller and
Segal (2019). We first explain our dataset. We then assess the plausibility of the staggered DID-
IV identification strategy implicitly imposed by Miller and Segal (2019). Finally, we present
the DID-IV decomposition result and state the implication.
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Miller and Segal (2019) study the effect of an increase in the share of female police officers
on intimate partner homicide (IPH) rates among women in the United States between 1977
and 1991. The increase was in line with a shift in gender norms during these periods and there
was growing interest in whether the female integration improved police quality in addressing
violence against women.

To establish the causal relationship, Miller and Segal (2019) first regress the IPH rates on
the lagged female officers’ share with county and year fixed effects. In the second part of their
analysis, Miller and Segal (2019) exploit "plausibly exogenous variation in female integration
from externally imposed AA (affirmative action) following employment discrimination cases
against particular departments in different years" across 255 counties. Specifically, Miller and
Segal (2019) use the two-way fixed effects instrumental variable regression, instrumenting the
lagged female officers’ share with the exposure years of AA plans.

Miller and Segal (2019) implicitly rely on staggered DID-IV designs to estimate the causal
effects: Miller and Segal (2019) concern that "AA itself might have occurred following increasing
trends" in the share of female officers or the IPH rates. To address this concern, Miller and Segal
(2019) check the trends of these variables before AA introduction using event study regressions
in the first stage and reduced form.

In this application, we slightly modify the authors’ setting for simplicity. Specifically, unlike
Miller and Segal (2019), we use the staggered adoption of AA plans as our instrument instead of
the exposure years. In the authors’ setting, AA plans were terminated in some counties during
the sample period, which is probably the reason why Miller and Segal (2019) use the exposure
years of AA plans as their instrument. We instead drop such counties from our sample and
make the instrument assignment staggered. Although it reduces our sample size, it allows us
to have a clearer staggered DID-IV identification strategy. In addition, it enables us to apply
our DID-IV decomposition theorem to the TWFEIV estimate in the authors’ setting.

Data

The data come from Miller and Segal (2019). Our final sample differs from their main anal-
ysis sample in two ways. First, unlike Miller and Segal (2019), we only include the counties
whose variables are observable for all sample periods. This restriction excludes 20 counties and
allows us to create the balanced panel data set. Second, as we already noted, we construct
an instrument that takes one after the AA introduction. Miller and Segal (2019) use data on
AA plans from Miller and Segal (2012) and define the instrument as the difference between the
current year and the start year of AA introduction1; see Miller and Segal (2012), Miller and
Segal (2019) for details. We identify the initial year of AA plans in each county, and discard the
counties whose AA plans ended between 1976 and 1990 (8 counties dropped) and whose AA
plans were already implemented before 1976 (23 counties dropped). Table 1 shows the timing
of AA adoption across 199 counties between 1976 and 1990.

Summary statistics for county characteristics are reported in Table 2. We have a smaller
sample size, but otherwise have a similar sample to that of Miller and Segal (2019). Counties
are separated into exposed and unexposed counties based on whether the county experienced
AA introduction. In both types of counties, the lagged female officers’ share increased over
time. However, it increases more in counties who are exposed to AA plans during sample
periods. The IPH rates had downward trends in all counties, but it seems that there are no

1As one can see in this construction, Miller and Segal (2019) create the lagged instrument in line with the
lagged female officers’ share. Therefore, we construct the lagged staggered instrument instead of the current
one.
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Table 1
The staggered AA introduction: exposure year, cohort sizes.
Start year of AA plans Number of counties
Unexposed counties 159
1976 6
1977 3
1978 3
1979 4
1980 3
1981 5
1982 4
1983 3
1984 2
1985 1
1986 1
1987 3
1988 1
1990 1

Notes: This table presents the initial exposure year of AA plans and
the number of counties in each year in our final sample.

Table 2
Summary statistics

All counties Unexposed counties Exposed counties
IPH per 100000 population 1977-91 0.544 0.521 0.638

1977 0.549 0.526 0.641
1991 0.489 0.461 0.599

Lagged female officer share 1977-91 0.053 0.050 0.066
1977 0.033 0.033 0.032
1991 0.077 0.071 0.101

Counties 199 159 40
Observations 2985 2385 600

Notes: This table presents summary statistics on our final sample from 1977 to 1991. The sample consists
of 199 counties.

systematic differences in the trends between exposed and unexposed counties.

Assessing the identifying assumptions in staggered DID-IV design

In this section, we discuss the validity of the staggered DID-IV identification strategy implicitly
imposed by Miller and Segal (2019). Note that in the authors’ setting, our target parameter
is the cohort specific average causal response on the treated (CACRT) as female officer share
is a non-binary, ordered treatment. We therefore expect that we can identify each CACRT if
the underlying staggered DID-IV identification strategy seems plausible, which we will check
below. Here, we presume the no carry over assumption (Assumption 2).

Exclusion restriction (Assumption 3). It would be plausible, given that the AA plans
(instrument) did not affect IPH rates other than by increasing the female officers’ share. This
assumption may be violated for instance if the AA plans increased both the black and female
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(a) First stage DID (b) Reduced form DID

Fig. 2. Weighted average of the effects of AA introduction on female officer share and IPH rates in Miller
and Segal (2019). Notes: The results for the effects of AA plans on the female officers share (Panel (a)) and
on the IPH rates (Panel (b)) under the staggered DID-IV identification strategy. The red line represents the
weighted average of the estimates with simultaneous 95% confidence intervals for pre-exposed periods in both
panels where the weight reflects cohort size in each period. The control group is a never exposed cohort and
the reference period is t − 1 for period t estimate. These should be equal to zero under the null hypothesis
that parallel trends assumptions in the treatment and the outcome hold. The blue line represents the weighted
average of the estimates with simultaneous 95% confidence intervals for post exposed periods in both panels
where the weight reflects cohort size in each period. The control group is a never exposed cohort and the
reference period is t = −1 for all post-exposed period estimates. All the standard errors are clustered at county
level.

officer shares and changes in IPH rates reflect both effects. Miller and Segal (2019) conduct
the robustness check and confirm that this is not the case; see footnote 42 in Miller and Segal
(2019) for details.

Monotonicity assumption (Assumption 4). It would be automatically satisfied in
the authors’ setting: the AA plans (instrument) were imposed on departments with the intent
to increase the share of female police officers. This ensures that the dynamic effects of the
instrument on female police officers should be non-negative after the AA introduction.

No anticipation in the first stage (Assumption 5). It would be plausible that there
is no anticipatory behavior, given that the treatment status, i.e., the female officers share before
the AA plans is equal to the one in the absence of the AA introduction across counties. This
assumption may be violated if the police departments in some counties had private knowledge
about the probability of the AA introduction and manipulated their treatment status before
the implementation.

Next, we assess the plausibility of the parallel trends assumptions in the treatment and the
outcome. To do so, we apply the method proposed by Callaway and Sant’Anna (2021) to the
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first stage and reduced form, respectively2. Specifically, we estimate the weighted average of
the effects of the instrument on the treatment and outcome in each relative period where the
weight reflects the cohort size. We depict the results in Figure 2. The plots report estimates
for the effects before and after AA plans with a simultaneous 95% confidence interval in each
stage. The confidence intervals account for clustering at the county level.

Parallel trends assumption in the treatment (Assumption 6). It requires that if
the AA plans had not occurred, the average time trends of the female officers share would
have been the same across counties and over time. The pre-exposed estimates in Panel (a) in
Figure 2 seem consistent with the parallel trends assumption in the treatment: the pre-exposed
estimates around AA plans are not significantly different from zero.

Parallel trends assumption in the outcome (Assumption 7). It would be plausible
if the AA plans had not been implemented, the average time trends of the IPH rates would
have been the same across counties and over time. Panel (b) in Figure 2 presents that the
pre-exposed estimates around AA introduction are not significantly different from zero, which
indicates that the parallel trends assumption in the outcome is also plausible.

Figure 2 also sheds light on the dynamic effects of the AA plans on the female officer share
and IPH rates during the post-exposed periods. The figure indicates that the effect of the AA
plans on the female officer share increases over time, whereas the effect on IPH rates through
the female officer share has downward trends during the post-exposed periods. We note that
the estimated effects in the reduced form are not scaled by the ones in the first stage, i.e., these
estimates do not capture each CACRT after the AA shock.

Illustrating the weights in TWFEIV regression

First, we estimate the two-way fixed effects instrumental variable regression in the authors’
setting. To clearly illustrate the shortcomings of the TWFEIV regression, we modify the
authors’ specification in two ways: Miller and Segal (2019) include some covariates and weight
their regression with county population, whereas we exclude such covariates and do not apply
their weights to our regression.

The result is shown in Table 3. The two-way fixed effects instrumental variable estimate is
−0.646 and it is not significantly different from zero3. However, as we already noted in section
4, we cannot generally interpret the IV estimate as measuring a properly weighted average of
each CACRT if the effect of the AA introduction on female officer share or IPH rates is not
stable over time.

Our DID-IV decomposition theorem (Theorem 1) allows us to visualize the source of varia-
tions in the three types of the DID-IV design: Unexposed/Exposed, Exposed/Not Yet Exposed,
and Exposed/Exposed Shift designs. Panel (a) in Figure 3 plots the weights and the corre-
sponding Wald-DID estimates for all designs and Panels (b), (c), and (d) in Figure 3 plot them
for each type of the DID-IV design, respectively. Table 4 reports the total weight, total Wald-
DID estimate, and weighted average of Wald-DID estimates in each type of the DID-IV design.

2Unfortunately, in the presence of heterogeneous treatment effects, the coefficients on event study regression
face a contamination bias shown by Sun and Abraham (2021).

3Although Miller and Segal (2019) do not report the TWFEIV estimate without weights and covariates,
when we run such a TWFEIV regression in their final analysis sample, the IV estimate is −1.445 and is not
significantly different from zero. This implies that we reach the same conclusion as in Miller and Segal (2019)
in our data.
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The total weight and total Wald-DID estimate are calculated by summing the weights and
Wald-DID estimates respectively, and the weighted average of Wald-DID estimates is calcu-
lated by summing the products of the weight and the associated Wald-DID estimate. Summing
all the weighted average of Wald-DID estimates yields the two-way fixed instrumental variable
estimate (−0.646).

