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Abstract

This paper develops a framework for quantile regression in binary longitudinal data settings.

A novel Markov chain Monte Carlo (MCMC) method is designed to fit the model and its

computational efficiency is demonstrated in a simulation study. The proposed approach is

flexible in that it can account for common and individual-specific parameters, as well as

multivariate heterogeneity associated with several covariates. The methodology is applied

to study female labor force participation and home ownership in the United States. The

results offer new insights at the various quantiles, which are of interest to policymakers and

researchers alike.

Keywords: Bayesian inference, Binary outcomes, Female labor force participation, Home

ownership, Limited dependent variables, Panel data.

1. Introduction

The proliferation of panel data studies is well-documented and much of it has been

attributed to data availability and challenging methodology (Hsiao, 2007). While panel data

has been attractive for understanding behavior and dynamics, the modeling complexities
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involved in it have moved attention away from its unique capacities. Modeling features such

as a binary outcome variable or a quantile analysis, which are relatively straightforward

to implement with cross-sectional data, are challenging and computationally burdensome

for panel data. However, these features are important as they allow for the modeling of

probabilities and lead to a richer view of how the covariates influence the outcome variable.

Motivated by these difficulties, this paper adds to the methodological advancements for panel

data by developing quantile regression methods for binary longitudinal data and designing

a computationally efficient estimation algorithm. The approach is applied to two empirical

studies, female labor force participation and home ownership.

The paper touches on three growing econometric literatures – discrete panel data, quan-

tile regression for panel data, and quantile regression for discrete data. In reference to

the latter, quantile regression has been implemented in binary data models (Kordas, 2006;

Benoit and Poel, 2012), ordered data models (Rahman, 2016; Alhamzawi and Ali, 2018),

count data models (Machado and Silva, 2005; Harding and Lamarche, 2015), and censored

data models (Portnoy, 2003; Harding and Lamarche, 2012). For limited dependent variables,

the concern is modeling the latent utility differential in the quantile framework, since the

response variable takes limited values and does not yield continuous quantiles. Our paper

follows the work in this literature by using the latent utility setting and interpreting the

utility as a “propensity” or “willingness” that underlie the latent scale, thus increasing our

understanding of the impact of the covariates on the binary outcomes.

The literature on quantile regression in panel data settings includes (but is not

limited to) Koenker (2004), Geraci and Bottai (2007), Liu and Bottai (2009), Galvao

(2010), Galvao and Kato (2016), Lamarche (2010), Harding and Lamarche (2009) and

Harding and Lamarche (2017). The latter of these papers discusses the issues associated

with solely focusing on fixed effects estimators and highlights the usefulness of allowing for

a flexible specification of individual heterogeneity associated with covariates, also of interest

in the present paper. In a recent Bayesian paper, Luo et al. (2012) develop a hierarchical

model to estimate the parameters of conditional quantile functions with random effects. The

authors do so by adopting an Asymmetric Laplace (AL) distribution for the residual errors

and suitable prior distributions for the parameters. However, directly using the AL distri-

bution does not yield tractable conditional densities for all of the parameters and hence a

combination of Metropolis-Hastings (MH) and Gibbs sampling is required for model estima-

tion. The use of the MH algorithm may require tuning at each quantile. To overcome this

limitation, Luo et al. (2012) also present a full Gibbs sampling algorithm that utilizes the
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normal-exponential mixture representation of the AL distribution. This mixture represen-

tation is also followed in our work, with important computational improvements.

Finally, for discrete panel data, recent work by Bartolucci and Nigro (2010) intro-

duces a quadratic exponential model for binary panel data and utilizes a conditional

likelihood approach, which is computationally simpler than previous classical estimators.

Bayesian approaches to binary panel data models include work by Albert and Chib (1996),

Chib and Carlin (1999), Chib and Jeliazkov (2006), and Burda and Harding (2013). These

work influence the estimation methods designed in our quantile approach to binary panel

data.

This paper contributes to the three literatures by extending the various methodologies to

a hierarchical Bayesian quantile regression model for binary longitudinal data and proposing

a Markov chain Monte Carlo (MCMC) algorithm to estimate the model. The model handles

both common (fixed) and individual-specific (random) parameters (commonly referred to

mixed effects in statistics). The algorithm implements a blocking procedure that is com-

putationally efficient and the distributions involved allow for straightforward calculations of

covariate effects. The framework is implemented in two empirical applications. The first ap-

plication examines female labor force participation, which has been heavily studied in panel

form. The topic became of particular interest in the state dependence versus heterogeneity

debate (Heckman, 1981a). We revisit this question and implement our panel quantile ap-

proach, which has been otherwise unexplored for this topic. The results offer new insights

regarding the determinants of female labor force participation and how the ages of children

have different effects across the quantiles and utility scale. The findings suggest that policy

should be focused on women’s transitions into the labor force after child birth and the few

years after.

The second application considers the probability of home ownership during the Great

Recession. Micro-level empirical analyses on individuals moving into and out of housing

markets are lacking in the recent literature. Past studies include Carliner (1974) and Poirier

(1977), but the recent housing crisis offers a new opportunity to reevaluate the topic. Fur-

thermore, a full quantile analysis of home ownership is yet to be explored. Since home

ownership is a choice that requires years of planning, individual characteristics may range

drastically across the latent utility scale. The analysis presented in this paper controls for

multivariate heterogeneity in individuals and wealth, and investigates the determinants of

home ownership, state dependence in home ownership, and how the shock to housing mar-

kets affected these items. The results provide an understanding as to how individuals of
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particular demographics and socioeconomic status fared during the collapse of the housing

market.

The rest of the paper is organized as follows. Section 2 reviews quantile regression and the

AL distribution, Section 3 introduces the quantile regression model for binary longitudinal

data, presents a simulation study, and discusses methods for covariate effects. Section 4

considers the two applications and concluding remarks are offered in Section 5.

2. Quantile Regression and Asymmetric Laplace Distribution

The p-th quantile of a random variable Y is the value y0 such that the probability that

Y will be less than y0 equals p ∈ (0, 1). Mathematically, if Q(·) denotes the inverse of the

cumulative distribution function (cdf ) of Y , the p-th quantile is defined as

QY (p) ≡ F −1
Y (p) = inf{y0 : F (y0) ≥ p}.

Quantile regression implements the idea of quantiles within the regression framework with

Q(·) modified to denote the inverse cdf of the dependent variable given the covariates.

The objective is to estimate conditional quantile functions and to this purpose, regression

quantiles are estimated by minimizing the quantile objective function which is a sum of

asymmetrically weighted absolute residuals.

To formally explain the quantile regression problem, consider the following linear model,

yi = x′
iβp + εi, with Qεi

(p|xi) = 0, (1)

where yi is a scalar response variable, xi is a k ×1 vector of covariates, βp is a k ×1 vector of

unknown parameters that depend on quantile p, and εi is the error term such that its p-th

quantile equals zero. Henceforth, we will drop the subscript p for notational simplicity. In

classical econometrics, the error ε does not (or is not assumed to) follow any distribution

and estimation requires minimizing the following objective function,

min
β∈Rk

[

∑

i:yi<x′

i
β

(1 − p) |yi − x′
iβ| +

∑

i:yi≥x′

i
β

p |yi − x′
iβ|

]

. (2)

The minimizer β̂ gives the p-th regression quantile and the estimated conditional quantile

function is obtained as ŷi = x′
iβ̂. Alternatively, the objective function (2) can be written as
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Figure 1: Quantile regression check function

a sum of piecewise linear or check functions as follows,

min
β∈Rk

n
∑

i=1

ρp(yi − x′
iβ),

where ρp(u) = u · (p−I(u < 0)) and I(·) is an indicator function, which equals 1 if the condi-

tion inside the parenthesis is true and 0 otherwise. The check function, as seen in Figure 1,

is not differentiable at the origin. Hence, classical econometrics relies on computational

techniques to estimate quantile regression models. Such computational methods include the

simplex algorithm (Dantzig, 1963; Dantzig and Thapa, 1997, 2003; Barrodale and Roberts,

1973; Koenker and d’Orey, 1987), the interior point algorithm (Karmarkar, 1984; Mehrotra,

1992; Portnoy and Koenker, 1997), the smoothing algorithm (Madsen and Nielsen, 1993;

Chen, 2007), and metaheuristic algorithms (Rahman, 2013).

In contrast to classical quantile regression, Bayesian quantile regression assumes that

the error follows an AL distribution because the AL pdf contains the quantile loss function

(2) in its exponent. This facilitates the construction of a working likelihood, required for

Bayesian analysis. Maximizing an AL likelihood is equivalent to minimizing the quantile

objective function (Koenker and Machado, 1999; Yu and Moyeed, 2001). A random variable

Y follows an AL distribution if its probability density function (pdf ) is given by:

f(y|µ, σ, p) =
p(1 − p)

σ
exp

[

− ρp

(

y − µ

σ

)]

, (3)

where ρp(·) is the check function as defined earlier, −∞ < µ < ∞ is the location parameter,

σ > 0 is the scale parameter, and 0 < p < 1 is the skewness parameter (Kotz et al., 2001;
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Yu and Zhang, 2005). The mean and variance of Y with pdf (3) are

E(Y ) = µ +
σ(1 − 2p)

p(1 − p)
and V (Y ) =

σ2(1 − 2p + 2p2)

p2(1 − p)2
.

