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Abstract

This paper investigates double/debiased machine learning (DML) under multiway clustered

sampling environments. We propose a novel multiway cross fitting algorithm and a multiway

DML estimator based on this algorithm. We also develop a multiway cluster robust standard error

formula. Simulations indicate that the proposed procedure has favorable finite sample performance.

Applying the proposed method to market share data for demand analysis, we obtain larger two-way

cluster robust standard errors for the price coefficient than non-robust ones in the demand model.
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1 Introduction

We propose a novel multiway cross fitting algorithm and a double/debiased machine learning (DML)

estimator based on the proposed algorithm. This objective is motivated by recently growing interest in

use of dependent cross sectional data and recently increasing demand for DML methods in empirical

research. On one hand, researchers frequently use multiway cluster sampled data in empirical studies,

such as network data, matched employer-employee data, matched student-teacher data, scanner data

where observations are double-indexed by stores and products, and market share data where obser-

vations are double-indexed by market and products. On the other hand, we have witnessed rapidly

increasing popularity of machine learning methods in empirical studies, such as random forests, lasso,

post-lasso, elastic nets, ridge, deep neural networks, and boosted trees among others. To date, avail-

able DML methods focus on i.i.d. sampled data. In light of the aforementioned research environments

today, a new method of DML that is applicable to multiway cluster sampled data may well be of

interest by empirical researchers.

The DML was proposed by the recent influential paper by Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins

(CCDDHNR, 2018). They provide a general DML toolbox for estimation and inference for structural

parameters with high-dimensional and/or infinite-dimensional nuisance parameters. In that paper, the

estimation method and properties of the estimator are presented under the typical microeconometric

assumption of i.i.d. sampling. We advance this frontier literature of DML by proposing a modified

DML estimation procedure with multiway cross fitting, which accommodates multiway cluster sam-

pled data. Even for multiway cluster sampled data, we show that the proposed DML procedure works

under nearly identical set of assumptions to that of CCDDHNR (2018). To our best knowledge, the

present paper is the first to consider generic DML methods under multiway cluster sampling.

Another branch of the literature following the seminal work by Cameron, Gelbach, and Miller

(2011) proposes multiway cluster robust inference methods. Menzel (2017) conducts formal analyses

of bootstrap validity under multiway cluster sampling robustly accounting for non-degenerate and

degenerate cases. Davezies, D’Haultfoeuille, and Guyonvarch (2018) develop empirical process theory

under multiway cluster sampling which applies to a large class of models. We advance this practically

important literature by developing a multiway cluster robust inference method based on DML. In
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deriving theoretical properties of the proposed estimator, we take advantage of the Aldous-Hoover

representation employed by the preceding papers. To our knowledge, the present paper is the first in

this literature on multiway clustering to develop generic DML methods.

1.1 Relations to the Literature

The past few years have seen a fast growing literature in machine learning based econometric meth-

ods. For general overviews of the field, see, e.g., Athey and Imbens (2019) or Mullainathan and Spiess

(2017). For a review of estimation and inference methods for high-dimensional data, see Belloni, Chernozhukov, and Hansen

(2014a). For an overview of data sketching methods tackling computationally impractically large

number of observations, see Lee and Ng (2019). The DML of CCDDHNR (2018) is built upon

Belloni, Chernozhukov, and Kato (2015), which proposes to use Neyman orthogonal moments for a

general class of Z-estimation statistical problems in the presence of high-dimensional nuisance parame-

ters. This framework is further generalized in different directions by Belloni, Chernozhukov, Fernández-Val, and Hansen

(2017) and Belloni, Chernozhukov, Chetverikov, and Wei (2018). CCDDHNR (2018) combine the use

of Neyman orthogonality condition with cross fitting to provide a simple yet widely applicable frame-

work that covers a large class of models under i.i.d. settings. The DML is also compatible with various

types of machine learning based methods for nuisance parameter estimation.