Panel (a) in Figure 3 shows that the weights are heavily assigned to the Wald-DID estimates
in Unexposed/Exposed designs. This is due to the large sample size of the unexposed cohort
in the authors’ setting. Panels (b), (c), and (d) in Figure 3 highlight that some weights in
each type can be negative: 2 out of 14 weights are negative in Unexposed/Exposed designs, 29
out of 91 weights are negative in Exposed/Not Yet Exposed designs and 50 out of 91 weights
are negative in Exposed/Exposed Shift designs. The negative weights arise because some DID
estimates of the treatment in the first stage are negative in each type of the DID-IV design.

The TWFEIV estimate suffers from a downward bias due to the bad comparisons arising
from the Exposed/Exposed shift designs. As we already mentioned in section 4, the TWFEIV
estimand potentially fails to summarize the causal effects if the effect of the instrument on the
treatment or the outcome evolves over time. Table 4 indicates that the estimated bias occurring
from the Exposed/Exposed shift designs is quantitatively not negligible: the weighted average
of the Wald-DID estimates in the Exposed/Exposed shift designs is −0.093, which accounts for
one-seventh of our IV estimate.
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Fig. 3. Instrumented difference-in-differences decomposition result in the setting of Miller and Segal (2019).
Notes: Panel (a) plots the weights and the corresponding Wald-DID estimates for all DID-IV designs and Panels
(b), (c), and (d) plot them for each type of the DID-IV design, respectively. Unexposed/Exposed designs yield
blue circles, Exposed/Not Yet Exposed designs yield yellow triangles and Exposed/Exposed Shift designs yield
red squares.

Table 3
Estimate for the effect of female officers share on IPH rates.

Estimate Standard Error 95% CI
TSLS with fixed effects -0.646 3.284 [-7.594, 6.301]

Notes: Sample consists of 199 counties. Confidence intervals account for clustering at the
county level.

Table 4
Total weight, Total and Weighted WDD estimates in each type of the DID-IV design.

Total weight Total WDD estimate Weighted WDD estimate
Unexposed/Exposed 1.026 -233.198 -0.399

Exposed/Not Yet Exposed 0.010 -490.665 -0.154
Exposed/Exposed Shift -0.036 -569.426 -0.093

Notes: This table presents the total weight, total Wald-DID estimate, and weighted average of Wald-
DID estimates in each type of the DID-IV design: Unexposed/Exposed, Exposed/Not Yet Exposed, and
Exposed/Exposed Shift designs.
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7 Alternative specifications

So far, we have considered simple TWFEIV regressions as in equation (1). However, many
studies routinely estimate various specifications, such as weighting or introducing covariates,
to check the robustness of their findings. In this section, we extend our DID-IV decomposition
theorem to the settings with weighting and covariates, and provide simple tools to examine how
different specifications affect differences in estimates. We illustrate these by revisiting Miller
and Segal (2019).

The tools we provide here are based on Goodman-Bacon (2021). Recall that our DID-IV
decomposition theorem shows that the TWFEIV estimator can be written as the product of a
vector of 2× 2 Wald-DID estimators (β̂2×2

IV ) and a vector of weights (s), that is, β̂IV = s′β̂2×2
IV .

When a TWFEIV estimator generated from different specification (β̂IV,alt) can also be written
as the product of a vector of 2×2 Wald-DID estimators (β̂2×2

IV,alt) and a vector of their associated
weights (salt), one can decompose the difference between the two specifications as

β̂IV,alt − β̂IV = s′(β̂2×2
IV,alt − β̂2×2

IV )︸ ︷︷ ︸
Due to 2×2 Wald-DIDs

+(s′alt − s′)β̂2×2
IV︸ ︷︷ ︸

Due to 2×2 weights

+(s′alt − s′)(β̂2×2
IV,alt − β̂2×2

IV )︸ ︷︷ ︸
Due to the interaction of the two

.

It takes the form of a Oaxaca-Blinder-Kitagawa decomposition (Oaxaca (1973), Blinder (1973),
Kitagawa (1955)) and indicates that the difference comes from changes in 2 × 2 Wald-DID
estimators, changes in weights, and the interaction of the two. Dividing both sides by β̂IV,alt −
β̂IV , one can measure the proportional contribution of each term on the difference. Plotting
each pair in (β̂2×2

IV,alt, β̂
2×2
IV ) and (s′alt, s

′), one can also examine which elements in each term
have a significant impact on the difference.

7.1 Weighted TWFEIV regression

When researchers use weighted TWFEIV regression instead of unweighted one, it potentially
changes the influence of Wald-DID estimators (β̂2×2

IV,WLS) by replacing the DIDs of the treatment
and the outcome with the weighted ones. It also potentially change the influence of weights
(s′WLS) by replacing the sample share with the relative amount of the specified weight and
the DIDs of the treatment with the weighted ones. Table 5 shows the result of our TWFEIV
regression weighted by county population in Miller and Segal (2019): the estimate changes from
−0.646 to −0.386. The decomposition result indicates that the contribution of the changes in
2 × 2 Wald-DIDs is negative, whereas the contributions of the changes in weights and the
interaction are positive.

Figure 4 plots the 2 × 2 Wald-DIDs and the associated weights in WLS against those in
OLS. Panel (a) shows that most comparisons of the Wald-DID between OLS and WLS are
located at the 45-degree line, but some comparisons generated from Exposed/Not Yet Exposed
and Exposed/Exposed Shift designs are away from the 45-degree line. In addition, this figure
indicates that the Wald-DID generated from the comparison between 1978 and 1991 counties
(1991 counties are the controls) is much more negative in WLS than in OLS, which drives the
overall negative impact of the changes in 2 × 2 Wald-DIDs on the difference between the two
specifications. Panel (b) shows that most comparisons of the decomposition weight between
OLS and WLS are near the 45-degree line and the origin, but some comparisons generated
from Unexposed/Exposed designs are away from the 45-degree line and the origin. This figure
also indicates that the decomposition weight generated from the comparison between 1982
and unexposed counties is much more positive in WLS than in OLS, which causes the overall
positive impact of the changes in weights on the difference between the two specifications.
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Table 5
Estimate for the effect of female officers share on IPH rates.

(1) (2) (3)

Baseline WLS Covariates
Estimate -0.646 -0.386 -0.868
Standard Error 3.284 2.452 3.968
Difference from baseline 0.260 -0.222
Difference comes from:

2× 2 Wald-DIDs -4.048 0.370
Weights 2.341 16.503

Interaction 1.966 -17.107
Within term 0 0.012

Notes: This table presents TWFEIV estimates in the setting of Miller and Segal (2019). Column (1)
is a simple TWFEIV estimate from Eq. (1). Column (2) is a TWFEIV estimate weighted by county
population in 1977. Column (3) is a TWFEIV estimate with time-varying covariates which include the
lagged local area controls, the county’s non-IPH rate, and the state-level crack cocaine index. All the
standard errors are clustered at county level.

7.2 TWFEIV regression with time-varying covariates

In most applications of thr DID-IV method, researchers typically estimate TWFEIV models
that include time-varying covariates, in addition to the simple ones, based on the belief that
it enhances the validity of the parallel trends assumptions in the first stage and reduced form
regressions:

Yi,t = ϕi. + λt. + βX
IVDi,t + ψXi,t + vi,t, (14)

Di,t = γi. + ζt. + πXZi,t + ψ̃Xi,t + ηi,t. (15)

In this section, we derive a DID-IV decomposition result for the case when we introduce the
time-varying covariates into TWFEIV regressions. Our decomposition result in this section
is based on Goodman-Bacon (2021), who decomposes TWFE estimators with time-varying
covariates. Appendix D further considers the causal interpretation of the covariate-adjusted
TWFEIV estimand under additional conditions.

First, consider the coefficient on instrument (αX) in the reduced form regression:

Yi,t = ϕi. + λt. + αXZi,t + ξXi,t + vi,t. (16)

Let Z̃i,t and X̃i,t denote the double demeaning variables of Zi,t and Xi,t respectively, obtained
from regressing Zi,t and Xi,t on time and unit fixed effects. Let z̃i,t denote the residuals obtained
from regressing Z̃i,t on X̃i,t:

Z̃i,t =

p̃i,t︷ ︸︸ ︷
Γ̂X̃i,t +z̃i,t.

Here, we define the linear projection as p̃i,t ≡ Γ̂X̃i,t. The specific expression for z̃i,t is:

z̃i,t = [(Zi,t − Z̄i)− (Γ̂Xi,t − Γ̂X̄i)]− [(Z̄t − ¯̄Z)− (Γ̂X̄t − Γ̂ ¯̄X)]

≡ (zi,t − z̄i)− (z̄t − ¯̄z).

By the FWL theorem, we then obtain the following expression for α̂X :

α̂X =
Ĉ(Yi,t, z̃i,t)

V̂ z̃
=
Ĉ(Yi,t, Z̃i,t − p̃i,t)

V̂ z̃
,
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where V̂ z̃ is the variance of z̃i,t. By symmetry, we can also express the first stage coefficient on
instrument π̂X as follows:

π̂X =
Ĉ(Di,t, z̃i,t)

V̂ z̃
=
Ĉ(Di,t, Z̃i,t − p̃i,t)

V̂ z̃
.

Because the IV estimator β̂X
IV is the ration between the first stage coefficient π̂X and the reduced

form coefficient α̂X , we obtain the following expression for β̂X
IV :

β̂X
IV =

Ĉ(Yi,t, z̃i,t)

Ĉ(Di,t, z̃i,t)
=
Ĉ(Yi,t, Z̃i,t − p̃i,t)

Ĉ(Di,t, Z̃i,t − p̃i,t)
. (17)

In contrast to the unconditional TWFEIV estimator β̂IV , the covariate-adjusted TWFEIV
estimator exploits the variation in both Z̃i,t and p̃i,t. Z̃i,t varies at cohort and time level, but
p̃i,t varies at unit and time level because Xi,t varies at unit and time level.

To decompose the covariate-adjusted TWFEIV estimator β̂X
IV , we first partition z̃i,t into

"within" and "between" terms as in Goodman-Bacon (2021). Let z̄k,t − z̄k = (Z̄k,t − Z̄k) −
(Γ̂X̄k,t − Γ̂X̄k) be the average of zi,t − z̄i in cohort k. By adding and subtracting z̄k,t − z̄k, we
can decompose z̃i,t into two terms:

z̃i,t = [(zi,t − z̄i)− (z̄k,t − z̄k)]︸ ︷︷ ︸
z̃i(k),t

+ [(z̄k,t − z̄k)− (z̄t − ¯̄z)]︸ ︷︷ ︸
z̃k,t

. (18)

The first term z̃i(k),t measures the deviation of zi,t − z̄i from the average z̄k,t − z̄k in cohort k,
which we call the within term of z̃i,t. The second term z̃k,t measures the deviation of z̄k,t − z̄k
from the average z̄t − ¯̄z in whole sample, which we call the between term of z̃i,t. The within
term z̃i(k),t varies at unit and time level because of p̃i,t, whereas the between term z̃k,t varies at
cohort and time level.