If µ = 0 and σ = 1, then both mean and variance depend only on p and hence are fixed for

a given value of p.

The Bayesian approach to quantile regression for binary data assumes that ε ∼ AL(0, 1, p).

Here, the variance is constant to serve as a normalization for identification, typical in probit

and logit models (Poirier and Ruud, 1988; Koop and Poirier, 1993; Jeliazkov and Rahman,

2012). However, working directly with the AL distribution is not conducive to construct-

ing a Gibbs sampler and hence the normal-exponential mixture of the AL distribution is

often employed (Kozumi and Kobayashi, 2011). Several recent papers have utilized the mix-

ture representation, including Ji et al. (2012) for Bayesian model selection in binary and

Tobit quantile regression, Luo et al. (2012) for estimating linear longitudinal data models,

and Rahman (2016) for estimating ordinal quantile regression models. We also exploit the

normal-exponential mixture representation of the AL distribution to derive the estimation

algorithm for quantile regression in binary longitudinal data settings.

3. The Quantile Regression Model for Binary Longitudinal Data

This section presents the quantile regression model for binary longitudinal data (QBLD)

and an estimation algorithm to fit the model. The performance of the proposed algorithm is

illustrated in a simulation study. The last part of this section considers methods for model

comparison and covariate effects.

3.1. The Model

The proposed model looks at quantiles of binary longitudinal data expressed as a func-

tion of covariates with common effects and individual-specific effects. The individual-specific

effects offer additional flexibility in that both intercept and slope heterogeneity can be cap-

tured, which are important to avoid biases in the parameter estimates. The QBLD model

can be conveniently expressed in the latent variable formulation (Albert and Chib, 1993) as
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follows,

zit = x′
itβ + s′

itαi + εit, ∀ i = 1, · · · , n, t = 1, · · · , Ti,

yit =







1 if zit > 0,

0 otherwise,

(4)

where the latent variable zit denotes the value of z at the t-th time period on the i-th

individual, x′
it is a 1 × k vector of explanatory variables, β is k × 1 vector of common

parameters, s′
it is a 1 × l vector of covariates that have individual-specific effects, αi is

an l × 1 vector of individual-specific parameters, and εit is the error term assumed to be

independently distributed as AL(0, 1, p) with Qεit
(p|xit, αi) = 0. This implies that the

conditional density of zit|αi is an AL(x′
itβ+s′

itαi, 1, p) for i = 1, · · · , n, and t = 1, · · · , Ti, with

Qzit
(p|xit, αi) = x′

itβ+s′
itαi. Note that sit may contain a constant for intercept heterogeneity,

as well as other covariates (which are often a subset of those in xit) to account for slope

heterogeneity of those variables. The variable zit is unobserved and represents the latent

utility associated with the observed binary choice yit. The latent variable formulation serves

as a convenient tool in the estimation process (Albert and Chib, 1993). Furthermore, latent

utility underlies the interpretation of the results at the various quantiles.

While working directly with the AL density is an option, the resulting posterior will not

yield the full set of tractable conditional distributions necessary for a Gibbs sampler. Thus,

we utilize the normal-exponential mixture representation of the AL distribution, presented

in Kozumi and Kobayashi (2011), and express the error as follows,

εit = θwit + τ
√

wit uit, ∀ i = 1, · · · , n; t = 1, · · · , Ti, (5)

where uit ∼ N(0, 1) is mutually independent of wit ∼ E(1) with E representing an exponential

distribution and the constants θ = 1−2p
p(1−p)

and τ =
√

2
p(1−p)

. The mixture representation gives

access to the appealing properties of the normal distribution.

Longitudinal data models often involve a moderately large amount of data, so it is im-

portant to take advantage of any opportunity to reduce the computational burden. One

such trick is to stack the model for each individual i (Hendricks et al., 1979). We de-

fine zi = (zi1, · · · , ziTi
)′, Xi = (x′

i1, · · · , x′
iTi

)′, Si = (s′
i1, · · · , s′

iTi
)′, wi = (wi1, · · · , wiTi

)′,

Dτ
√

wi
= diag(τ

√
wi1, · · · , τ

√
wiTi

), and ui = (ui1, · · · , uiTi
)′. Building on equations (4) and
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(5), the resulting hierarchical model can be written as,

zi = Xiβ + Siαi + θwi + Dτ
√

wi
ui,

yit =







1 if zit > 0,

0 otherwise,

αi|ϕ2 ∼ Nl(0, ϕ2Il), wit ∼ E(1), uit ∼ N(0, 1),

β ∼ Nk(β0, B0), ϕ2 ∼ IG(c1/2, d1/2),

(6)

where we assume that αi are identically distributed as a normal distribution. The last row

represents the prior distributions with N and IG denoting the normal and inverse-gamma

distributions, respectively. Here, we note that the form of the prior distribution on β holds

a penalty interpretation on the quantile loss function (Koenker, 2004). A normal prior on

β implies a ℓ2 penalty and has been used in Yuan and Yin (2010), and Luo et al. (2012).

One may also employ a Laplace prior distribution on β that imposes ℓ1 penalization, as

used in several articles such as Alhamzawi and Ali (2018). While Alhamzawi and Ali (2018)

also work with quantile regression for discrete panel data (ordered, in particular), our work

contributes by considering multivariate heterogeneity (not just intercept heterogeneity), and

introducing computational improvements outlined below.

By Bayes’ theorem, we express the “complete joint posterior” density as proportional to

the product of likelihood function and the prior distributions as follows,

π(β, α, w, z, ϕ2|y) ∝
{

n
∏

i=1

f(yi|zi, β, αi, wi, ϕ2)π(zi|β, αi, wi)π(wi)π(αi|ϕ2)

}

π(β)π(ϕ2),

∝
{

n
∏

i=1

[

Ti
∏

t=1

f(yit|zit)

]

π(zi|β, αi, wi)π(wi)π(αi|ϕ2)

}

π(β)π(ϕ2),

(7)

where the first line uses independence between prior distributions and second line follows

from the fact that given zit, the observed yit is independent of all parameters because the

second line of (6) determines yit given zit with probability 1. Substituting the distribution

of the variables associated with the likelihood and the prior distributions in (7) yields the

following expression,

π(β, α, w, z, ϕ2|y) ∝
{

n
∏

i=1

Ti
∏

t=1

[

I(zit > 0)I(yit = 1) + I(zit ≤ 0)I(yit = 0)
]

}
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× exp
[

− 1

2

n
∑

i=1

{

(zi − Xiβ − Siαi − θwi)
′ D−2

τ
√

wi
(zi − Xiβ − Siαi − θwi)

}]

×
{

n
∏

i=1

|D2
τ

√
wi

|− 1

2

}

× exp

(

−
n
∑

i=1

Ti
∑

t=1

wit

)

(

2πϕ2
)− nl

2 exp
[

− 1

2ϕ2

n
∑

i=1

α′
iαi

]

(8)

×(2π)− k

2 |B0|− 1

2 exp
[

− 1

2
(β − β0)

′B−1
0 (β − β0)

]

× (ϕ2)−(
c1

2
+1) exp

[

− d1

2ϕ2

]

.

The joint posterior density (8) does not have a tractable form, and thus simulation

techniques are necessary for estimation. Bayesian methods are increasing in popularity

(Poirier, 2006), and this paper takes the approach for a couple of reasons. First, with discrete

panel data, working with the likelihood function is complicated because it is analytically

intractable. The inclusion of individual-specific effects makes matters worse. Second, while

numerical simulation methods are available for discrete panel data, they are often slow and

difficult to implement (Burda and Harding, 2013). The availability of a full set of conditional

distributions (which are outlined below) makes Gibbs sampling an attractive option that will

be simpler to implement, both conceptually and computationally.

We can derive the conditional posteriors of the parameters and latent variables by a

straightforward extension of the estimation technique for the linear mixed-effects model

presented in Luo et al. (2012). This is presented as Algorithm 2 in Appendix A, which shows

the conditional posterior distributions for the parameters and latent variables necessary for

a Gibbs sampler. While this Gibbs sampler is straightforward, there is potential for poor

mixing properties due to correlation between (β, αi) and (zi, αi). The correlation often arises

because the variables corresponding to the parameters in αi are often a subset of those in

xit. Thus, by conditioning these items on one another, the mixing of the Markov chain will

be slow.