Driven by the need from empiricists, the literature on cluster robust inference has a long his-

tory in econometrics. For recent review of the literature, see, e.g., Cameron and Miller (2015) and

MacKinnon (2019). On the other hand, coping with cross-sectional dependence using a multiway clus-

ter robust variance estimator is a relatively recent phenomenon. Cameron et al. (2011) first provide a

multiway cluster robust variance estimator for linear regression models without imposing additional

parametric assumptions on the intra-cluster correlation structure. This variance estimator has signifi-

cantly reshaped the landscape of econometric practices in applied microeconomics in the past decade.1

In contrast to the popularity among empirical researchers, theoretical justification of the validity of

this type of procedures was lagging behind. The first rigorous treatment of asymptotic properties of

multiway cluster robust estimators are established by Menzel (2017) using the Aldous-Hoover repre-

1As of December 31, 2019, Cameron et al. (2011) has received over 2,500 citations. The majority of such citations

came from applied economic papers.
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sentation under the assumptions of separable exchangeability and dissociation. The asymptotic theory

of Menzel (2017) covers both non-degenerate and degenerate cases. Focusing on non-degenerate situa-

tions, Davezies et al. (2018) further extend this approach to a general empirical process theory.2 Using

this asymptotic framework, MacKinnon, Nielsen, and Webb (2019) study linear regression models un-

der the non-degenerate case and examine the validity of several types of wild bootstrap procedures

and the robustness of multiway cluster robust variance estimators under different cluster sampling

settings.

Despite of the popularity of both machine learning and cluster robust inference among empirical

researchers, relatively limited cluster robust inference results exist for machine learning based methods.

Inference for machine learning based methods with one-way clustering is studied by Belloni, Chernozhukov, Hansen, and Kozbur

(2016), Kock (2016), Kock and Tang (2019), Semenova, Goldman, Chernozhukov, and Taddy (2018)

and Hansen and Liao (2019) for different variations of regularized regression estimators and Athey and Wager

(2019) for random forests. Chiang and Sasaki (2019) investigate the performance of lasso and post-

lasso in the partially linear model setting of Belloni, Chernozhukov, and Hansen (2014b) under multi-

way cluster sampling. To our best knowledge, there is no general machine learning based procedures

with known validity under multiway cluster sampling environments.

2 Overview

2.1 Setup

Suppose that the researcher observes a sample {Wij | i ∈ {1, ..., N}, j ∈ {1, ...,M}} of double-indexed

observations of size NM . Let P denote the probability law of {Wij}ij , and let EP denote the expecta-

tion with respect to P . Let C = N ∧M denote the sample size in the smaller dimension. We consider

two-way clustering where each cell contains one observation for simplicity of notations, but results

for higher cluster dimensions and random cluster sizes can be obtained at the expense of involved

notations – see Appendix C for a general case.

2See also Davezies, D’Haultfoeuille, and Guyonvarch (2019) for further generalization of the empirical process theory

for dyadic data under joint exchangeability assumption.
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The structural model is assumed to entail the moment restriction

EP [ψ(W11; θ0, η0)] = 0 (2.1)

for some score ψ that depends on a low-dimensional parameter vector θ ∈ Θ ⊂ Rdθ and a nuisance

parameter η ∈ T for a convex subset T of a normed linear space. The nuisance parameter η may be

finite-, high-, or infinite-dimensional, and its true value is denoted by η0 ∈ T . In this setup, the true

value of the low-dimensional target parameter, denoted by θ0 ∈ Θ, is the object of interest.

Let T̃ = {η − η0 : η ∈ T}, and define the Gateaux derivative map Dr : T̃ → R

dθ by

Dr[η − η0] := ∂r

{
EP [ψ(W11; θ0, η0 + r(η − η0))]

}

for all r ∈ [0, 1). Also denote its limit by

∂ηEPψ(W11; θ0, η0)[η − η0] := D0[η − η0].