By substituting (18) into (17), we obtain

β̂X
IV =

Ĉ(Yi,t, z̃i(k),t) + Ĉ(Yi,t, z̃k,t)

Ĉ(Di,t, z̃i(k),t) + Ĉ(Di,t, z̃k,t)
=
V̂ z
w β̂

p,y
w + V̂ z

b β̂
z,y
b

V̂ z
w β̂

p,d
w + V̂ z

b β̂
z,d
b

(19)

=
ĈD,z̃

w

ĈD,z̃
w + ĈD,z̃

b︸ ︷︷ ︸
Ω

· β̂
p,y
w

β̂p,d
w︸︷︷︸

β̂p
w,IV

+
ĈD,z̃

b

ĈD,z̃
w + ĈD,z̃

b︸ ︷︷ ︸
1−Ω

· β̂
z,y
b

β̂z,d
b︸︷︷︸

β̂z
b,IV

. (20)

We use the subscript w to denote within components and the subscript b to denote between
components. V̂ z

w and V̂ z
b are the variances of z̃i(k),t and z̃k,t, respectively. ĈD,z̃

w is the covariance
between Di,t and z̃i(k),t, the within term of z̃i,t. ĈD,z̃

b is the covariance between Di,t and z̃k,t,
the between term of z̃i,t. The weight Ω = ĈD,z̃

w

ĈD,z̃
w +ĈD,z̃

b

measures the relative amount of the within

covariance ĈD,z̃
w .

β̂p,y
w ≡ Ĉ(Yi,t,z̃i(k),t)

V̂ z
w

measures the relationship between Yi,t and z̃i(k),t. Similarly, β̂p,d
w ≡

Ĉ(Di,t,z̃i(k),t)

V̂ z
w

measures the relationship between Di,t and z̃i(k),t. We call these the within coeffi-

cients in the first stage and reduced form regressions. β̂p
w,IV ≡ β̂p,y

w

β̂p,d
w

scales the within coefficient
in the reduced form regression by the one in the first stage regression. We call this the within
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IV coefficient4. This IV coefficient arises because z̃i(k),t varies at unit and time level. Similar
to what Goodman-Bacon (2021) points out for the covariate-adjusted TWFE estimator, time-
varying covariates bring a new source of identifying variation in the TWFEIV estimator, within
variation of Xi,t in each cohort.

β̂z,y
b ≡ Ĉ(Yi,t,z̃k,t)

V̂ z
b

measures the relationship between Yi,t and z̃k,t. Similarly β̂z,d
b ≡ Ĉ(Di,t,z̃k,t)

V̂ z
b

measures the relationship between Di,t and z̃k,t. We call these the between coefficients in the
first stage and reduced form regressions. β̂z

b,IV ≡ β̂z,y
b

β̂z,d
b

divides the between coefficient in the
reduced form regression by the one in the first stage regression, and have the following specific
expression:

β̂z
b,IV =

ĈD,Z β̂IV − Ĉp
b β̂

p
b,IV

ĈD,z̃
b

. (21)

ĈD,Z and β̂IV are already defined in section 3. Ĉp
b is the covariance between Di,t and p̃k,t (the

between term of p̃i,t). β̂p
b,IV is the estimator, obtained from an IV regression of Yi,t on Di,t with

p̃k,t as the excluded instrument. We call β̂z
b,IV the between IV coefficient, which exploits the

cohort and time level variation in z̃k,t. This IV coefficient is not equal to the unconditional
TWFEIV coefficient β̂IV : β̂z

b,IV subtracts the influence of β̂p
b,IV from the unconditional IV

estimator β̂IV . This indicates that time-varying covariates Xi,t changes the identifying variation
at cohort and time level through p̃k,t, the between term of the linear projection p̃i,t.

We can further decompose the between IV coefficient as follows:

β̂z
b,IV =

∑
k

∑
l>k

(nk + nl)
2
ĈD,z̃

b,kl

ĈD,z̃
b︸ ︷︷ ︸

sb,kl

[
ĈD,Z

kl β̂2×2
IV,kl − Ĉp

b,klβ̂
p
b,IV,kl

ĈD,z̃
b,kl

]
︸ ︷︷ ︸

β̂z
b,IV,kl

. (22)

The proof is given in Appendix D. Each notation is similarly defined in (k, l) cell subsam-
ples. β̂z

b,IV,kl and sb,kl are the between IV coefficient and the corresponding weight in (k, l) cell
subsamples. Equation (22) indicates that time-varying covariates Xi,t affect the between IV
coefficient β̂z

b,IV by changing both the 2× 2 between IV coefficient and the associated weight in
each (k, l) cell.

To sum up, combining (22) with (19), we can decompose the covariate-adjusted TWFEIV
estimator β̂X

IV as

β̂X
IV = Ωβ̂p

w,IV + (1− Ω)
∑
k

∑
l>k

sb,klβ̂
z
b,IV,kl︸ ︷︷ ︸

β̂z
b,IV

.

The weight Ω is assigned to the within IV coefficient β̂p
w,IV and the weight 1 − Ω is assigned

to the between IV coefficient β̂z
b,IV , which is equal to a weighted average of all possible 2 × 2

between IV coefficients β̂z
b,IV,kl as in Theorem 1.

Table 5 presents the result of our TWFEIV regression with time-varying covariates in Miller
and Segal (2019). We follow Miller and Segal (2019) and include the lagged local area controls,

4One can obtain this coefficient by running an IV regression of the outcome on the treatment with z̃i(k),t as
the excluded instrument.
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the county’s non-IPH rate, and the state-level crack cocaine index; see Miller and Segal (2019)
for details. The estimate changes from −0.646 to −0.868. The decomposition result shows that
the contribution of the within term is positive but negligible, whereas the contribution of the
between term is negative and substantial. Specifically, in the between term, the contribution of
the changes in 2× 2 Wald-DIDs and weights are positive, but these are offset by the negative
contribution of the interaction. This result indicates that in Miller and Segal (2019), the time-
varying covariates affect the IV estimate mainly through the identifying variation in cohort and
time level, that is, the between term of the linear projection p̃i,t.
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Fig. 4. Comparisons of 2× 2 WaldDIDs and weights between OLS and WLS in the setting of Miller and Segal
(2019). Notes: Panel (a) plots the 2×2 Wald-DIDs in WLS against those in OLS for all DID-IV designs. Panel
(b) plots the decomposition weights in WLS against those in OLS for all DID-IV designs. In Panel (a), the
size of each point is proportional to the corresponding weight in OLS. In Panel (b), the size of each point is
proportional to the corresponding Wald-DID estimate in OLS. In both panels, the dotted lines represent 45-
degree lines. In both panels, Unexposed/Exposed designs yield blue circles, Exposed/Not Yet Exposed designs
yield yellow triangles, and Exposed/Exposed Shift designs yield red squares. In both panels, the dotted lines
represent 45-degree lines.
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8 Conclusion

Many studies run two-way fixed effects instrumental variable (TWFEIV) regressions, leveraging
variation occurring from the different timing of policy adoption across units as an instrument
for the treatment. In this paper, we study the causal interpretation of the TWFEIV estimator
in staggered DID-IV designs. We first show that in settings with the staggered adoption of the
instrument across units, the TWFEIV estimator is equal to a weighted average of all possible 2×
2 Wald-DID estimators arising from the three types of the DID-IV design: Unexposed/Exposed,
Exposed/Not Yet Exposed, and Exposed/Exposed Shift designs. The weight assigned to each
Wald-DID estimator is a function of the sample share, the variance of the instrument, and the
DID estimator of the treatment in each DID-IV design.

Based on the decomposition result, we then show that in staggered DID-IV designs, the
TWFEIV estimand is equal to a weighted average of all possible cohort specific local average
treatment effect on the treated parameters, but some weights can be negative. The negative
weight problem arises due to the bad comparisons in the first and reduced form regressions:
we use the already exposed units as controls. The TWFEIV estimand attains its causal inter-
pretation if the effects of the instrument on the treatment and outcome are stable over time.
The resulting causal parameter is a positively weighted average cohort specific local average
treatment effect on the treated parameter.

Finally, we illustrate our findings with the setting of Miller and Segal (2019) who estimate the
effect of female officers’ share on the IPH rate, exploiting the timing variation of AA introduction
across U.S. counties. We first assess the underlying staggered DID-IV identification strategy
implicitly imposed by Miller and Segal (2019) and confirm its validity. We then apply our
DID-IV decomposition theorem to the TWFEIV estimate, and find that the estimate suffers
from the substantial downward bias arising from the bad comparisons in Exposed/Exposed
shift DID-IV designs. We also decompose the difference between the two specifications and
illustrate how different specifications affect the overall estimates in Miller and Segal (2019).

Overall, this paper shows the negative result of using TWFEIV estimators in the presence
of heterogeneous treatment effects in staggered DID-IV designs in more than two periods. This
paper provides simple tools to evaluate how serious that concern is in a given application.
Specifically, we demonstrate that the TWFEIV estimator is not robust to the time-varying
exposed effects in the first stage and reduced form regressions. Our DID-IV decomposition
theorem allows the empirical researchers to assess the impact of the bias term arising from the
bad comparisons on their TWFEIV estimate. Recently, Miyaji (2024) developed an alternative
estimation method that is robust to treatment effects heterogeneity and proposes a weighting
scheme to construct various summary measures in staggered DID-IV designs. Further devel-
oping alternative approaches and diagnostic tools will be a promising area for future work,
facilitating the credibility of DID-IV design in practice.
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A Proof of the theorem in section 2

Before we proceed the proof of Theorem 1, we provide Lemma 4 below. This lemma is shown
by Goodman-Bacon (2021).

Lemma 4 (Lemma 1 in Goodman-Bacon (2021)). The sample covariance between a cohort
and time specific variable zkt and a double demeaning variable x̃kt = (xkt − x̄k) − (x̄t − ¯̄x) is
equal to a sum over every pair of observations of the period-by-period products of differences
between cohorts in zkt and x̃kt.∑

k

nk
1

T

∑
t

zkt [(xkt − x̄k)− (x̄t − ¯̄x)]

=
∑
k

∑
l>k

nlnk
1

T

∑
t

(zkt − zlt)[(xkt − x̄k)− (xlt − x̄l)] (23)

Proof. See the proof of Lemma 1 in Goodman-Bacon (2021).