To avoid this issue, we develop an alternative algorithm which jointly samples (β, zi) in

one block within the Gibbs sampler. This blocked approach significantly improves the mixing

properties of the Markov chain. The success of these blocking techniques can be found in Liu

(1994), Chib and Carlin (1999), and Chib and Jeliazkov (2006). The details of our blocked

sampler are described in Algorithm 1.3 In particular, β is sampled marginally of αi from a

multivariate normal distribution. The latent variable zi is sampled marginally of αi from a

truncated multivariate normal distribution denoted by TMV NBi
, where Bi is the truncation

region given by Bi = (Bi1 ×Bi2 × . . .×BiTi
) such that Bit is the interval (0, ∞) if yit = 1 and

3The derivation of the conditional posterior densities are presented in Appendix B.
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Algorithm 1 (Blocked Sampling)

1. Sample (β, zi) in one block. The objects (β, zi) are sampled in the following two sub-steps.

(a) Let Ωi =
(

ϕ2SiS
′
i + D2

τ
√

wi

)

. Sample β marginally of α from β|z, w, ϕ2 ∼ N(β̃, B̃), where,

B̃−1 =

( n
∑

i=1

X ′
iΩ

−1
i Xi + B−1

0

)

and β̃ = B̃

(

n
∑

i=1

X ′
iΩ

−1
i (zi − θwi) + B−1

0 β0

)

.

(b) Sample the vector zi|yi, β, wi, ϕ2 ∼ T MV NBi
(Xiβ + θwi, Ωi) for all i = 1, · · · , n, where

Bi = (Bi1 × Bi2 × . . . × BiTi
) and Bit is the interval (0, ∞) if yit = 1 and the interval

(−∞, 0] if yit = 0. This is done by sampling zi at the j-th pass of the MCMC iteration
using a series of conditional posterior distribution as follows:

zj
it|z

j
i1, · · · , zj

i(t−1), zj
i(t+1), · · · , zj

iTi
∼ T NBit

(µt|−t, Σt|−t), for t = 1, · · · , Ti,

where T N denotes a truncated normal distribution. The terms µt|−t and Σt|−t are the
conditional mean and variance, respectively, and are defined as,

µt|−t = x′
itβ + θwit + Σt,−tΣ

−1
−t,−t

(

zj
i,−t − (Xiβ + θwi)−t

)

,

Σt|−t = Σt,t − Σt,−tΣ
−1
−t,−tΣ−t,t,

where zj
i,−t = (zj

i1, · · · , zj
i(t−1), zj−1

i(t+1), · · · , zj−1
iTi

), (Xiβ + θwi)−t is a column vector with

t-th element removed, Σt,t denotes the (t, t)-th element of Ωi, Σt,−t denotes the t-th row
of Ωi with element in the t-th column removed and Σ−t,−t is the Ωi matrix with t-th row
and t-th column removed.

2. Sample αi|z, β, w, ϕ2 ∼ N(ã, Ã) for i = 1, · · · , n, where,

Ã−1 =

(

S′
i D−2

τ
√

wi
Si +

1

ϕ2
Il

)

and ã = Ã
(

S′
iD

−2
τ

√
wi

(

zi − Xiβ − θwi
)

)

.

3. Sample wit|zit, β, αi ∼ GIG (0.5, λ̃it, η̃) for i = 1, · · · , n and t = 1, · · · , Ti, where,

λ̃it =

(

zit − x′
itβ − s′

itαi

τ

)2

and η̃ =

(

θ2

τ2
+ 2

)

.

4. Sample ϕ2|α ∼ IG(c̃1/2, d̃1/2), where c̃1 =
(

nl + c1

)

and d̃1 =
(

n
∑

i=1

α′
iαi + d1

)

.
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the interval (−∞, 0] if yit = 0. To draw from a truncated multivariate normal distribution,

we utilize the method proposed in Geweke (1991). This involves drawing from a series of

conditional posteriors which are univariate truncated normal distributions. Previous work

using this approach include Chib and Greenberg (1998) and Chib and Carlin (1999). The

random effects parameter αi is sampled conditionally on β, zi from another multivariate nor-

mal distribution. The variance parameter ϕ2 is sampled from an inverse-gamma distribution

and finally the latent weight w is sampled element-wise from a generalized inverse Gaussian

(GIG) distribution (Dagpunar, 1988, 1989; Devroye, 2014).

We end this section with a cautionary note on sampling from a truncated multivari-

ate normal distribution, with the hope that it will be useful to researchers on quantile

regression. In our algorithm above, we sample zi from a TMV NBi
(Xiβ + θwi, Ωi) us-

ing a series of conditional posteriors which are univariate truncated normal distributions.

This method is distinctly different and should not be confused with sampling from a

recursively characterized truncation region typically related to the Geweke-Hajivassiliou-

Keane (GHK) estimator (Geweke, 1991; Börsch-Supan and Hajivassiliou, 1993; Keane, 1994;

Hajivassiliou and McFadden, 1998).4 The difference between the two samplers have been ex-

hibited in Breslaw (1994) and carefully discussed in Jeliazkov and Lee (2010).

3.2. Simulation Study

This subsection evaluates the performance of the algorithm in a simulation study, where

the data are generated from a model that has common effects and individual-specific effects

in both the intercept and slopes. We estimate the quantile regression model for binary

longitudinal data (QBLD) using our proposed blocked sampler (Algorithm 1) and the non-

blocked sampler (Algorithm 2).

The data are simulated from the model zit = x′
itβ + s′

itαi + εit where t = 1, . . . , 10 and

i = 1, . . . , 500. For the parameters and covariates: β = (−5, 6, 4)′, αi ∼ N(02, I2), x′
it =

(1, x2it, x3it) with x2it ∼ U(0, 1) and x3it ∼ U(0, 1), s′
it = (1, s2it) with s2it ∼ U(0, 1). The

error is generated from a standard AL distribution, εit ∼ AL(0, 1, p) for p = 0.25, 0.5, 0.75.

4In the latter scenario, the model zi ∼ N(Xiβ + θwi, Ωi) can be written as zi = Xiβ + θwi + Liηi,
where Li is a lower triangular Cholesky factor of Ωi such that LiL

′
i = Ωi. To be general, let the lower and

upper truncation vectors for zi be ai = (ai1, . . . , aiTi
) and bi = (bi1, . . . , biTi

), respectively. Then the random

variable ηit is sampled from T N
(

0, 1, (ait −x′
itβ −θwit −∑t−1

j=1
ltjηij)/ltt, (bit −x′

itβ −θwit −∑t−1

j=1
ltjηij)/ltt

)

,
where ltj are the elements of Li. This is a recursively characterized truncation region, since the range of ηit

depends on the draw of ηij for j = 1, . . . , t − 1. The vector zi can be obtained by substituting the recursively
drawn ηi into zi = Xiβ + θwi + Lηi. However, the draws so obtained are not the same as drawing zi from a
multivariate normal distribution truncated to the region ai < zi < bi.
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Table 1: Posterior means (mean), standard deviations (std) and inefficiency factors (if) of the parameters
in the simulation study from the QBLD model. The first panel presents results from Algorithm 1 and the
second panel presents results from Algorithm 2.

Blocked Sampling

25th quantile 50th quantile 75th quantile

mean std if mean std if mean std if

β1 −5.33 0.22 4.55 −5.06 0.18 4.09 −5.08 0.24 4.10

β2 6.16 0.28 4.38 5.96 0.22 3.87 6.16 0.27 4.11

β3 4.34 0.24 3.86 3.88 0.19 3.66 3.88 0.23 3.21

ϕ2 0.95 0.16 4.68 0.66 0.11 4.60 0.81 0.15 4.93

Non-blocked Sampling

25th quantile 50th quantile 75th quantile

mean std if mean std if mean std if

β1 −5.32 0.22 5.94 −5.05 0.20 6.90 −5.07 0.23 6.63

β2 6.15 0.27 6.05 5.95 0.23 6.57 6.15 0.26 6.69

β3 4.35 0.24 5.52 3.88 0.20 5.40 3.88 0.23 5.34

ϕ2 0.95 0.16 5.58 0.66 0.11 5.26 0.81 0.14 6.15

Here, the notation U(0, 1) denotes a standard uniform distribution. The binary response

variable yit is constructed by assigning 1 to all positive values of zit and 0 to all negative

values of zit. Since the values generated from an AL distribution are different at each

quantile, the number of 0s and 1s are also different at each quantile. In the simulation, the

number of observations corresponding to 0s and 1s for the 25th, 50th and 75th quantiles are

(1566, 3444), (2588, 2412) and (3536, 1464), respectively.

The posterior estimates of the model parameters are based on the generated data and

the following independent prior distributions: β ∼ N(0k, 10Ik), and ϕ2 ∼ IG(10/2, 9/2).

Table 1 reports the posterior means, standard deviations and inefficiency factors calculated

from 12, 000 MCMC iterations after a burn-in of 3, 000 iterations. The inefficiency factors

are calculated using the batch-means method discussed in Greenberg (2012). The simulation

exercise was repeated for various covariates, sample sizes, common and individual-specific

parameters, and the results do not change from this baseline case; hence they are not pre-

sented.

The posterior mean for regression coefficients for both the samplers (blocked and non-

blocked methods) are near the true values, β = (−5, 6, 4)′. Additionally, the standard

deviations are small. Across each quantile, the number of 0s and 1s varies, and the samplers
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Table 2: Autocorrelation in MCMC draws at Lag 1, Lag 5 and Lag 10.