We say that the Neyman orthogonality condition holds at (θ0, η0) with respect to a nuisance realization

set Tn ⊂ T if the score ψ satisfies (2.1), the pathwise derivative Dr[η − η0] exists for all r ∈ [0, 1) and

η ∈ Tn, and the orthogonality equation

∂ηEPψ(W11; θ0, η0)[η − η0] = 0 (2.2)

holds for all η ∈ Tn. Furthermore, we also say that the λn Neyman near-orthogonality condition holds

at (θ0, η0) with respect to a nuisance realization set Tn ⊂ T if the score ψ satisfies (2.1), the pathwise

derivative Dr[η − η0] exists for all r ∈ [0, 1) and η ∈ Tn, and the orthogonality equation

sup
η∈Tn

∥∥∥∂ηEPψ(W ; θ0, η0)[η − η0]
∥∥∥ ≤ λn (2.3)

holds for all η ∈ Tn for some positive sequence {λn}n such that λn = o(C−1/2).

Throughout, we will consider structural models satisfying the moment restriction (2.1) and either

form of the Neyman orthogonality conditions, (2.2) or (2.3). Consider linear Neyman orthogonal

scores ψ of the form

ψ(w; θ, η) = ψa(w; η)θ + ψb(w; η), for all w ∈ supp(W), θ ∈ Θ, η ∈ T . (2.4)

A generalization to nonlinear score follows from linearization with Gateaux differentiability as in

Section 3.3 of CCDDHNR (2018). We focus on linear scores as they cover a wide range of applications.
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2.2 The Multiway Double/Debiased Machine Learning

For the class of models introduced in Section 2.1, we propose a novel K2-fold multiway cross fitting

procedure for estimation of θ0. For any r ∈ N, we use the notation [r] = {1, ..., r}. With a fixed positive

integer K, randomly partition [N ] into K parts {I1, ..., IK} and [M ] into K parts {J1, ..., JK}. For

each (k, ℓ) ∈ [K]2, obtain an estimate

η̂kℓ = η̂
(
(Wij)(i,j)∈([N ]\Ik)×([M ]\Jℓ)

)

of the nuisance parameter η by some machine learning method (e.g., lasso, post-lasso, elastic nets,

ridge, deep neural networks, and boosted trees) using only the subsample of those observations with

multiway indices (i, j) in ([N ] \ Ik) × ([M ] \ Jℓ). In turn, we define θ̃, the multiway double/debiased

machine learning (multiway DML) estimator for θ0, as the solution to

1

K2

∑

(k,ℓ)∈[K]2

En,kℓ[ψ(W ; θ̃, η̂kℓ)] = 0, (2.5)

where En,kℓ[f(W )] = 1
|Ik||Jℓ|

∑
(i,j)∈Ik×Jℓ

f(Wij) denotes the subsample empirical expectation using

only the those observations with multiway indices (i, j) in Ik × Jℓ.

We call this procedure the K2-fold multiway cross fitting. Note that, for each (k, ℓ) ∈ [K]2, the

nuisance parameter estimate η̂kℓ is computed using the subsample of those observations with multiway

indices (i, j) ∈ ([N ] \ Ik)× ([M ] \ Jℓ), and in turn the score term En,kℓ[ψ(W ; ·, η̂kℓ)] is computed using

the subsample of those observations with multiway indices (i, j) ∈ Ik×Jℓ. This two-step computation

is repeated K2 times for every partitioning pair (k, ℓ) ∈ [K]2. Figure 1 illustrates this K2-fold cross

fitting for the case of K = 2 and N =M = 4, where the cross fitting repeats for K2(= 22 = 4) times.

Remark 1. This estimator is a multiway-counterpart of DML2 in CCDDHNR (2018). It is also

possible to consider the multiway-counterpart of their DML1. With this said, we focus on this current

estimator following their simulation finding that DML2 outperforms their DML1 in most situation

settings due to the stability of the score function.