A.1 Proof of Theorem 1

Proof. From the FWL theorem, the TWFEIV estimator β̂IV is:

β̂IV =
1

NT

∑
i

∑
t Z̃i,tYi,t

1
NT

∑
i

∑
t Z̃i,tDi,t

(24)

where Z̃i,t is a double-demeaning variable.
First, we consider the numerator of (24). In the following, we use k(i) to express that unit

i belongs to cohort k. We define R̄k(i),t to be the sample mean of the random variable Ri,t in
cohort k at time t, and define R̄k(i) to the average of R̄k(i),t over time:

R̄k(i),t =

∑
iRi,t1{Ei = k}∑

i 1{Ei = k}
and R̄k(i) =

1

T

T∑
t=1

R̄k(i),t.

For the numerator of (24), by adding and subtracting (Z̄k(i),t − Z̄k(i)), we obtain

1

NT

∑
i

∑
t

Z̃i,tYi,t

=
1

NT

∑
i

∑
t

Yi,t

[
(Zi,t − Z̄i)− (Z̄t − ¯̄Z)

]

=
1

NT

∑
i

∑
t

Yi,t

(Zi,t − Z̄i)− (Z̄k(i),t − Z̄k(i))︸ ︷︷ ︸
=0

+(Z̄k(i),t − Z̄k(i))− (Z̄t − ¯̄Z)


=

1

NT

∑
i

∑
t

Yi,t

[
(Z̄k(i),t − Z̄k(i))− (Z̄t − ¯̄Z)

]
=
∑
k

nk
1

T

∑
t

Ȳk,t

[
(Z̄k,t − Z̄k)− (Z̄t − ¯̄Z)

]
,

where the third equality follows from the fact that Zi,t = Z̄k(i),t and Z̄i = Z̄k(i) because all
the units in cohort k have the same assignment of the instrument. The forth equality follows
because the expression only depends on cohort k and time t.
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To further develop the expression, we use Lemma 4:∑
k

nk
1

T

∑
t

Ȳkt[(Z̄kt − Z̄k)− (Z̄t − ¯̄Z)]

=
∑
k

∑
l>k

nlnk
1

T

∑
t

(Ȳkt − Ȳlt)[(Z̄kt − Z̄k)− (Z̄lt − Z̄l)]. (25)

Next, we consider all possible expressions of (25). When e = U , that is, cohort e is never
exposed cohort, we have Z̄Ut − Z̄U = 0. From this observation, for the pair (k, U), we have:

1

T

∑
t

(Ȳkt − ȲUt)
[
(Z̄kt − Z̄k)− (Z̄Ut − Z̄U)

]
= − 1

T

∑
t<k

(Ȳkt − ȲUt)Z̄k +
1

T

∑
t≥k

(Ȳkt − ȲUt)(1− Z̄k)

=
[
(Ȳ

POST (k)
kt − Ȳ

PRE(k)
kt )− (Ȳ

POST (k)
Ut − Ȳ

PRE(k)
Ut )

]
Z̄k(1− Z̄k).

By the similar argument, for the pair (k, l) where k < l < T , we obtain

= − 1

T

∑
t<k

(Ȳkt − Ȳlt)(Z̄k − Z̄l) +
1

T

∑
t∈[k,l)

(Ȳkt − Ȳlt)(1− Z̄k + Z̄l)−
1

T

∑
t≥l

(Ȳkt − Ȳlt)(Z̄k − Z̄l)

= −
[
(Ȳ

PRE(k)
kt − Ȳ

PRE(k)
lt )

]
(Z̄k − Z̄l)(1− Z̄k) +

[
(Ȳ

MID(k,l)
kt − Ȳ

MID(k,l)
lt )

]
(Z̄k − Z̄l)(1− Z̄k + Z̄l)

−
[
(Ȳ

POST (l)
kt − Ȳ

POST (l)
lt )

]
(Z̄k − Z̄l)Z̄l

=
[
(Ȳ

MID(k,l)
kt − Ȳ

PRE(k)
kt )− (Ȳ

MID(k,l)
lt − Ȳ

PRE(k)
lt )

]
(Z̄k − Z̄l)(1− Z̄k)

+
[
(Ȳ

POST (l)
lt − Ȳ

MID(k,l)
lt )− (Ȳ

POST (l)
kt − Ȳ

MID(k,l)
kt )

]
(Z̄k − Z̄l)Z̄l.

To sum up, for the numerator of (24), we have

1

NT

∑
i

∑
t

Z̃itYit

=
[∑
k ̸=U

(nk + nu)
2nkU(1− nkU)Z̄k(1− Z̄k)β̂

2×2
kU

+
∑
k ̸=U

∑
l>k

[((nk + nl)(1− Z̄l))
2nkl(1− nkl)

(
Z̄k − Z̄l

1− Z̄l

)(
1− Z̄k

1− Z̄l

)
β̂2×2,k
kl

+ ((nk + nl)Z̄k)
2nkl(1− nkl)

(
Z̄l

Z̄k

)(
Z̄k − Z̄l

Z̄k

)
β̂2×2,l
kl ]

]
=

[∑
k ̸=U

(nk + nu)
2V̂ Z

kU β̂
2×2
kU +

∑
k ̸=U

∑
l>k

[((nk + nl)(1− Z̄l))
2V̂ Z,k

kl β̂2×2,k
kl + ((nk + nl)Z̄k)

2V̂ Z,l
kl β̂

2×2,l
kl

]
.

(26)

Next, we consider the denominator of (24). We note that the structure of the denominator
is completely same as the one of the numerator in (24). Therefore, by the completely same
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calculations, we obtain

1

NT

∑
i

∑
t

Z̃itDit

≡ ĈD,Z

=

[∑
k ̸=U

(nk + nu)
2V̂ Z

kUD̂
2×2
kU +

∑
k ̸=U

∑
l>k

[((nk + nl)(1− Z̄l))
2V̂ Z,k

kl D̂2×2,k
kl + ((nk + nl)Z̄k)

2V̂ Z,l
kl D̂

2×2,l
kl

]
.

(27)

Combining (26) with (27), we obtain

β̂IV

=

[∑
k ̸=U(nk + nu)

2V̂ Z
kU β̂

2×2
kU +

∑
k ̸=U

∑
l>k[((nk + nl)(1− Z̄l))

2V̂ Z,k
kl β̂2×2,k

kl + ((nk + nl)Z̄k)
2V̂ Z,l

kl β̂
2×2,l
kl

]
[∑

k ̸=U(nk + nu)2V̂ Z
kUD̂

2×2
kU +

∑
k ̸=U

∑
l>k[((nk + nl)(1− Z̄l))2V̂

Z,k
kl D̂2×2,k

kl + ((nk + nl)Z̄k)2V̂
Z,l
kl D̂

2×2,l
kl

]

=

[∑
k ̸=U(nk + nu)

2V̂ Z
kU β̂

2×2
kU +

∑
k ̸=U

∑
l>k[((nk + nl)(1− Z̄l))

2V̂ Z,k
kl β̂2×2,k

kl + ((nk + nl)Z̄k)
2V̂ Z,l

kl β̂
2×2,l
kl

]
ĈD,Z

=

[∑
k ̸=U

ŵIV,kU β̂
2×2
IV,kU +

∑
k ̸=U

∑
l>k

ŵk
IV,klβ̂

2×2,k
IV,kl + ŵl

IV,klβ̂
2×2,l
IV,kl

]
,

where the weights are:

ŵIV,kU =
(nk + nu)

2V̂ Z
kUD̂

2×2
kU

ĈD,Z
,

ŵk
IV,kl =

((nk + nl)(1− Z̄l))
2V̂ Z,k

kl D̂2×2,k
kl

ĈD,Z
,

ŵl
IV,kl =

((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl

ĈD,Z
.

We note that ĈD,Z is the sum of the numerator in each weight as one can see in (27). This
implies that the weights sum to one:∑

k ̸=U

wIV,kU +
∑
k ̸=U

∑
l>k

[wk
IV,kl + wl

IV,kl] = 1.

Completing the proof.

B Proofs of the theorem and lemma in section 4.

In this section, we first prove Lemma 1 as a preparation.

42



B.1 Proof of Lemma 1

Proof. As one can see in the proof of Theorem 1, we have the following expression for the
numerator of the TWFEIV estimand:

ĈD,Z =
∑
k ̸=U

(nk + nu)
2V̂ Z

kUD̂
2×2
kU +

∑
k ̸=U

∑
l>k

[
((nk + nl)(1− Z̄l))

2V̂ Z,k
kl D̂2×2,k

kl + ((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl

]
.

We fix T and consider N → ∞. We first derive the probability limit of (nk + nu)
2V̂ Z

kUD̂
2×2
kU .

By definition, we can rewrite (nk + nu)
2V̂ Z

kUD̂
2×2
kU as follows:

(nk + nu)
2V̂ Z

kUD̂
2×2
kU = nknuZ̄k(1− Z̄k) ·

[(
D̄

POST (k)
k − D̄

PRE(k)
k

)
−
(
D̄

POST (k)
U − D̄

PRE(k)
U

)]
.

By the law of large number (LLN), as N → ∞, we obtain(
D̄

POST (k)
k − D̄

PRE(k)
k

)
−
(
D̄

POST (k)
U − D̄

PRE(k)
U

)
p−→ 1

T − (k − 1)

[
T∑

t=k

E[Dit|Ei = k]− E[Dit|Ei = U ]

]
− 1

k − 1

[
k−1∑
t=1

E[Dit|Ei = k]− E[Dit|Ei = U ]

]

=
1

T − (k − 1)

[
T∑

t=k

E[Dk
it −D∞

it |Ei = k]

]

+
1

T − (k − 1)

[
T∑

t=k

E[D∞
it |Ei = k]−

T∑
t=k

E[D∞
it |Ei = U ]

]

− 1

k − 1

[
k−1∑
t=1

E[D∞
it |Ei = k]− E[D∞

it |Ei = U ]

]

=
1

T − (k − 1)

[
T∑

t=k

E[Dk
it −D∞

it |Ei = k]

]
= CAET 1

k (POST (k)). (28)

The second equality follows from the simple algebra and Assumption 5 (No anticipation for the
first stage). The third equality follows from Assumption 6 (Parallel trend assumption in the
treatment).