Blocked Sampling

25th quantile 50th quantile 75th quantile

Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10

β1 0.86 0.59 0.41 0.85 0.54 0.35 0.88 0.61 0.41

β2 0.89 0.61 0.43 0.87 0.53 0.34 0.89 0.60 0.39

β3 0.86 0.50 0.31 0.83 0.44 0.25 0.84 0.45 0.23

ϕ2 0.93 0.73 0.54 0.92 0.70 0.51 0.93 0.75 0.58

Non-blocked Sampling

25th quantile 50th quantile 75th quantile

Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10

β1 0.96 0.84 0.71 0.97 0.85 0.73 0.97 0.85 0.71

β2 0.96 0.81 0.68 0.96 0.82 0.68 0.96 0.80 0.65

β3 0.95 0.77 0.61 0.95 0.77 0.60 0.94 0.75 0.55

ϕ2 0.92 0.76 0.63 0.92 0.74 0.59 0.93 0.79 0.68

perform well in each case. Furthermore, starting the algorithm at different values appears

inconsequential, which is a benefit of the full Gibbs sampler.

Turning attention to the differences between the two algorithms, it is clear that the in-

efficiency factors from the blocked algorithm are much lower, suggesting better sampling

performance and a nice mixing of the Markov chain. The advantages of the blocking pro-

cedure are more apparent from the autocorrelation in the MCMC draws at different lags.

Table 2 presents the autocorrelation in MCMC draws at lag 1, lag 5, and lag 10. Looking

at lag 10, the autocorrelation for the βs are between 0.25 − 0.43 in the blocked algorithm,

which is nearly half of 0.55 − 0.73, obtained from the non-blocked sampler. Recall that in

our data generation process, we did not make the covariates in sit a subset of those in xit.

Whereas in real-data exercises, it is typical for sit to be a subset. Therefore, we expect the

benefits of the blocked sampler to be even more pronounced in real data settings.

Finally, Figure 2 presents the trace plots of the parameters at the 25th quantile for

the blocked algorithm, which graphically demonstrate the appealing sampling. Given the

computational efficiency with the blocking procedure, it is our preferred way for estimating

QBLD models and will be used in the subsequent real data applications.
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Figure 2: Trace plots of the MCMC draws at the 25th quantile from Algorithm 1.

3.3. Additional Considerations

In this section, we briefly discuss methods for model comparison and computation of

covariate effects. For model comparison, we follow standard techniques for longitudinal data

models. Specifically, in the application sections we provide the log-likelihood, conditional

AIC (Greven and Kneib, 2010), and conditional BIC (Delattre et al., 2014). This is a bit

unusual for a Bayesian analysis, however, we want the results in our empirical applications to

align with the classical work on the topics, such as Bartolucci and Farcomeni (2012). Thus,

we follow the approaches so as to allow for better comparisons and cross references.

For covariate effects, in general terms, we are interested in the average difference in the

implied probabilities between the case when x1it is set to the value x†
1it and x‡

1it . Given the

values of the other covariates denoted x−1it, sit and those of the model parameters θ, one can

obtain the probabilities Pr(yit = 1|x†
1it, x−1it, sit, θ) and Pr(yit = 1|x‡

1it, x−1it, sit, θ). Following

from Jeliazkov et al. (2008) and Jeliazkov and Vossmeyer (2018), if one is interested in the

distribution of the difference {Pr(yit = 1|x†
1it)−Pr(yit = 1|x‡

1it)} marginalized over {x−1it, sit}
and θ given the data y, a practical procedure is to marginalize out the covariates using their

empirical distribution, while the parameters are integrated out with respect to their posterior
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distribution. Formally, the goal is to obtain a sample of draws from the distribution,

{Pr(yit = 1|x†
1it) − Pr(yit = 1|x‡

1it)}

=
∫

{Pr(yit = 1|x†
1it, x−1it, sit, θ) − Pr(yit = 1|x‡

1it, x−1it, sit, θ)}

× π(x−1it, sit) π(θ|y) d(x−1it, sit) dθ.

The computation of these probabilities is straightforward because the differences between

the probabilities of success is related to differences in AL cdf, marginalized over {x−1it, sit}
and the posterior distribution of θ. Also, the procedure handles uncertainty stemming from

the sample and estimation strategy. This approach is demonstrated in each of the following

applications.

4. Applications

4.1. Female Labor Force Participation

Modeling female labor force participation has been an important area of work in the

economics and econometric literature for decades. The list of work is vast, but a partial

list includes Heckman and Macurdy (1980), Heckman and Macurdy (1982), Mroz (1987),

Hyslop (1999), Arellano and Carrasco (2003), Chib and Jeliazkov (2006), Kordas (2006),

Carro (2007), Bartolucci and Nigro (2010), and Eckstein and Lifshitz (2011).

Within the literature, several pertinent questions have been analyzed including the rela-

tionship between participation and age, education, fertility, and permanent and transitory

incomes. However, serial persistence in the decision to participate and its two competing

theories – heterogeneity and state dependence – have been of substantive interest. Hetero-

geneity implies that females may differ in terms of certain unmeasured variables that affect

their probability of labor force participation. If heterogeneity is not properly controlled, then

past decisions may appear significant to current decisions leading to what is called spurious

state dependence. In contrast, pure state dependence implies that dynamic effects of past

participation genuinely affect current employment decisions. Consideration of heterogeneity

and state dependence is important in modeling female labor force participation and can have

economic implications as discussed in Heckman (1981a), Heckman (1981b) and Hsiao (2014,

pp. 261-270). We re-examine the above mentioned aspects using our proposed Bayesian

quantile regression model for binary longitudinal data. To our knowledge, this is the first at-

tempt to analyze female labor force participation within a longitudinal quantile framework.

So, what can we learn from a panel quantile approach? Of particular interest are the impacts
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of infants and children across the various quantiles. Understanding the differential effects

across the latent utility scale can help shape female labor force policies, such as maternity

leave and child care.

Before proceeding forward, we draw attention to Kordas (2006) who evaluated female la-

bor force participation using cross sectional data and smoothed binary regression quantiles.

His results offer interesting insights across the quantiles, which further motivate our appli-

cation and extension to transitions into and out of the labor force in the panel setting. We

also follow his interpretation where the latent utility differential between working and not

working may be interpreted as a “propensity” or “willingness-to-participate” (WTP) index.

The data for this study are taken from Bartolucci and Farcomeni (2012), which were

originally extracted from the Panel Study of Income Dynamics (PSID) conducted by the

University of Michigan. The data consist of a sample of n = 1446 females who were followed

for the period 1987 to 1993 with respect to their employment status and a host of demo-

graphic and socio-economic variables. The dependent variable in the model is employment

status (= 1 if the individual is employed, = 0 otherwise) and the covariates include age (in

1986), education (number of years of schooling), child 1-2 (number of children aged 1 to 2,

referred to the previous year), child 3-5, child 6-13, child 14-, Black (indicator for Black race),

income of the husband (in US dollars, referred to the previous year), and fertility (indicator

variable for birth of a child in a certain year). Lagged employment status is also included as

a covariate to examine state dependence of female labor force participation decision.

Table 3 presents summary statistics for the variables. The presentation of the table

follows from Hyslop (1999), where statistics are broken up into subgroups of women that

have worked 0 years, 7 years, or transitioned during the period. As one can see from the

table, the average age in the sample is roughly 30, about 40% of the sample is employed

throughout the entire period, 10% are not in the labor force throughout the entire period,

20% transition into or out of the labor force once, and 30% transition multiple times. Looking

closely at the different variables for children, there is a decent amount of variation across the

subgroups. For mothers who are employed 0 years, the average values for child 1-2 and child

3-5 are 0.46 and 0.56, respectively. These numbers are more than double compared to that

of mothers who are employed for all the 7 years. Further, as children age (child 6-13 ) more

mothers have a single transition to work. While these differences demonstrate some observed

heterogeneity, unobserved heterogeneity still plays a role, which motivates further analysis.

Particularly, a quantile setting will reveal information not available in the raw observed data

by utilizing the latent scale as the willingness-to-participate index.
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The data are modeled following equations (4) and (5) and the model (QBLD) is specified

with a random intercept (i.e., sit only includes a constant). We also estimate the probit

model for binary longitudinal data (PBLD) using the algorithm presented in Koop et al.

(2007) and Greenberg (2012) and identical priors for relevant parameters. The results for

the QBLD and PBLD models are presented in Table 4 and are based on data for the years

Table 3: Sample characteristics of the female labor force participation data – The first panel presents the
mean/proportion and standard deviations (in parenthesis) of the variables in the full and the sub-samples.
The second panel displays the column percentages for the number of years worked and the third panel (i.e.,
last row) presents the number of observations in the full and the sub-samples.