Remark 2 (Higher Cluster Dimensions). When we have α-way clustering for an integer α > 2, the

above algorithm can be easily generalized into a Kα-fold multiway DML estimator. See Appendix C

for a generalization.
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Figure 1: An illustration of 22-fold cross fitting.
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We propose to estimate the asymptotic variance of
√
C(θ̃ − θ0) by

σ̂2 =Ĵ−1Γ̂(Ĵ−1)′, (2.6)

where Γ̂ and Ĵ are given by

Γ̂ =
1

K2

∑

(k,ℓ)∈[K]2





|I| ∧ |J |
(|I||J |)2

∑

i∈Ik

∑

j,j′∈Jℓ

ψ(Wij ; θ̃, η̂kℓ)ψ(Wij′ ; θ̃, η̂kℓ)
′

+
|I| ∧ |J |
(|I||J |)2

∑

i,i′∈Ik

∑

j∈Jℓ

ψ(Wij ; θ̃, η̂kℓ)ψ(Wi′j ; θ̃, η̂kℓ)
′



 and

Ĵ =
1

K2

∑

(k,ℓ)∈[K]2

En,kℓ[ψ
a(W ; η̂kℓ)],

accounting for multiway cluster dependence. For a dθ-dimensional vector r, the (1 − a) confidence

interval for the linear functional r′θ0 can be constructed by

CIa := [r′θ̃ ±Φ−1(1− a/2)
√
r′σ̂2r/C].

2.3 Example: Partially Linear IV Model with Multiway Cluster Sample

For an illustration, consider as a concrete example the partially linear IV model (cf. Okui, Small, Tan

and Robins, 2012 ; CCDDHNR, 2018, Section 4.2) adapted to the multiway cluster sample data:

Yij =Dijθ0 + g0(Xij) + ǫij, EP [ǫij |Xij , Zij ] = 0, (2.7)

Zij =m0(Xij) + vij , EP [vij |Xij ] = 0. (2.8)
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A researcher observes the random variables Yij , Dij, Xij , and Zij, which are typically interpreted

as the outcome, endogenous regressor, exogenous regressors, and instrumental variable, respectively.

The low-dimensional parameter vector θ0 is an object of interest.

A Neyman orthogonal score ψ for such model is given by

ψ(w; θ, η) = (y − g1(x)− θ(d− g2(x)))(z −m(x)) (2.9)

as in Okui et al. (2012) and CCDDHNR (2018), where w = (y, d, x, z), η = (g1, g2,m) and g1, g2,

m ∈ L2(P ). It is straightforward to verify that this score satisfies both the moment restriction (2.1),

EP [ψ(W11; θ0, η0)] = 0, and the Neyman orthogonality condition (2.2), ∂ηEPψ(W11; θ0, η0)[η− η0] = 0

for all η ∈ Tn at η0 = (g10, g20,m0), where g10(X) = EP [Y |X], g20(X) = EP [D|X], and m0(X) =

EP [Z|X].

The following algorithm is our proposed multiway DML procedure introduced in Section 2.2,

specifically applied to this partially linear IV model.

Algorithm 1 (K2-fold Multiway DML for Partially Linear IV Model with Lasso).

1. Randomly partition [N ] into K parts {I1, ..., IK} and [M ] into K parts {J1, ..., JK}.

2. For each (k, ℓ) ∈ [K]2:

(a) Run a lasso of Y on X to obtain ĝ1,kℓ(x) = x′β̂kℓ using observations from Ick × Jc
ℓ .

(b) Run a lasso of D on X to obtain ĝ2,kℓ(x) = x′γ̂kℓ using observations from Ick × Jc
ℓ .

(c) Run a lasso of Z on X to obtain m̂kℓ(x) = x′ξ̂kℓ using observations from Ick × Jc
ℓ .

3. Solve the equation

1

K2

∑

(k,ℓ)∈[K]2

En,kℓ[(Yij −X ′
ijβ̂kℓ − θ(Dij −X ′

ij γ̂kℓ))(Zij −X ′
ij ξ̂kℓ)] = 0

for θ to obtain the multiway DML estimate θ̃.