Next, we consider the probability limit of nknuZ̄k(1 − Z̄k). By the LLN and the Slutsky’s
theorem, we obtain

nknuZ̄k(1− Z̄k)
p−→ Pr(Ei = k)Pr(Ei = U)

T − (k − 1)

T

k − 1

T
. (29)

Combining the result (28) with (29), by the Slutsky’s theorem, we have

(nk + nu)
2V̂ Z

kUD̂
2×2
kU

p−→ Pr(Ei = k)Pr(Ei = U)
T − (k − 1)

T

k − 1

T
CAET 1

k,t(POST (k))

= wkUCAET
1
k (POST (k)). (30)

where the weight wkU is:

wkU = Pr(Ei = k)Pr(Ei = U)
T − (k − 1)

T

k − 1

T
.
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By the completely same calculations, we also have

((nk + nl)(1− Z̄l))
2V̂ Z,k

kl D̂2×2,k
kl

p−→ wk
klCAET

1
k (MID(k, l)). (31)

where the weight wk
kl is:

wk
kl = Pr(Ei = k)Pr(Ei = l)

k − 1

T

l − k

T
.

Next, we consider the probability limit of ((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl . By definition, we have

((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl = nknl(Z̄k − Z̄l)Z̄l ·

[(
D̄

POST (l)
l − D̄

MID(k,l)
l

)
−
(
D̄

POST (l)
k − D̄

MID(k,l)
k

)]
.

By the law of large number (LLN), as N → ∞, we have(
D̄

POST (l)
l − D̄

MID(k,l)
l

)
−
(
D̄

POST (l)
k − D̄

MID(k,l)
k

)
p−→ 1

T − (l − 1)

[
T∑
t=l

E[Dit|Ei = l]− E[Dit|Ei = k]

]
− 1

l − k

[
l−1∑
t=k

E[Dit|Ei = l]− E[Dit|Ei = k]

]

=
1

T − (l − 1)

[
T∑
t=l

E[Dl
it −D∞

it |Ei = l]

]
− 1

T − (l − 1)

[
T∑
t=l

E[Dk
it −D∞

it |Ei = k]

]

+
1

T − (l − 1)

[
T∑
t=l

E[D∞
it |Ei = l]−

T∑
t=l

E[D∞
it |Ei = k]

]

+
1

l − k

[
l−1∑
t=k

E[Dk
it|Ei = k]− E[D∞

it |Ei = k]

]

+
1

l − k

[
l−1∑
t=k

E[D∞
it |Ei = k]− E[D∞

it |Ei = l]

]

=
1

T − (l − 1)

[
T∑
t=l

E[Dl
it −D∞

it |Ei = l]

]
− 1

T − (l − 1)

[
T∑
t=l

E[Dk
it −D∞

it |Ei = k]

]

+
1

l − k

[
l−1∑
t=k

E[Dk
it|Ei = k]− E[D∞

it |Ei = k]

]
= CAET 1

l (POST (l))− CAET 1
k (POST (l)) + CAET 1

k (MID(k, l)) (32)

The second equality follows from the simple algebra and Assumption 5. The third equality
follows from Assumption.

Note that the LLN and the Slutsky’s theorem implies

nknl(Z̄k − Z̄l)Z̄l
p−→ Pr(Ei = k)Pr(Ei = l)

T − (l − 1)

T

l − k

T
. (33)

From the result of (32) with (33), we obtain

((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl

p−→wl
kl

[
CAET 1

l (POST (l))− CAET 1
k (POST (l)) + CAET 1

k (MID(k, l))
]
. (34)
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where the weight wl
kl is:

wl
kl = Pr(Ei = k)Pr(Ei = l)

T − (l − 1)

T

l − k

T
.

To sum up, by combining (30),(31) with (34), we obtain

ĈD,Z =
∑
k ̸=U

(nk + nu)
2V̂ Z

kUD̂
2×2
kU +

∑
k ̸=U

∑
l>k

[
((nk + nl)(1− Z̄l))

2V̂ Z,k
kl D̂2×2,k

kl + ((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl

]
p−→ WCAET −∆CAET 1.

where we define

WCAET ≡
∑
k ̸=U

wkUCAET
1
k (POST (k)) +

∑
k ̸=U

∑
l>k

wk
klCAET

1
k (MID(k, l)) + wl

klCAET
1
l (POST (l)),

∆CAET 1 ≡ wl
kl

[
CAET 1

k (POST (l))− CAET 1
k (MID(k, l))

]
.

and the weights are:

wkU = Pr(Ei = k)Pr(Ei = U)
T − (k − 1)

T

k − 1

T
, (35)

wk
kl = Pr(Ei = k)Pr(Ei = l)

k − 1

T

l − k

T
, (36)

wl
kl = Pr(Ei = k)Pr(Ei = l)

T − (l − 1)

T

l − k

T
. (37)

Completing the proof.

B.2 Preparation for the proof of Theorem 2.

Before we present the proof of Theorem 2, we show the following lemma.

Lemma 5. Suppose Assumptions 1-7 hold. If the treatment is binary, for all k, l ∈ {1, . . . , T}(k ≤
l), we have[

l∑
t=k

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]
=

l∑
t=k

E[Dk
i,t −D∞

i,t |Ei = k] · E[Yi,t(1)− Yi,t(0)|Ei = k, CMk,t]

≡
l∑

t=k

CAET 1
k,t · CLATTk,t.

Proof. Because we assume a binary treatment, we have[
l∑

t=k

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]
=

[
l∑

t=k

E[(Dk
i,t −D∞

i,t) · (Yi,t(1)− Yi,t(0))|Ei = k]

]

=
l∑

t=k

E[Dk
i,t −D∞

i,t |Ei = k] · E[Yi,t(1)− Yi,t(0)|Ei = k, CMk,t],

where the first equality holds from Assumptions 1-3 and the second equality holds from As-
sumption 4.
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B.3 Proof of Theorem 2.

Proof. We fix T and consider N → ∞. We first derive the probability limit of ŵIV,kU β̂
2×2
IV,kU .

We note that ŵIV,kU β̂
2×2
IV,kU is written as follows:

ŵIV,kU β̂
2×2
IV,kU =

(nk + nu)
2V̂ Z

kUD̂
2×2
kU

ĈD,Z
· β̂

2×2
kU

D̂2×2
kU

.

We first consider the probability limit of
β̂2×2
kU

D̂2×2
kU

. Recall that we have already derived the

probability limit of the denominator in the proof of Lemma 1:

D̂2×2
kU

p−→ 1

T − (k − 1)

T∑
t=k

CAET 1
k,t. (38)

We consider the numerator β̂2×2
kU . By the law of large number (LLN), as N → ∞, we obtain(

Ȳ
POST (k)
k − Ȳ

PRE(k)
k

)
−
(
Ȳ

POST (k)
U − Ȳ

PRE(k)
U

)
p−→ 1

T − (k − 1)

[
T∑

t=k

E[Yi,t|Ei = k]− E[Yi,t|Ei = U ]

]
− 1

k − 1

[
k−1∑
t=1

E[Yi,t|Ei = k]− E[Yi,t|Ei = U ]

]

=
1

T − (k − 1)

[
T∑

t=k

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]

+
1

T − (k − 1)

[
T∑

t=k

E[Yi,t(D
∞
i,t)|Ei = k]−

T∑
t=k

E[Yi,t(D
∞
i,t)|Ei = U ]

]

− 1

k − 1

[
k−1∑
t=1

E[Yi,t(D
∞
i,t)|Ei = k]− E[Yi,t(D

∞
i,t)|Ei = U ]

]

=
1

T − (k − 1)

[
T∑

t=k

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]

=
1

T − (k − 1)

T∑
t=k

CAET 1
k,t · CLATTk,t. (39)

The first equality follows from the simple manipulation, Assumption 3 (Exclusion restriction
in multiple time periods) and Assumption 5. The second equality follows from Assumption 7
(Parallel trend assumption in the outcome). The final equality follows from Lemma 5.

Combining the result (38) with (39), we obtain

β̂2×2
kU

D̂2×2
kU

p−→
T∑

t=k

CAET 1
k,t∑T

t=k CAET
1
k,t

· CLATTk,t

= CLATTCM
k (POST (k)). (40)

Next, we consider the probability limit of
(nk + nu)

2V̂ Z
kUD̂

2×2
kU

ĈD,Z
. By the LLN and the Slutsky’s

theorem, we obtain

(nk + nu)
2V̂ Z

kUD̂
2×2
kU

ĈD,Z

p−→ Pr(Ei = k)Pr(Ei = U)

CD,Z

T − (k − 1)

T

k − 1

T
CAET 1

k (POST (k)). (41)
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Here CD,Z is the probability limit of ĈD,Z and its specific expression is already derived in
Lemma 1.

Combining the result (40) with (41), by the Slutsky’s theorem, we have

ŵIV,kU β̂
2×2
IV,kU

p−→ wIV,kUCLATT
CM
k (POST (k)). (42)

where the weight wIV,kU is:

wIV,kU =
Pr(Ei = k)Pr(Ei = U)

CD,Z

T − (k − 1)

T

k − 1

T
· CAET 1

k (POST (k)).

By the completely same argument, we also obtain

ŵk
IV,klβ̂

2×2,k
IV,kl

p−→ wk
IV,klCLATT

CM
k (MID(k, l)). (43)

where the weight wk
IV,kl is:

wk
IV,kl =

Pr(Ei = k)Pr(Ei = l)

CD,Z

k − 1

T

l − k

T
· CAET 1

k (MID(k, l)).

Next, we derive the probability limit of ŵl
IV,klβ̂

2×2,l
IV,kl . Recall that ŵl

IV,klβ̂
2×2,l
IV,kl is:

ŵl
IV,klβ̂

2×2,l
IV,kl =

((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl

ĈD,Z
· β̂

2×2,l
kl

D̂2×2,l
kl

.

First note that in the proof of Lemma 1, we have already derived the probability limit of D̂2×2,l
kl :

D̂2×2,l
kl

p−→ CAET 1
l (POST (l))−

[
CAET 1

k (POST (l))− CAET 1
k (MID(k, l))

]
(44)

≡ D2×2,l
kl .