Full
Sample

Employed
7 Years

Employed
0 Years

Single
Transition
from Work

Single
Transition

to Work

Multiple
Transitions

(1) (2) (3) (4) (5) (6)

Age 29.55 30.44 29.18 29.21 29.23 28.68

(4.61) (4.34) (4.51) (4.77) (4.62) (4.73)

Education 13.14 13.33 12.68 13.20 13.01 13.08

(2.06) (1.98) (2.15) (2.13) (2.19) (2.05)

Child 1-2 0.31 0.22 0.46 0.31 0.34 0.38

(0.53) (0.45) (0.60) (0.53) (0.57) (0.57)

Child 3-5 0.37 0.27 0.56 0.32 0.50 0.42

(0.57) (0.49) (0.65) (0.54) (0.65) (0.60)

Child 6-13 0.75 0.71 0.92 0.55 0.99 0.74

(0.92) (0.87) (1.00) (0.81) (1.03) (0.94)

Child 14- 0.32 0.39 0.31 0.29 0.26 0.26

(0.67) (0.72) (0.71) (0.69) (0.61) (0.60)

Black 0.24 0.27 0.26 0.19 0.21 0.22

(0.43) (0.44) (0.44) (0.39) (0.40) (0.41)

Income/10, 000 3.04 2.82 3.81 3.43 2.99 2.96

(2.60) (1.82) (5.28) (3.14) (2.04) (1.89)

Fertility 0.07 0.04 0.08 0.10 0.05 0.09

(0.25) (0.21) (0.28) (0.29) (0.22) (0.28)

Years worked

0 10.30 − 100 − − −
1 5.33 − − 20.00 9.03 8.25

2 6.29 − − 7.86 12.26 14.39

3 6.36 − − 12.14 10.97 13.68

4 8.64 − − 11.43 17.42 19.34

5 9.34 − − 13.57 23.23 18.87

6 13.76 − − 35.00 27.10 25.47

7 39.97 100 − − − −

Observations 1446 578 149 140 155 424
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Table 4: Results from the female labor force participation study – Posterior means (mean), standard devia-
tions (std) and inefficiency factors (if) of the parameters from the QBLD and PBLD models are provided.

QBLD

25th quantile 50th quantile 75th quantile PBLD

mean std if mean std if mean std if mean std if

Intercept −3.11 0.21 4.59 −0.31 0.18 4.45 1.35 0.23 4.79 −0.08 0.07 2.79

Age† 0.03 0.01 2.27 0.01 0.01 2.38 −0.01 0.02 2.72 0.01 0.01 1.57

(Age†)2/100 −0.23 0.26 1.96 −0.19 0.25 2.06 −0.13 0.33 2.59 −0.08 0.10 1.45

Education† 0.17 0.03 2.29 0.21 0.03 2.57 0.28 0.05 3.18 0.08 0.01 1.59

Child 1-2 −0.22 0.11 2.68 −0.28 0.11 2.84 −0.38 0.13 2.97 −0.12 0.04 1.67

Child 3-5 −0.55 0.10 2.89 −0.52 0.10 3.22 −0.56 0.12 2.91 −0.21 0.04 1.74

Child 6-13 −0.17 0.07 2.39 −0.18 0.07 2.59 −0.18 0.08 2.95 −0.07 0.02 1.58

Child 14- −0.05 0.10 2.66 −0.02 0.10 2.89 −0.01 0.13 3.22 −0.01 0.04 1.71

Black 0.20 0.15 2.02 0.24 0.15 2.24 0.26 0.19 2.69 0.09 0.06 1.53

Income†/10, 000 −0.13 0.03 3.03 −0.14 0.02 3.00 −0.18 0.03 3.52 −0.05 0.01 1.95

Fertility −1.91 0.20 2.71 −2.06 0.20 2.90 −2.60 0.33 3.85 −0.72 0.07 1.67

Lag Employment 4.89 0.16 3.75 3.88 0.13 4.47 6.71 0.20 5.24 1.49 0.05 3.34

ϕ2 1.42 0.35 6.36 1.39 0.33 6.16 2.12 0.50 7.12 0.33 0.05 4.97

Log-likelihood −3115.72 −3127.38 −3146.68 −2887.91

AIC 6257.45 6280.77 6319.36 5801.82

BIC 6354.82 6378.14 6416.74 5899.20

†denotes variable minus the sample average.

1988-1993, since using a lagged dependent variable drops information for the year 1987.

The reported posterior estimates are based on 12,000 MCMC draws after a burn-in of 3,000

draws and the following priors on the parameters: β ∼ N(0k, 10Ik) and ϕ2 ∼ IG(10/2, 9/2).

Table 4 presents the posterior means, standard deviations, and inefficiency factors at the

25th, 50th, and 75th quantiles, and for the binary probit model. Furthermore, the log-

likelihood, conditional AIC (Greven and Kneib, 2010) and conditional BIC (Delattre et al.,

2014) are available for each model.

First, note that across the quantiles the inefficiency factors are low, implying a nice mixing

of the Markov chain. These results, which were demonstrated in the simulation study, hold

in empirical applications as well. Next, if we consider each quantile as corresponding to a

different likelihood, then the 25th quantile has the lowest conditional AIC and conditional

BIC. This result is not surprising since the unconditional probability of participation is

around 70% in the sample. Our result also finds support in Kordas (2006), where he reports

that the 30th conditional quantile would be the one most efficiently estimable.
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Table 5: Covariate effects in the female labor force participation study.

QBLD

25th 50th 75th PBLD

Education 0.0523 0.0711 0.0633 0.0698

Child 1-2 −0.0160 −0.0212 −0.0206 −0.0254

Child 3-5 −0.0415 −0.0397 −0.0302 −0.0430

Child 6-13 −0.0123 −0.0133 −0.0098 −0.0146

Income −0.0095 −0.0102 −0.0097 −0.0105

Fertility −0.1672 −0.1747 −0.1335 −0.1627

The results for the education variable are positive, statistically different from zero, and

show various incremental differences across the quantiles. Education is found to have stronger

effects in the upper part of the latent index, which is expected since these are women who

have a high utility for working and thus have obtained the requisite education. Regarding the

state dependence versus heterogeneity debate, we find that employment is serially positively

correlated, which is a consequence of state dependence. The effect gets incrementally larger

as one moves up the latent utility scale. While we are controlling for individual heterogeneity

with the random intercept, we still find evidence of state dependence. This result agrees with

Bartolucci and Farcomeni (2012), who investigate the question with a latent class model.

Other papers that find empirical evidence of strong state dependence effects include Heckman

(1981a), Hyslop (1999), and Chib and Jeliazkov (2006).

To further understand the results, covariate effects are computed for several variables for

the 3 quantiles and the PBLD model. The covariate effect calculations follow from Section 3.3

and the results are displayed in Table 5. Note that the 50th quantile results are similar to

that of the PBLD, which is to be expected. The covariate effect for education is calculated

on the restricted sample of individuals with a high school degree (12 years of schooling).

The effect that is computed is 4 additional years of schooling, implying a college degree.

The effect for income is a discrete change by $10,000, the effect for children is increasing the

count by one, and for fertility it is a discrete change to the indicator variable.

The results show that the birth of a child in that year (fertility), reduces the probability

that a woman works by 16.7 percentage points at the 25th quantile, 17.4 percentage points

at the 50th quantile, and 13.3 percentage points at the 75th quantile. For individuals in the

lower part of the latent index, having children ages 1-2 impacts their employment decision

less than those at the upper quantiles. Perhaps, women with a low utility for working are
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less impacted by infants and toddlers because it is often a desire to stay home with the

child for a few years. Whereas, women with a high utility for working face negative impacts

because of the desire to enter the work force.

The most pronounced negative effect of children occurs when the child is ages 3-5. Often

women temporarily exit the work force until children are ready for pre-school and this result

provides evidence of the difficulty mothers faces re-entering the work force after a several

year leave of absence (Drange and Rege, 2013). The finding is interesting from a policy

standpoint. If policy is focused on increasing participation, offering more support in the

years when the child is likely not breastfeeding but before kindergarten would be beneficial.

The covariate effect of a college degree is 5.2 to 7.1 percentage points across the quantiles,

while husband’s income is approximately −1 percentage point across the quantiles. Thus,

a college degree increases the probability a woman works by about 6 percentage points,

whereas an increase in family income only decreases the probability by 1 percentage point

for every $10,000. While many of these results align with existing findings, the behavior in

the high and low quantiles presents useful information, which was otherwise unexplored in

panel data.

4.2. Home Ownership

The recent financial crisis had major implications for home ownership in the United

States. Figure 3 displays the home ownership rates for the United States from the 1960s

to 2017. These data were taken from the FRED website provided by the Federal Reserve

Bank of St. Louis. The rate of home ownership rose in the late 1990s and early 2000s, but

started to decline after 2007. The determinants of home ownership was reviewed in the 1970s

(Carliner, 1974; Poirier, 1977). However, the recent crisis offers a unique event and shock to

housing markets to reevaluate this topic.

The literature on home ownership has examined racial gaps (Charles and Hurst,

2002; Turner and Smith, 2009), wealth accumulation and income (Turner and Luea, 2009),

mobility and the labor market (Ferreira et al., 2010; Fairlie, 2013), and tax policy

(Hilber and Turner, 2014). However, unlike the labor force context, state dependence has

only been lightly examined with regard to housing tenure.5 Given the large down payments

and extensive mortgage processes typical in home ownership, state dependence is likely to

be a key factor, as well as individual heterogeneity.

5Chen and Ost (2005) control for state dependence in a study of housing allowance in Sweden.
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Furthermore, quantile analyses in the home ownership literature are lacking. The quan-

tiles represent degrees of willingness or utility of owning a home. Owning a home in the

United States usually requires an individual to produce a large upfront investment, a promis-

ing credit history, and a willingness to engage in 30 year mortgages, resulting in less liquidity.