4. Let ε̂ij = Yij − X ′
ij β̂kℓ − θ̃(Dij − X ′

ij γ̂kℓ), ûij = Dij − X ′
ij γ̂kℓ, and v̂ij = Zij − X ′

ij ξ̂kℓ for each

(i, j) ∈ Ik × Jℓ for each (k, ℓ) ∈ [K]2, and let the multiway DML asymptotic variance estimator
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be given by

σ̂2 =Ĵ−1 1

K2

K∑

k=1

K∑

ℓ=1

{ |I| ∧ |J |
(|I||J |)2

∑

i∈Ik

∑

j,j′∈Jℓ

ε̂ij v̂ij v̂ij′ ε̂ij′ +
|I| ∧ |J |
(|I||J |)2

∑

i,i′∈Ik

∑

j∈Jℓ

ε̂ij v̂ij v̂i′j ε̂i′j

}
(Ĵ−1)′,

where

Ĵ =− 1

K2

K∑

k=1

K∑

ℓ=1

En,kℓ[ûij v̂ij ].

5. Report the estimate θ̃, its standard error
√
σ̂2/C, and/or the (1− a) confidence interval

CIa :=
[
θ̃ ± Φ−1(1− a/2)

√
σ̂2/C

]
.

For the sake of concreteness, we present this algorithm specifically based on lasso (in the three

sub-steps under step 2), but another machine learning method (e.g., post-lasso, elastic nets, ridge,

deep neural networks, and boosted trees) may be substituted for lasso.

Example 1 (Demand Analysis). Consider the model of Berry (1994) in which consumer c derives the

utility

δij +Xijαc + εcij

from choosing product i in market j, where εcij independently follows the Type I Extreme Value

distribution, αc is a random coefficient, and the mean utility δij takes the linear-index form

δij = Dijθ0 + ǫij.

In this framework, Lu, Shi, and Tao (2019, Equation (9)) derive the partial-linear equation

Yij = Dijθ0 + g0(Xij) + ǫij

for estimation of θ0, where Yij = log(Sij) − log(S0j) denotes the observed log share of product i

relative to the log of the outside share. Since Dij usually consists of the endogenous price of product

i in market j, researchers often use instruments Zij such that EP [ǫij|Xij , Zij ] = 0. This yields the

reduced-form equation (2.7), together with the innocuous nonparametric projection equation (2.8).

Since the random vector Wij = (Yij ,Dij ,Xij , Zij) is double-indexed by product i and market j,

9



the sample naturally entails two-way dependence. Specifically, for each product i, {Wij}Mj=1 is likely

dependent through a supply shock by the producer of product i. Similarly, for each market j, {Wij}Ni=1

is likely dependent through a demand shock in market j. As such, instead of using standard errors

based on i.i.d. sampling, we recommend that a researcher uses the two-way cluster-robust standard

error based on Algorithm 1. △

3 Theory of the Multiway DML

In this section, we present formal theories to guarantee that the multiway DML method proposed in

Section 2 works. We first fix some notations for convenience. The two-way sample sizes (N,M) ∈ N
2

will be index by a single index n ∈ N as (N,M) = (N(n),M(n)) where M(n) and N(n) are non-

decreasing in n and M(n)N(n) is increasing in n. With this said, we will suppress the index notation

and write (N,M) for simplicity. Let {Pn}n be a sequence of sets of probability laws of {Wij}ij – note

that we allow for increasing dimensionality of Wij in the sample size n. Let P = Pn ∈ Pn denote

the law with respect to sample size (N,M). Throughout, we assume that this random vector Wij is

Borel measurable. Recall the notations C = N ∧M , µN = C/N , and µM = C/M , and suppose that

µN → µ̄N , µM → µ̄M . We write a . b to mean a ≤ cb for some c > 0 that does not depend on n.

We also write a .P b to mean a = OP (b). For any finite dimensional vector v, ‖v‖ denotes the ℓ2 or

Euclidean norm of v. For any matrix A, ‖A‖ denotes the induced ℓ2-norm of the matrix. For any set

B, |B| denotes the cardinality of the set.

We state the following assumption on multiway clustered sampling.

Assumption 1 (Sampling). Suppose C → ∞. The following conditions hold for each n.

(i) (Wij)(i,j)∈N2 is an infinite sequence of separately exchangeable p-dimensional random vectors.

That is, for any permutations π1 and π2 of N, we have

(Wij)(i,j)∈N2
d
= (Wπ1(i)π2(j))(i,j)∈N2 .