Here, to ease the notation, we define D2×2,l
kl to be the probability limit of D̂2×2,l

kl .
Next, we consider the probability limit of β̂2×2,l

kl .
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By the law of large number (LLN), as N → ∞, we have

β̂2×2,l
kl =

(
Ȳ

POST (l)
l − Ȳ

MID(k,l)
l

)
−
(
Ȳ

POST (l)
k − Ȳ

MID(k,l)
k

)
p−→ 1

T − (l − 1)

[
T∑
t=l

E[Yi,t|Ei = l]− E[Yi,t|Ei = k]

]
− 1

l − k

[
l−1∑
t=k

E[Yi,t|Ei = l]− E[Yi,t|Ei = k]

]

=
1

T − (l − 1)

[
T∑
t=l

E[Yi,t(D
l
i,t)− Yi,t(D

∞
i,t)|Ei = l]

]
− 1

T − (l − 1)

[
T∑
t=l

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]

+
1

T − (l − 1)

[
T∑
t=l

E[Yi,t(D
∞
i,t)|Ei = l]−

T∑
t=l

E[Yi,t(D
∞
i,t)|Ei = k]

]

+
1

l − k

[
l−1∑
t=k

E[Yi,t(D
k
i,t)|Ei = k]− E[Yi,t(D

∞
i,t)|Ei = k]

]

+
1

l − k

[
l−1∑
t=k

E[Yi,t(D
∞
i,t)|Ei = k]− E[Yi,t(D

∞
i,t)|Ei = l]

]

=
1

T − (l − 1)

[
T∑
t=l

E[Yi,t(D
l
i,t)− Yi,t(D

∞
i,t)|Ei = l]

]
− 1

T − (l − 1)

[
T∑
t=l

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]

+
1

l − k

[
l−1∑
t=k

E[Yi,t(D
k
i,t)|Ei = k]− E[Yi,t(D

∞
i,t)|Ei = k]

]

=
1

T − (l − 1)

T∑
t=l

CAET 1
l,t · CLATTl,t

−

[
1

T − (l − 1)

T∑
t=l

CAET 1
k,t · CLATTk,t −

1

l − k

l−1∑
t=k

CAET 1
k,t · CLATTk,t

]
. (45)

The first equality follows from the simple algebra, Assumption 3, and Assumption 5. The
second equality follows from Assumption 7. The final equality follows from Lemma 5.

Note that the LLN and the Slutsky’s theorem yields

((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl

ĈD,Z

p−→ Pr(Ei = k)Pr(Ei = l)

CD,Z

T − (l − 1)

T

l − k

T
·D2×2,l

kl (46)

From the results of (44) and (45) with (46), we obtain

ŵl
IV,klβ̂

2×2,l
IV,kl

p−→ σl
IV,kl ·

{
1

T − (l − 1)

T∑
t=l

CAET 1
l,t · CLATTl,t

−

[
1

T − (l − 1)

T∑
t=l

CAET 1
k,t · CLATTk,t −

1

l − k

l−1∑
t=k

CAET 1
k,t · CLATTk,t

]}

= σl
IV,kl ·

{
CLATTl(POST (l))

− [CLATTk(POST (l))− CLATTk(MID(k, l))]

}
. (47)
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where the weight σl
IV,kl is:

σl
IV,kl =

Pr(Ei = k)Pr(Ei = l)

CD,Z

T − (l − 1)

T

l − k

T
. (48)

To sum up, by combining (42),(43) with (47), we obtain

β̂IV =

[∑
k ̸=U

wIV,kU β̂
2×2
IV,kU +

∑
k ̸=U

∑
l>k

wk
IV,klβ̂

2×2,k
IV,kl + wl

IV,klβ̂
2×2,l
IV,kl

]
p−→ WCLATT −∆CLATT.

where we define

WCLATT ≡
∑
k ̸=U

wIV,kUCLATT
CM
k (POST (k)) +

∑
k ̸=U

∑
l>k

wk
IV,klCLATT

CM
k (MID(k, l))

+
∑
k ̸=U

∑
l>k

σl
IV,kl · CLATTl(POST (l)),

∆CLATT ≡
∑
k ̸=U

∑
l>k

σl
IV,kl · [CLATTk(POST (l))− CLATTk(MID(k, l))] .

and the weights are:

wIV,kU =
Pr(Ei = k)Pr(Ei = U)

CD,Z

T − (k − 1)

T

k − 1

T
· CAET 1

k (POST (k)), (49)

wk
IV,kl =

Pr(Ei = k)Pr(Ei = l)

CD,Z

k − 1

T

l − k

T
· CAET 1

k (MID(k, l)), (50)

σl
IV,kl =

Pr(Ei = k)Pr(Ei = l)

CD,Z

T − (l − 1)

T

l − k

T
. (51)

Completing the proof.

B.4 Proof of Lemma 2

Proof. We first simplify CLATTCM
k (W ) and D2×2,l

kl (defined in (44)) under Assumption 9. If
we assume Assumption 9, CLATTCM

k (W ) is:

CLATTCM
k (W ) =

∑
t∈W

Pr(CMk,t|Ei = k)∑
t∈W Pr(CMk,t|Ei = k)

CLATTk,t

=
1

TW

∑
t∈W

CLATTk,t

≡ CLATT eq
k (W ).

In addition, D2×2,l
kl is:

D2×2,l
kl = CAET 1

l (POST (l))−
[
CAET 1

k (POST (l))− CAET 1
k (MID(k, l))

]
= CAET 1

l .

because we have CAET 1
k (W ) = CAET 1

k .
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We then rewrite the probability limit of ŵIV,kU β̂
2×2
IV,kU , ŵk

IV,klβ̂
2×2,k
IV,kl and ŵl

IV,klβ̂
2×2,l
IV,kl respec-

tively. First, the probability limit of ŵIV,kU β̂
2×2
IV,kU and ŵk

IV,klβ̂
2×2,k
IV,kl is simplified to:

ŵIV,kU β̂
2×2
IV,kU

p−→ wIV,kUCLATT
CM
k (POST (k))

= wIV,kUCLATT
eq
k (POST (k)). (52)

ŵk
IV,klβ̂

2×2,k
IV,kl

p−→ wk
IV,klCLATT

CM
k (MID(k, l))

= wk
IV,klCLATT

eq
k (MID(k, l)). (53)

where the weights wIV,kU , wk
IV,kl are:

wIV,kU =
Pr(Ei = k)Pr(Ei = U)

CD,Z

T − (k − 1)

T

k − 1

T
· CAET 1

k , (54)

wk
IV,kl =

Pr(Ei = k)Pr(Ei = l)

CD,Z

k − 1

T

l − k

T
· CAET 1

k . (55)

Next, we reconsider the probability limit of ŵl
IV,klβ̂

2×2,l
IV,kl .

First, we note that the probability limit of ŵl
IV,kl is simplified to:

ŵl
IV,kl =

((nk + nl)Z̄k)
2V̂ Z,l

kl D̂
2×2,l
kl

ĈD,Z

p−→ Pr(Ei = k)Pr(Ei = l)

CD,Z

T − (l − 1)

T

l − k

T
·D2×2,l

kl

=
Pr(Ei = k)Pr(Ei = l)

CD,Z

T − (l − 1)

T

l − k

T
· CAET 1

l . (56)

Here the second equality follows from D2×2,l
kl = CAET 1

l .
Second, the probability limit of β̂2×2,l

IV,kl simply reduces to:

β̂2×2,l
IV,kl =

β̂2×2,l
kl

D̂2×2,l
kl

p−→ 1

CAET 1
l

· 1

T − (l − 1)

T∑
t=l

CAET 1
l · CLATTl,t

− 1

CATT 1
l

·

[
1

T − (l − 1)

T∑
t=l

CAET 1
k · CLATTk,t −

1

l − k

l−1∑
t=k

CAET 1
k · CLATTk,t

]
= CLATT eq

l (POST (l))

− 1

CAET 1
l

· [CLATTk(POST (l))− CLATTk(MID(k, l))] . (57)

where we use (45) and D2×2,l
kl = CAET 1

l .
Combining the result (57) with (56), by the Slutsky’s theorem, we have

ŵl
IV,klβ̂

2×2,l
IV,kl

p−→ wl
IV,klCLATT

eq
l (POST (l))− σl

IV,kl · [CLATTk(POST (l))− CLATTk(MID(k, l))] .

(58)

where the weight wl
IV,kl is:

wl
IV,kl =

Pr(Ei = k)Pr(Ei = l)

CD,Z

T − (l − 1)

T

l − k

T
· CAET 1

l , (59)
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and σl
IV,kl is already defined in (48).

Finally, from the result (52) and (53) with (58), we obtain

β̂IV =

[∑
k ̸=U

ŵIV,kU β̂
2×2
IV,kU +

∑
k ̸=U

∑
l>k

ŵk
IV,klβ̂

2×2,k
IV,kl + ŵl

IV,klβ̂
2×2,l
IV,kl

]
p−→ WCLATT −∆CLATT.

where we define:

WCLATT ≡
∑
k ̸=U

wIV,kUCLATT
eq
k (POST (k)) +

∑
k ̸=U

∑
l>k

wk
IV,klCLATT

eq
k (MID(k, l))

+
∑
k ̸=U

∑
l>k

wl
IV,klCLATT

eq
l (POST (l)),

∆CLATT ≡
∑
k ̸=U

∑
l>k

σl
IV,kl · [CLATTk(POST (l))− CLATTk(MID(k, l))] .

Completing the proof.

B.5 Proof of Lemma 3

Proof. First, we show ∆CLATT = 0. Under Assumption 9 and Assumption 11, we have
CLATTe,t = CLATTe. This implies:

∆CLATT =
∑
k ̸=U

∑
l>k

σl
IV,kl · [CLATTk(POST (l))− CLATTk(MID(k, l))]

= 0.

because we have CLATTk(POST (l))− CLATTk(MID(k, l)) = 0.
Next, we consider WCLATT . Since we have CLATT eq

k (W ) = CLATTk, we obtain:

WCLATT =
∑
k ̸=U

wIV,kUCLATTk +
∑
k ̸=U

∑
l>k

wk
IV,klCLATTk +

∑
k ̸=U

∑
l>k

wl
IV,klCLATTl

=
∑
k ̸=U

CLATTk

[
wIV,kU +

k−1∑
j=1

wk
IV,jk +

K∑
j=k+1

wk
IV,kj

]
.

Completing the proof.

C Extensions in section 5

C.1 Non-binary, ordered treatment

This subsection considers a non binary, ordered treatment. We show Lemma 6 below that is
analogous to Lemma 5 in a binary treatment. If we use Lemma 6 instead of Lemma 5 in the
proof of Theorem 2 and Lemmas 2-3, we obtain the theorem and the lemmas which replace
CLATTe,k with CACRTe,k.
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Lemma 6. Suppose Assumptions 1-7 hold. If treatment is a non-binary, ordered, for all
k, l ∈ {1, . . . , T}(k ≤ l), we have[

l∑
t=k

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]

=
l∑

t=k

E[Dk
i,t −D∞

i,t |Ei = k] ·
J∑

j=1

wk
t,j · E[Yi,t(j)− Yi,t(j − 1)|Ei = k,Dk

i,t ≥ j > D∞
i,t ]

≡
l∑

t=k

CATT 1
k,t · CACRTk,t.

where the weight wk
t,j is:

wk
t,j =

Pr(Dk
i,t ≥ j > D∞

i,t |Ei = k)∑J
j=1 Pr(D

k
i,t ≥ j > D∞

i,t |Ei = k)
.