Given these requirements, interest lies in how the determinants of home ownership varies

across the latent utility scale. Therefore, this paper adds to the literature on the probability

of home ownership by employing the QBLD model. The approach has several advantages,

namely that we can control for multivariate heterogeneity, visit the state dependence versus

heterogeneity argument in the housing context, and analyze willingness of home ownership

across the quantiles.

The dataset is constructed from the Panel Study of Income Dynamics (PSID) and con-

sists of a balanced panel of 4092 individuals observed for the years 2001, 2003, 2005, 2007,

2009, 2011, and 2013. The sample is restricted to individuals aged 25-65 who answered the

relevant questions for the 7 years and captures the period before, during, and after the Great

Recession. The dependent variable is defined as follows:

yit =







1 home owner

0 not a home owner,
(9)

for i = 1, . . . , 4092 and t = 2003, 2005, 2007, 2009, 2011, 2013 (2001 is dropped because it

is a dynamic model). The covariates include demographics, marital status, employment, job

Figure 3: Home ownership rates in the United States. Data taken from FRED, provided by the Federal
Reserve Bank of St. Louis.
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industry, health insurance, education, socioeconomic status, lagged home ownership, and an

indicator for after the recession (2009-2013). The model includes a random intercept and a

random slope on an income-to-needs variable, which allows for individual heterogeneity and

heterogeneity in income. Heterogeneity in income is an important control because a marginal

increase in income could have a wide range of effects on the probability of owning a home,

where for some the effect of income could be 0 (perhaps, those who own their home freehold,

or those who have no desire for ownership). Whereas, for others, increases in income could go

directly into home ownership utility. Table 6 presents summary statistics for the variables.

Once again, the presentation of the table follows from Hyslop (1999), where statistics are

broken up into subgroups of people that have always been home owners, never been home

owners, or transitioned during the period of interest.

In the sample, about 56% of individuals own a home across the entire sample period,

18% never own, and the remaining transition at least once. The age of the head of the

household is that in the year 2003. Job industry is classified into four categories. JobCat1

is an indicator for jobs in construction, manufacturing, agriculture, and wholesale. JobCat2

is an indicator for jobs in business, finance, and real estate. JobCat3 is an indicator for

jobs in the military and public services. The omitted category (JobCat4 ) consists of jobs in

professional and technical services, entertainment and arts services, health care, and other.

Education is broken up into categories: less than high school (omitted), high school degree

or some college (Below Bachelors), and college or advanced degree (Bachelors & Above).

Race is broken up into white/asian (omitted), black, and other. Marital status is discretized

into married, single, and divorced/widowed (omitted). Region is discretized to west, south,

northeast, and midwest (omitted). We have two income measures, including income-to-needs

ratio and net wealth.6 We employ an inverse hyperbolic sine (IHS) transformation for net

wealth because it adjusts for skewness and retains negative and 0 values, which is a common

feature of data on net wealth (Friedline et al., 2015).

The table demonstrates some drastic differences across the subgroups. As expected, the

“owned 6 years” group is older and wealthier than the others. Families that transition tend

to have more children, and a higher proportion of females and singles are in the “owned 0

years” group. These differences in the raw data motivate our question of interest – with so

much state dependence in home ownership and heterogeneity among individuals and income,

6This measure of net wealth excludes home equity and housing assets, so as to not conflate with the
outcome of interest.
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Table 6: Sample characteristics of the home ownership data – The first panel presents the mean and standard
deviations (in parenthesis) of the continuous variables and proportions of the categorical variables in the full
and the sub-samples. The second panel displays the column percentages for the number of years home is
owned and the third panel (i.e., last row) presents the number of observations in the full and the sub-samples.

Full

Sample

Owned 6

Years

Owned 0

Years

Single

Transition

from

Ownership

Single

Transition

to

Ownership

Multiple

Transitions

(1) (2) (3) (4) (5) (6)

Age of Head (2003) 45.74 48.78 42.31 46.71 38.91 39.62

(13.51) (12.56) (13.82) (15.48) (11.63) (12.29)

No. Children 0.78 0.71 0.82 0.83 0.85 1.00

(1.15) (1.08) (1.25) (1.21) (1.12) (1.27)

Income/10, 000 7.71 9.66 3.17 6.54 6.74 6.82

(10.53) (11.18) (3.33) (16.28) (5.71) (10.15)

Inc-Needs Ratio 4.89 6.07 2.17 4.25 4.37 4.23

(7.38) (7.51) (2.30) (14.01) (3.74) (5.66)

Net Wealth/10, 000 23.05 35.76 1.98 12.40 8.20 10.98

(128.08) (167.12) (16.79) (54.30) (32.70) (45.75)

Female 0.23 0.14 0.49 0.26 0.22 0.24

Married 0.61 0.78 0.23 0.49 0.53 0.48

Single 0.15 0.06 0.42 0.11 0.20 0.17

Below Bachelors 0.54 0.52 0.53 0.58 0.57 0.57

Bachelors & Above 0.27 0.34 0.11 0.19 0.26 0.22

Job Cat1 0.58 0.61 0.54 0.61 0.53 0.54

Job Cat2 0.11 0.12 0.07 0.10 0.12 0.12

Job Cat3 0.06 0.06 0.03 0.06 0.08 0.07

Health Insurance 0.92 0.97 0.83 0.90 0.92 0.87

Race-Black 0.30 0.20 0.58 0.32 0.31 0.35

Race-Others 0.04 0.04 0.06 0.05 0.04 0.05

Head Unemployed 0.06 0.03 0.12 0.07 0.06 0.08

Head NLF 0.23 0.24 0.28 0.29 0.11 0.18

West 0.19 0.19 0.18 0.20 0.19 0.20

South 0.41 0.38 0.44 0.45 0.45 0.48

North-East 0.14 0.15 0.14 0.10 0.16 0.10

Years owned

0 18.43 − 100 − − −
1 4.28 − − 18.10 14.89 17.34

2 4.57 − − 18.40 14.10 21.39

3 4.11 − − 19.94 14.63 13.87

4 5.50 − − 20.55 23.67 19.94
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Table 6 – Continued from previous page

5 7.16 − − 23.01 32.71 27.46

6 55.96 100 − − − −

Observations 4092 2290 754 326 376 346

what are the determinants of home ownership through an economic downturn? The results

should provide insights into discrepancies across subgroups of the population and should

better inform policy aiming to assist home owners during downturns. Standard methods for

investigating a binary panel dataset of this sort do not capture the extensive heterogeneity

problem, nor do they offer quantile analyses, which highlights the usefulness of our approach.

The results for the home ownership application are presented in Table 7. Posterior means,

standard deviations, and inefficiency factors calculated using the batch-means method are

presented for the 25th, 50th, and 75th quantiles, as well as for the binary longitudinal probit

model (PBLD). The results are based on 12,000 MCMC draws with a burn in of 3,000

draws. The priors on the parameters are: β ∼ N(0k, 10Ik), and ϕ2 ∼ IG(10/2, 9/2). As in

the female labor force application, the inefficiency factors are low, implying a nice mixing of

the Markov chain.

Many of the results agree with the existing literature. Income, education, and being mar-

ried all have a positive effect on home ownership (Turner and Smith, 2009; Hilber and Turner,

2014). While these align with intuition, new insights are offered across the quantiles for many

of the variables. Education, for instance, is not statistically different from zero at the lower

quantile. If one has a low utility for home ownership, education will not impact that deci-

sion. Additionally, age of the head has a positive impact on home ownership at the lower

and median quantiles. However, for those who have a high utility for home ownership, age of

the head is not statistically different from 0. Number of children, on the other hand, has a

positive impact across the quantiles. Family growth seems to play a role in owning a home.

The coefficient for female is positive which implies that females relative to males are more

in favor of home ownership. Given that housing was previously thought of as a safe invest-

ment, this finding aligns with Croson and Gneezy (2009), who investigate gender differences

in preferences and find that women are more risk averse than men. Furthermore, relative to

divorced/widowed individuals, being single has a positive effect only at the lower quantile.

Interestingly, health insurance has a positive effect at the lower and middle quantiles and

is not statistically different from zero at the higher willingness. Thus, if one has a high

utility for home ownership, potential costs related to health do not play into the the decision
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Table 7: Posterior means (mean), standard deviations (std) and inefficiency factors (if) of the parameters
in the QBLD model and PBLD model for the home ownership application.