Proof. By the similar argument in the proof of lemma 5, one can show that[
l∑

t=k

E[Yi,t(D
k
i,t)− Yi,t(D

∞
i,t)|Ei = k]

]

=

[
l∑

t=k

J∑
j=1

Pr(Dk
i,t ≥ j > D∞

i,t |Ei = k) · E[Yi,t(j)− Yi,t(j − 1)|Ei = k,Dk
i,t ≥ j > D∞

i,t ]

]
(60)

E[Dk
i,t −D∞

i,t |Ei = k]

=
J∑

j=1

Pr(Dk
i,t ≥ j > D∞

i,t |Ei = k). (61)

Combining the result (60) with (61), we obtain the desired result.

C.2 Unbalanced panel case

In this section, we consider an unbalanced setting. We use the notation for a panel data setting,
but the discussions and the results are the same if we consider an unbalanced repeated cross
section setting.

Proof of Theorem 3

Let Ne,t be the sample size for cohort e at time t and N =
∑

e

∑
tNe,t be the total number of

observations. We consider the following two way fixed effects instrumental variable regression:

Yi,t = µi. + δt. + αZi,t + ϵi,t,

Di,t = γi. + ζt. + πZi,t + ηi,t.

We define Ẑi,t to be the residuals from regression Zi,t on the time and individual fixed effects.
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From the FWL theorem, the TWFEIV estimator β̂IV is:

β̂IV =

∑
i

∑
t Ẑi,tYi,t∑

i

∑
t Ẑi,tDi,t

=

∑
e

∑
tNe,t

1
Ne,t

∑Ne,t

i Ẑe(i),tYe(i),t∑
e

∑
tNe,t

1
Ne,t

∑Ne,t

i Ẑe(i),tDe(i),t

=

∑
e

∑
tNe,tẐe,t

1
Ne,t

∑Ne,t

i Ye(i),t∑
e

∑
tNe,tẐe,t

1
Ne,t

∑Ne,t

i De(i),t

,

where the third equality follows from the fact that Ẑi,t only varies across cohort and time level.
We note that by the definition of Ẑe,t, we have∑

t

Ne,tẐe,t = 0 for all e ∈ S(Ei), (62)∑
e

Ne,tẐe,t = 0 for all t ∈ {1, . . . , T}. (63)

To ease the notation, we define the sample mean for a random variable Ri,t in cohort e at
time t as follows:

Re,t ≡
1

Ne,t

Ne,t∑
i

Re(i),t.

Here, we note that we can express Ye,t in the following:

Ye,t =
1

Ne,t

Ne,t∑
i

Ye(i),t

=
1

Ne,t

Ne,t∑
i

[Ye(i),t(D
∞
i,t) + Ze,t · (Ye(i),t(De

i,t)− Ye(i),t(D
∞
i,t))]

= Ye,t(D
∞
i,t) + Ze,t · (Ye,t(De

i,t)− Ye,t(D
∞
i,t)). (64)

where the second equality follows from Assumptions 1-3 and Assumption 5.
First, we consider the probability limit of the numerator in the TWFEIV estimator. By

using (62) and (63), we obtain

∑
e

∑
t

Ne,tẐe,t
1

Ne,t

Ne,t∑
i

Ye(i),t =
∑
e

∑
t

Ne,tẐe,tYe,t

=
∑
e

∑
t

Ne,tẐe,t [Ye,t − Ye,1 − (Y1,t − Y1,1)] . (65)

To further develop the expression, we use (64):

Ye,t − Ye,1 − (Y1,t − Y1,1) = Ye,t(D
∞
i,t)− Ye,1(D

∞
i,1)− [Y1,t(D

∞
i,t)− Y1,1(D

∞
i,1)]

+ Ze,t · (Ye,t(De
i,t)− Ye,t(D

∞
i,t))− Ze,1 · (Ye,1(De

i,1)− Ye,1(D
∞
i,1))

− [Z1,t · (Y1,t(D1
i,t)− Y1,t(D

∞
i,t))− Z1,1 · (Y1,1(De

i,1)− Y1,1(D
∞
i,1))] (66)
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Substituting (66) into (65), we obtain:∑
e

∑
t

Ne,tẐe,t [Ye,t − Ye,1 − (Y1,t − Y1,1)]

=
∑
e

∑
t

Ne,tẐe,t

[
Ye,t(D

∞
i,t)− Ye,1(D

∞
i,1)− [Y1,t(D

∞
i,t)− Y1,1(D

∞
i,1)]
]

+
∑
e

∑
t

Ne,tẐe,tZe,t · (Ye,t(De
i,t)− Ye,t(D

∞
i,t)), (67)

where the second equality holds from (62) and (63).
From (67), as N → ∞ , we obtain∑

e

∑
t

Ne,tẐe,t [Ye,t − Ye,1 − (Y1,t − Y1,1)]

p−→
∑
e

∑
t

E[Ẑi,t|Ei = e] · ne,t ·

{
E[Ye,t(D

∞
i,t)|Ei = e]− E[Ye,1(D

∞
i,1)|Ei = e]

−
(
E[Y1,t(D

∞
i,t)|Ei = 1]− E[Y1,1(D

∞
i,1)|Ei = 1]

)}
+
∑
e

∑
t

E[Ẑi,t|Ei = e] · ne,t · E[Ze,t · (Ye,t(De
i,t)− Ye,t(D

∞
i,t))|Ei = e]

=
∑
e

∑
t≥e

E[Ẑi,t|Ei = e] · ne,t · E[(Ye,t(De
i,t)− Ye,t(D

∞
i,t))|Ei = e]

=
∑
e

∑
t≥e

E[Ẑi,t|Ei = e] · ne,t · CATT 1
e,t · CLATTe,t, (68)

where ne,t is population share and E[Ẑi,t|Ei = e] in cohort e at time t. The first equality follows
from Assumption 1 and Assumption 7. The second equality follows from Assumption 5.

Next, we consider the probability limit of the numerator. We note that the structure in the
numerator is same as the one in the numerator. Therefore, by the same argument, we have:∑

e

∑
t

Ne,tẐe,t
1

Ne,t

Ne,t∑
i

De(i),t

p−→
∑
e

∑
t≥e

E[Ẑi,t|Ei = e] · ne,t · CATT 1
e,t. (69)

Combining the result (69) with (68), we obtain

β̂IV
p−→ βIV

=

∑
e

∑
t≥eE[Ẑi,t|Ei = e] · ne,t · CATT 1

e,t · CLATTe,t∑
e

∑
t≥eE[Ẑi,t|Ei = e] · ne,t · CATT 1

e,t

=
∑
e

∑
t≥e

we,t · CLATTe,t.

where the weight we,t is:

we,t =
E[Ẑi,t|Ei = e] · ne,t · CATT 1

e,t∑
e

∑
t≥eE[Ẑi,t|Ei = e] · ne,t · CATT 1

e,t

.

Completing the proof.
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Supplementary of Theorem 3

We provide another representation of Theorem 3. We assume that there does not exist a never
exposed cohort, that is, we have ∞ /∈ S(Ei), and define l = max{Ei} to be the last exposed
cohort.

Lemma 7. Suppose Assumptions 1-7 hold. Assume a binary treatment and an unbalanced
panel setting. If there does not exists a never exposed cohort, i.e., we have ∞ /∈ S(Ei), the
population regression coefficient βIV is:

βIV =
∑
e

∑
l−1≥t≥e

w1
e,t · CLATTe,t +

∑
e

∑
t≥l

w2
e,t ·∆e,t, (70)

where ∆e,t is:

CAET 1
e,t · CLATTe,t − CAET 1

l,t · CLATTl,t
CAET 1

e,t − CAET 1
l,t

,

and the weights w1
e,t and w2

e,t are:

w1
e,t =

E[Ẑi,t|Ei = e] · ne,t · CAET 1
e,t∑

e

( ∑
l−1≥t≥e

E[Ẑi,t|Ei = e] · ne,t · CAET 1
e,t +

∑
t≥l

E[Ẑi,t|Ei = e] · ne,t · (CAET 1
e,t − CAET 1

l,t)

) ,
(71)

w2
e,t =

E[Ẑi,t|Ei = e] · ne,t · (CAET 1
e,t − CAET 1

l,t)∑
e

( ∑
l−1≥t≥e

E[Ẑi,t|Ei = e] · ne,t · CAET 1
e,t +

∑
t≥l

E[Ẑi,t|Ei = e] · ne,t · (CAET 1
e,t − CAET 1

l,t)

) .
(72)

We note that when there is no never exposed cohort, we can only identify each CLATTe,t
before the time period l = max{Ei} for cohort e ̸= l, exploiting the time trends of the unexposed
treatment and outcome for cohort l. This implies that in equation (70), each ∆e,t is the bias
term occurring from the bad comparisons performed by TWFEIV regressions. In a given
application, we can estimate CLATTe,t, CLATTe,t, and the associated weights w1

e,t, w2
e,t by

constructing the consistent estimators, using (73) and (74) below.

Proof. We consider the case where there is no never exposed cohort, i.e., we have ∞ /∈ S(Ei).
In this case, by using the last exposed cohort l = max{Ei}, we obtain

β̂IV =

∑
e

∑
tNe,tẐe,t [Ye,t − Ye,1 − (Yl,t − Yl,1)]∑

e

∑
tNe,tẐe,t [De,t −De,1 − (Dl,t −Dl,1)]

=

∑
e

∑
tNe,tẐe,t [De,t −De,1 − (Dl,t −Dl,1)] · ŴDIDe,t∑

e

∑
tNe,tẐe,t [De,t −De,1 − (Dl,t −Dl,1)]

.

where we define

ŴDIDe,t ≡
[Ye,t − Ye,1 − (Yl,t − Yl,1)]

[De,t −De,1 − (Dl,t −Dl,1)]
.
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From the Law of Large Numbers and the same argument in the proof of Theorem 2, we have

ŴDIDe,t
p−→


0 (t < e)
CLATTe,t (l − 1 ≥ t ≥ e)
CAET 1

e,t · CLATTe,t − CAET 1
l,t · CLATTl,t

CAET 1
e,t − CAET 1

l,t

(t ≥ l)
(73)

Similarly, we obtain

[De,t −De,1 − (Dl,t −Dl,1)]
p−→


0 (t < e)
CAET 1

e,t (l − 1 ≥ t ≥ e)
CAET 1

e,t − CATT 1
l,t (t ≥ l)

(74)

Combining the result (73) with (74) and by the Slutsky’s theorem, we obtain

βIV =
∑
e

∑
l−1≥t≥e

w1
e,t · CLATTe,t +

∑
e

[∑
t≥l

w2
e,t ·

CAET 1
e,t · CLATTe,t − CAET 1

l,t · CLATTl,t
CAET 1

e,t − CAET 1
l,t

]
.

Completing the proof.

C.3 Random assignment of the instrument adoption date

First, we set up the additional notations. We define LATECM
k (W ) and LATEk(W ) analogous

to CLATTCM
k (W ) and CLATTk(W ) in section 4:

LATECM
k (W ) ≡

∑
t∈W

AE1
k,t∑

t∈W AE1
k,t

LATEk,t,

LATEk(W ) ≡ 1

TW

∑
t∈W

AE1
k,tLATEk,t,

where we replace CAET 1
k,t and CLATTk,t withAE1

k,t and LATEk,t respectively in CLATTCM
k (W )

and CLATTk(W ).
Theorem 4 below presents the TWFEIV estimand under Assumptions 1 - 5 and Assumption

14 (Random assignment assumption of adoption date Ei).

Theorem 4. Suppose Assumptions 1-5 and 14 holds. Then, the population regression coeffi-
cient βIV consists of two terms:

βIV = WLATE −∆LATE.

where we define:

WLATE ≡
∑
k ̸=U

wIV,kULATE
CM
k (POST (k)) +

∑
k ̸=U

∑
l>k

wk
IV,klLATE

CM
k (MID(k, l))

+
∑
k ̸=U

∑
l>k

σl
IV,kl · LATEl(POST (l)),

∆LATE ≡
∑
k ̸=U

∑
l>k

σl
IV,kl · [LATEk(POST (l))− LATEk(MID(k, l))] .

The weights wIV,kU , wk
IV,kl and σl

IV,kl are the same in the proof of Theorem 2.
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Theorem 4 is analogous to Theorem 2, but CAET 1
e,l and CLATTe,l are replaced by AE1

e,l

and LATEe,l respectively because we assume a random assignment of adoption date. If we
consider the restrictions on the effects of the instrument on the treatment and outcome as in
section 4.2, the similar arguments hold as in Theorem 2, Lemma 2 and Lemma 3.

Proof. First, we note that Assumption 14 implies Assumption 6 and Assumption 7. Therefore,
we obtain the result in Theorem 2 under Assumptions 1-5 and 14.

By noticing that we have CATT 1
e,l = AE1

e,l and CLATTe,l = LATEe,l under Assumption
14, we obtain:

CLATTCM
k (W ) = LATECM

k (W ),

CLATTk(W ) = LATEk(W ).

By replacing CLATTCM
k (W ) and CLATTk(W ) with LATECM

k (W ) and LATEk(W ) in
Theorem 2, we obtain the desired result.

D Proofs and discussions in section 7

In this appendix, we first derive equation (22). We then discuss the causal interpretation
of the covariate-adjusted TWFEIV estimand under staggered DID-IV designs, imposing the
additional assumptions.

D.1 Decomposing the between IV coefficient

Let ĈD,z̃
b denote the covariance between Di,t and z̃k,t, the between term of z̃i,t. The between IV

coefficient β̂z
b,IV is:

β̂z
b,IV =

Ĉ(Yi,t, z̃k,t)

Ĉ(Di,t, z̃k,t)
=
Ĉ(Yi,t, z̃k,t)

ĈD,z̃
b

. (75)

To derive equation (22), we decompose the covariance between Yi,t and z̃k,t. To do so, we first
split the between term z̃k,t into the between term of Zi,t and the between term of p̃i,t:

z̃k,t = [(Z̄k,t − Z̄k)− (Z̄t − ¯̄Z)]− [(p̄k,t − p̄k)− (p̄t − ¯̄p)]

≡ Z̃k,t − p̃k,t.

Then, we have

Ĉ(Yi,t, z̃k,t) =
1

NT

∑
i

∑
t

Yi,t[(z̄k,t − z̄k)− (z̄t − ¯̄z)]

=
1

T

∑
k

nk

∑
t

Ȳk,t[(z̄k,t − z̄k)− (z̄t − ¯̄z)]

=
∑
k

∑
l

nknl
1

T

∑
t

(Ȳk,t − Ȳl,t)Z̃k,t −
∑
k

∑
l

nknl
1

T

∑
t

(Ȳk,t − Ȳl,t)p̃k,t

=
∑
k

∑
l>k

(nk + nl)
2[ĈD,Z

kl β̂2×2
IV,kl − Ĉp

b,klβ̂
p
b,IV,kl]. (76)

β̂2×2
IV,kl is an estimator obtained from an IV regression of Yi,t on Di,t with Z̃k,t as the excluded

instrument in (k, l) cell subsample. ĈD,Z
kl is the covariance between Di,t and Z̃k,t in (k, l) cell
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subsample. β̂p
b,IV,kl is an estimator obtained from an IV regression of Yi,t on Di,t with p̃k,t as

the excluded instrument in (k, l) cell subsample. Ĉp
b,kl is the covariance between Di,t and p̃k,t in

(k, l) cell subsample.
By combining (75) with (76), we obtain equation (22).

D.2 Causal interpretation of the covariate-adjusted TWFEIV estimand

This section considers the causal interpretation of the covariate-adjusted TWFEIV estimand
βX
IV . To simplify the analysis, we first make the following assumptions. Goodman-Bacon (2021)

also make similar assumptions to investigate the causal interpretation of the covariate-adjusted
TWFE estimand in Appendix B.

(i) Time-varying covariates Xi,t are not affected by instrument (policy shock).

(ii) Time-varying covariates Xi,t do not vary within cohorts.

(iii) The coefficients obtained from regressing Z̃i,t on X̃i,t in (k, l) cell subsample are the same
regardless of the pair (k, l).

Because Assumption (ii) implies that the within term is equal to zero, the covariate-adjusted
TWFEIV estimator β̂X

IV simplifies to

β̂X
IV =

∑
k

∑
l>k

sb,klβ̂
z
b,IV,kl.

Assumption (iii) guarantees that β̂z
b,IV,kl is equal to the between coefficient obtained from

estimating equation (14) in (k, l) subsample, which we denote β̂z,X
b,IV,kl hereafter. To see this

formally, let p̃kli,t ≡ Γ̂k,lX̃i,t denote the linear projection obtained from regressing Z̃i,t on X̃i,t in
(k, l) subsample and let p̃klj,t denote the between term of p̃kli,t in cohort j. We note that p̃klj,t ̸= p̃j,t

(the between term of p̃i,t) holds in general because p̃i,t = Γ̂X̃i,t is estimated using the whole
sample. Then, we have

β̂z
b,IV,kl =

Ĉ(Yi,t, z̃j,t)

Ĉ(Di,t, z̃j,t)
=

Ĉ(Yi,t, Z̃j,t − p̃klj,t) + Ĉ(Yi,t, p̃
kl
j,t − p̃j,t)

Ĉ(Di,t, Z̃j,t − p̃klj,t) + Ĉ(Di,t, p̃klj,t − p̃j,t)

=
Ĉ(Di,t, Z̃j,t − p̃klj,t)β̂

z,X
b,IV,kl + Ĉ(Di,t, p̃

kl
j,t − p̃j,t)β̂

dif
b,IV,kl

Ĉ(Di,t, Z̃j,t − p̃klj,t) + Ĉ(Di,t, p̃klj,t − p̃j,t)
, j = k, l,

where β̂dif
b,IV,kl is an estimator obtained from an IV regression of Yi,t on Di,t with the difference

p̃klj,t− p̃j,t as the excluded instrument. Because Assumption (iii) (p̃klj,t = p̃j,t) implies Ĉ(Di,t, p̃
kl
j,t−

p̃j,t) = 0, we obtain β̂z
b,IV,kl = β̂z,X

b,IV,kl.
Hereafter, we assume the identifying assumptions in staggered DID-IV designs and Assump-

tion (i)-(iii). We focus on the between coefficient β̂z
b,IV,kU = β̂z,X

b,IV,kU as it clarifies how covariates
affect the interpretation of the TWFEIV estimand:

β̂z
b,IV,kU =

Ĉ(Yi,t, Z̃j,t)− Ĉ(Yi,t, p̃
kl
j,t)

Ĉ(Di,t, Z̃j,t)− Ĉ(Di,t, p̃klj,t)
, j = k, U.
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Then, by the similar calculations in the proof of Theorem 2, we obtain

Ĉ(Yi,t, Z̃j,t) = V̂ z
kUD̂

2×2
kU β2×2

kU,IV

p−→ V z
kU · CAET 1

k (POST (k)) · CLATTCM
k (POST (k)), (77)

and

Ĉ(Yi,t, p̃
kl
j,t) =

nkU(1− nkU)

T

∑
t

(Ȳkt − ȲUt) · [(p̄kUk,t − p̄kUk )− (p̄kUU,t − p̄kUU )]

p−→ NkU(1−NkU)

T

∑
t

{
E[Yi,t(D

∞
i,t)|Ei = k]− E[Yi,t(D

∞
i,t)|Ei = U ]

}
[(pkUk,t − pkUk )− (pkUU,t − pkUU )]

+
NkU(1−NkU)

T − (k − 1)

∑
t≥k

CAETk · CLATTk,t︸ ︷︷ ︸
CAIETk,t

·[(pkUk,t − pkUk )− (pkUU,t − pkUU )], (78)

where NkU and [(pkUk,t − pkUk )− (pkUU,t − pkUU )] are the probability limits of nkU and [(p̄kUk,t − p̄kUk )−
(p̄kUU,t − p̄kUU )], respectively. Equations (77) and (78) indicate that covariates affects the causal
interpretation of β̂z

b,IV,kU in two ways. First, it additionally introduce the covariance between
the difference in unexposed outcomes and the difference in the variation of the linear projection
for cohorts k and U (the first term in equation (77)). Second, it additionally introduce the
covariance between the CAIETk,t and the difference in the variation of the linear projection
for cohorts k and U (the second term in equation (78)).
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