QBLD

25th quantile 50th quantile 75th quantile PBLD

mean std if mean std if mean std if mean std if

Intercept −15.25 0.85 3.47 −9.26 0.80 4.36 −4.17 0.88 3.47 −4.15 0.31 2.27

log Age of Head 1.63 0.21 3.40 0.97 0.20 3.76 0.09 0.23 3.47 0.54 0.08 2.16

No. children 0.14 0.05 3.46 0.18 0.05 4.32 0.22 0.05 3.65 0.08 0.02 2.13

Inc-Needs Ratio 0.48 0.03 8.42 0.45 0.03 8.10 0.55 0.04 6.68 0.23 0.01 6.07

IHS Net Wealth 0.25 0.03 4.05 0.32 0.03 4.56 0.41 0.04 5.11 0.10 0.01 2.60

Female 0.95 0.14 3.21 0.82 0.14 3.84 0.59 0.18 3.79 0.25 0.05 1.90

Married 2.28 0.14 3.42 2.18 0.15 4.05 1.70 0.17 4.35 0.74 0.05 2.05

Single 0.32 0.15 3.37 0.17 0.15 4.13 −0.27 0.17 3.49 0.01 0.05 1.97

Below Bachelors 0.17 0.12 3.71 0.28 0.11 3.80 0.35 0.14 3.89 0.11 0.04 2.02

Bachelors & Above 0.28 0.18 3.81 0.37 0.16 4.11 0.51 0.20 4.52 0.13 0.06 2.28

JobCat1 0.31 0.13 4.23 0.39 0.12 4.34 0.55 0.13 4.07 0.16 0.04 2.20

JobCat2 0.06 0.20 3.92 0.21 0.19 4.52 0.35 0.21 3.86 0.08 0.07 2.29

JobCat3 0.03 0.24 3.54 0.08 0.23 3.82 0.11 0.26 3.74 0.01 0.08 2.04

Health Insurance 0.46 0.16 3.78 0.46 0.15 3.90 0.23 0.19 4.49 0.09 0.05 2.05

Race-Black −0.40 0.12 3.80 −0.54 0.12 3.55 −0.52 0.14 3.81 −0.18 0.04 1.96

Race-Others −0.15 0.22 3.43 −0.51 0.21 3.80 −0.85 0.25 4.20 −0.19 0.07 1.90

Head Unemployed −0.91 0.18 3.83 −0.89 0.19 4.27 −0.76 0.23 5.13 −0.23 0.06 2.14

Head NLF −0.40 0.14 4.03 −0.28 0.14 4.39 −0.06 0.16 4.42 −0.10 0.05 2.32

West −0.46 0.15 3.38 −0.49 0.15 3.78 −0.52 0.18 3.95 −0.16 0.06 1.98

South 0.15 0.13 3.29 0.22 0.13 3.88 0.26 0.14 3.97 0.10 0.05 2.10

Northeast −0.28 0.18 3.44 −0.43 0.17 3.78 −0.59 0.20 3.84 −0.17 0.06 2.15

Post-Recession (PR) −1.32 0.23 6.22 −0.53 0.13 4.28 −0.44 0.11 2.91 −0.09 0.04 2.05

lag-Home Own 7.46 0.17 5.93 5.90 0.12 4.25 9.55 0.20 7.04 2.19 0.04 2.15

PR*(lag-Home Own) 1.47 0.25 5.99 0.72 0.18 4.94 0.76 0.29 8.53 0.11 0.06 2.60

ϕ2 0.13 0.01 9.88 0.11 0.01 8.67 0.16 0.02 8.94 0.04 0.01 8.71

Log-likelihood −5077.07 −5030.12 −5085.64 −4446.37

AIC 10204.14 10110.24 10221.27 8942.73

BIC 10421.69 10327.79 10438.83 9160.29

to invest in a home. While race-black is negative across the quantiles, which is consistent

with findings in Charles and Hurst (2002), race-other is meaningful and negative only at the

middle and upper quantiles. Thus, policy interested in race disparities in home ownership,

should focus on high willingness individuals, because low willingness race-other individuals

are not statistically different from whites.
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The coefficient for Post-Recession (2009-2013) is negative across all of the quantiles.

This finding is expected given the major collapse in housing markets. The state dependence

variable (lag-Home Own) is very large and positive for all of the quantiles. Even with a

shock to housing markets and heterogeneity in the intercept and income controlled for, state

dependence is a key element of home ownership. Interestingly, the interaction term between

the state dependence variable and the post-recession indicator has a credibility interval that

includes 0 for the PBLD model, but is positive across the quantiles. This finding is intriguing

because the positive state dependence effect offsets the negative effect from the recession.

Perhaps individuals who did not own a home prior to the recession had trouble transitioning

to ownership as a result of the tightened lending and credit channels. This reasoning falls in

line with the work of Hilber and Turner (2014) in that mortgage policies can effect subgroups

of home owners, but not in aggregate. The aggregate finding in PBLD shows the result is

not statistically different from 0, but we find new results at the quantiles.

Covariate effect calculations, which follow from the discussion in Section 3.3, are com-

puted for several variables in both of the models, QBLD and PBLD. The results are displayed

in Table 8, and show that being a female increases the probability of home ownership by 2.9

to 1.6 percentage points, for the 25th and 75th quantiles, respectively. The size of the effect

is roughly halved at the 75th quantile. This is useful for understanding the differences in

preferences between males and females, in particular, that at a higher willingness, they are

more similar than at a lower willingness. Similar differing effects are found for the variable

married, where being married increases the probability of home ownership by 8.7 percentage

points at the 25th quantile and 5.4 percentage points at the 75th quantile. Furthermore,

health insurance increases the probability of home ownership by 1.5 percentage points at a

low willingness and 0.06 percentage points at the high willingness (although the basic result

at the 75th quantile was not different from 0).

The aforementioned results find smaller effects at the higher willingness, however, this

is not the case for education and wealth. Wealth and education have a greater impact for

those with a high utility. Increasing net wealth by $50,000 increases the probability of home

ownership by 2.0 percentage points, and achieving a bachelors degree or more increases

the probability by 1.5 percentage points. Understanding how these effects differ across the

quantiles is important from a policy standpoint. For instance, if policymakers are looking

to push more people into home ownership, they can consider the various types of people

(high utility - low utility), and focus policy on the variables that have a greater impact on

the subgroups. Additionally, when downturns occur, there are clear difficulties transitioning
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Table 8: Covariate effects in the home ownership study. Age is increased by 10 years and the untransformed
net wealth is increased by $50,000. The rest of the variable are indicators.

QBLD

25th 50th 75th PBLD

log Age of Head 0.0111 0.0076 0.0006 0.0128

IHS Net Wealth 0.0120 0.0179 0.0203 0.0177

Female 0.0298 0.0289 0.0168 0.0264

Married 0.0879 0.0890 0.0548 0.0916

Bachelors & Above 0.0089 0.0132 0.0153 0.0144

Health Insurance 0.0159 0.0165 0.0063 0.0098

Race-Black −0.0133 −0.0193 −0.0149 −0.0194

Head Unemployed −0.0337 −0.0326 −0.0203 −0.0250

into or out of housing markets, which is clear from the results of the interaction term.

These results, along with those of the demographic variables, shed light on findings that are

unavailable or different than those produced from modeling the mean (PBLD).

5. Conclusion

This paper presents quantile regression methods for binary longitudinal data that accom-

modate various forms of heterogeneity, and designs an estimation algorithm to fit the model.

The framework developed in this paper contributes to literatures on quantile regression for

discrete data, panel data models for quantile regression, and discrete panel data models.

A simulation study is performed, which demonstrates the computational efficiency of the

estimation algorithm and blocking approach.

The model is first applied to examine female labor force participation. Although this is

a heavily studied topic, the panel quantile approach offers a new perspective to understand

the impact of the covariates, while controlling for heterogeneity and state dependence. The

results show that particular attention needs to be paid to women with newborns and children

ages 3-5 as the impacts of these variables on female labor force participation are large and

dispersed across the quantiles. The model is also applied to investigate the determinants

of home ownership before, during, and after the Great Recession. The state dependence

effect in home ownership is strong (even when controlling for multivariate heterogeneity),

however, after the recession the effect differs nontrivially from mean regression. Other re-

sults, including race, number of children, gender, health insurance, and location, also offer

unique findings across the quantiles, which are unavailable in other modeling settings. The
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approach provided in this paper leads to a richer view of how the covariates influence the

outcome variables, which better informs policy on female labor force participation and home

ownership.
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Appendix A. Non-blocked Sampling in QBLD Model

The algorithm below presents the sampler for non-blocked sampling in the QBLD model.

Algorithm 2 (Non-blocked sampling)

1. Let Ψi = D2
τ

√
wi

. Sample β|α, ϕ2, z, w ∼ N(β̃, B̃), where,

B̃−1 =

( n
∑

i=1

X ′
iΨ

−1
i Xi + B−1

0

)

and β̃ = B̃

(

n
∑

i=1

X ′
iΨ

−1
i (zi − Siαi − θwi) + B−1

0 β0

)

.

2. Sample αi|β, ϕ2, z, w ∼ N(ã, Ã) for i = 1, · · · , n, where,

Ã−1 =

(

S′
i D−2

τ
√

wi
Si +

1

ϕ2
Il

)

and ã = Ã
(

S′
iD

−2
τ

√
wi

(

zi − Xiβ − θwi

)

)

.

3. Sample wit|β, αi, zit ∼ GIG (0.5, λ̃it, η̃) for i = 1, · · · , n and t = 1, · · · , Ti, where,

λ̃it =

(

zit − x′
itβ − s′

itαi

τ

)2

and η̃ =

(

θ2

τ2
+ 2

)

.

4. Sample ϕ2|α ∼ IG(c̃1/2, d̃1/2), where c̃1 =
(

nl + c1

)

and d̃1 =
(

∑

i α′
iαi + d1

)

.

5. Sample the latent variable z|y, β, α, w for all values of i = 1, · · · , n and t = 1, · · · , Ti from an
univariate truncated normal (TN) distribution as follows,

zit|y, β, w ∼



















T N(−∞,0]

(

x′
itβ + s′

itαi + θwit, τ2wit

)

if yit = 0,

T N(0,∞)

(

x′
itβ + s′

itαi + θwit, τ2wit

)

if yit = 1.

Appendix B. The Conditional Densities for Blocked Sampling in QBLD Model

This appendix presents a derivation of the conditional posterior densities for blocked

sampling in the QBLD model. Specifically, the parameters β and latent variable zi are

sampled marginally of the random effects parameter αi, from an updated multivariate normal

and a truncated multivariate normal distribution, respectively. The parameter αi is sampled

conditional on (β, zi) from an updated multivariate normal distribution. The latent weights

w are sampled element wise from a generalized inverse Gaussian (GIG) distribution and the

variance ϕ2 is sampled from an updated inverse-gamma distribution.
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(1). The mean and variance of the QBLD model, zi = Xiβ + Siαi + θwi + Dτ
√

wi
ui for

i = 1, . . . , n, (marginally of αi) can be shown to have the following expressions,

E(zi) = Xiβ + θwi,

V (zi) = ϕ2SiS
′
i + D2

τ
√

wi
= Ωi.

First, we derive the conditional posterior of β and zi, marginally of αi, but conditional on

other variables in the model.

1(a). Starting with β, the conditional posterior density π(β|z, w, ϕ2) can be derived as,

π(β|z, w, ϕ2) ∝
{

n
∏

i=1

f(zi|β, wi, ϕ2)

}

π(β)

∝ exp

[

− 1

2

{

n
∑

i=1

(zi − Xiβ − θwi)
′Ω−1

i (zi − Xiβ − θwi)

+ (β − β0)′B−1
0 (β − β0)

}]

∝ exp

[

− 1

2

{

β ′
(

n
∑

i=1

X ′
iΩ

−1
i Xi + B−1

0

)

β − β ′
(

n
∑

i=1

X ′
iΩ

−1
i (zi − θwi) + B−1

0 β0

)

−
(

n
∑

i=1

(zi − θwi)
′Ω−1

i Xi + β ′
0B−1

0

)}]

∝ exp

[

− 1

2

{

β ′B̃−1β − β ′B̃−1β̃ − β̃ ′B̃−1β

}]

,

where the third line only keeps terms involving β and the fourth line introduces the terms

β̃ and B̃, which are defined as,

B̃−1 =

(

n
∑

i=1

X ′
iΩ

−1
i Xi + B−1

0

)

and β̃ = B̃

(

X ′
iΩ

−1
i (zi − θwi) + B−1

0 β0

)

.

Adding and subtracting β̃ ′B̃−1β̃ and absorbing the term exp[−1
2
{−β̃ ′B̃−1β̃}] into the pro-

portionality constant, the square can be completed as follows,

π(β|z, w, ϕ2) ∝ exp

[

− 1

2
(β − β̃)′B̃−1(β − β̃)

]

.

The above expression is recognized as the kernel of a Gaussian or normal distribution and

hence β|z, w, ϕ2 ∼ N(β̃, B̃).
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1(b). The conditional posterior density of the latent variable z marginally of α can be

obtained from the joint posterior density (8) as,

π(z|β, w, ϕ2, y) ∝
n
∏

i=1

{

π(zi|β, wi, ϕ2, yi)

}

∝
n
∏

i=1

{

Ti
∏

t=1

[

I(zit > 0)I(yit = 1) + I(zit ≤ 0)I(yit = 0)
]

× exp

[

− 1

2
(zi − Xiβ − θwi)

′Ω−1
i (zi − Xiβ − θwi)

]}

.

The expression inside the curly braces corresponds to a truncated multivariate normal dis-

tribution, so zi|yi, β, wi, ϕ2 ∼ TMV NBi
(Xiβ + θwi, Ωi) for all i = 1, · · · , n. Here, Bi is the

truncation region such that Bi = (Bi1 × Bi2 × . . . × BiTi
), where Bit is the interval (0, ∞) if

yit = 1 and the interval (−∞, 0] if yit = 0 for t = 1, . . . , Ti. Sampling directly from a TMVN

is not possible, hence we resort to the method proposed in Geweke (1991), which utilizes

Gibbs sampling to make draws from a TMVN.

Let zj
i denote the values of zi at the j-th pass of the MCMC iteration. Then sampling is

done from a series of conditional posterior distribution as follows:

zj
it|zj

i1, · · · , zj
i(t−1), zj

i(t+1), · · · , zj
iTi

∼ TNBit
(µt|−t, Σt|−t), for t = 1, · · · , Ti,

where TN denotes a truncated normal distribution. The terms µt|−t and Σt|−t are the

conditional mean and variance, respectively, and are defined as,

µt|−t = x′
itβ + θwit + Σt,−tΣ

−1
−t,−t

(

zj
i,−t − (Xiβ + θwi)−t

)

,

Σt|−t = Σt,t − Σt,−tΣ
−1
−t,−tΣ−t,t,

where zj
i,−t = (zj

i1, · · · , zj
i(t−1), zj−1

i(t+1), · · · , zj−1
iTi

), (Xiβ + θwi)−t is a column vector with t-th

element removed, Σt,t denotes the (t, t)-th element of Ωi, Σt,−t denotes the t-th row of Ωi

with element in the t-th column removed and Σ−t,−t is the Ωi matrix with t-th row and t-th

column removed.

(2). The conditional posterior density of the random effects parameters αi for i = 1, . . . , n

is derived from the joint posterior density (8) as follows,

π(αi|zi, β, wi, ϕ2) ∝ f(zi|β, αi, wi) π(αi|ϕ2)
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∝ exp

[

− 1

2

{

(zi − Xiβ − Siαi − θwi)
′D−2

τ
√

wi
(zi − Xiβ − Siαi − θwi)

+
α′

iαi

ϕ2

}]

∝ exp

[

− 1

2

{

α′
i

(

S ′
iD

−2
τ

√
wi

Si + ϕ−2Il

)

αi − α′
i

(

S ′
iD

−2
τ

√
wi

(

zi − Xiβ − θwi

)

)

−
(

(

zi − Xiβ − θwi

)′
D−2

τ
√

wi
Si

)

αi

}]

∝ exp

[

− 1

2
(αi − ã)′Ã−1(αi − ã)

]

,

where the third line omits all terms not involving αi and the fourth line introduces the terms,

Ã−1 =

(

S ′
i D−2

τ
√

wi
Si +

1

ϕ2
Il

)

and ã = Ã
(

S ′
iD

−2
τ

√
wi

(

zi − Xiβ − θwi

))

,

as the posterior precision and posterior mean, respectively, and completes the square. The

result is a kernel of a normal distribution, hence, αi|zi, β, wi, ϕ2 ∼ N(ã, Ã) for i = 1, . . . , n.

(3). The conditional posterior density of w is obtained from the joint posterior density

(8) by collecting terms involving w. Each term in w is updated element-wise as follows:

π(wit|zit, β, αi) ∝
(

2πτ 2wit

)−1/2
exp

[

− 1

2τ 2wit

(

zit − x′
itβ − s′

itαi − θwit

)2 − wit

]

∝ w
−1/2
it exp

[

− 1

2

{(

zit − x′
itβ − s′

itαi

τ

)2

w−1
it +

(

θ2

τ 2
+ 2

)

wit

}]

∝ w
−1/2
it exp

[

− 1

2

{

λ̃itw
−1
it + η̃wit

}]

,

where the second line omits all terms not involving wit and the third line introduces the

terms defined below,

λ̃it =

(

zit − x′
itβ − s′

itαi

τ

)2

and η̃ =

(

θ2

τ 2
+ 2

)

.

The expression in the third line is recognized as the kernel of a generalized inverse Gaussian

(GIG) distribution. Hence, we have wit|zit, β, αi ∼ GIG(0.5, λ̃it, η̃) for t = 1, . . . , Ti and

i = 1, . . . , n.

(4). The conditional posterior density of ϕ2 is obtained from the joint posterior density
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(8) by collecting terms involving ϕ2 conditional on the remaining model parameters. This is

done below.

π(ϕ2|α) ∝ (2π)−nl/2
(

ϕ2
)−nl/2

exp

[

− 1

2ϕ2

n
∑

i=1

α′
iαi

]

(

ϕ2
)−(c1/2+1)

exp

[

− d1

2ϕ2

]

∝
(

ϕ2
)−(nl/2+c1/2+1)

exp

[

− 1

2ϕ2

{

n
∑

i=1

α′
iαi + d1

}]

∝
(

ϕ2
)(c̃1/2+1)

exp

[

− 1

2ϕ2
d̃1

]

,

where c̃1 = nl + c1 and d̃1 =
(

∑n
i=1 α′

iαi + d1

)

. The expression in the last line is recognized

as the kernel of an inverse gamma (IG) distribution and consequently, we have ϕ2|α ∼
IG(c̃1/2, d̃1/2).
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