(ii) (Wij)(i,j)∈N2 is dissociated. That is, for any (c1, c2) ∈ N2, (Wij)i∈[c1],j∈[c2] is independent of

(Wij)i∈[c1]c,j∈[c2]c .
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(iii) For each n, an econometrician observes (Wij)i∈[N ],j∈[M ].

Recall that we focus on the linear Neyman orthogonal score of the form

ψ(w; θ, η) = ψa(w; η)θ + ψb(w; η), for all w ∈ supp(W), θ ∈ Θ, η ∈ T .

Let c0 > 0, c1 > 0, s > 0, q ≥ 4 be some finite constants with c0 ≤ c1. Let {δn}n≥1 (estimation errors)

and {∆n}n≥1 (probability bounds) be sequences of positive constants that converge to zero such that

δn ≥ C−1/2. Let K ≥ 2 be a fixed integer. Let W00 denote a copy of W11 that is independent from the

data and the random set Tn of nuisance realization. With these notations, we consider the following

assumptions.

Assumption 2 (Linear Neyman Orthogonal Score). For C ≥ 3 and P ∈ Pn, the following conditions

hold.

(i) The true parameter value θ0 satisfies (2.1).

(ii) ψ is linear in the sense that it satisfies (2.4).

(iii) The map η 7→ EP [ψ(W00; θ, η)] is twice continuously Gateaux differentiable on T .

(iv) ψ satisfies either the Neyman orthogonality condition (2.2) or more generally the Neyman λn

near orthogonality condition at (θ0, η0) with respect to a nuisance realization set Tn ⊂ T as

λn := sup
η∈Tn

∥∥∥∂ηEPψ(W00; θ0, η0)[η − η0]
∥∥∥ ≤ δnC

−1/2.

(v) The identification condition holds as the singular values of the matrix J0 := EP [ψ
a(W11; η0)] are

between c0 and c1.

Assumption 3 (Score Regularity and Nuisance Parameter Estimators). For all C ≥ 3 and P ∈ Pn,

the following conditions hold.

(i) Given random subsets I ⊂ [N ] and J ⊂ [M ] such that |I| × |J | = ⌊NM/K2⌋, the nuisance

parameter estimator η̂ = η̂((Wij)(i,j)∈Ic×Jc), where the complements are taken with respect to

[N ] and [M ], respectively, belongs to the realization set Tn with probability at least 1 − ∆n,

where Tn contains η0.
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(ii) The following moment conditions hold:

mn := sup
η∈Tn

(EP [‖ψ(W00; θ0, η)‖q])1/q ≤ c1,

m′
n := sup

η∈Tn

(EP [‖ψa(W00; η)‖q])1/q ≤ c1.

(iii) The following conditions on the rates rn, r
′
n and λ′n hold:

rn := sup
η∈Tn

‖EP [ψ
a(W00; η)] − EP [ψ

a(W00; η0)]‖ ≤ δn,

r′n := sup
η∈Tn

(‖EP [ψ(W00; θ0, η)] − EP [ψ(W00; θ0, η0)]‖2)1/2 ≤ δn,

λ′n = sup
r∈(0,1),η∈Tn

‖∂2rEP [ψ(W00; θ0, η0 + r(η − η0))]‖ ≤ δn/
√
C.

(iv) All eigenvalues of the matrix

Γ := µ̄NΓN + µ̄MΓM = µ̄NEP [ψ(W11; θ0, η0)ψ(W12; θ0, η0)
′] + µ̄MEP [ψ(W11; θ0, η0)ψ(W21; θ0, η0)

′].

are bounded from below by c0.

Remark 3 (Discussion of the Assumptions). Assumption 1 is similar to those of the preceding work on

multiway cluster robust inference (cf. Menzel, 2017; Davezies et al., 2018; Chiang and Sasaki, 2019).

Menzel (2017) does not invoke the dissociation, and follows an alternative approach to inference. The

other papers assume both the separate exchangeability and dissociation, and conduct unconditional

inference as in this paper. See Kallenberg (2006, Corollary 7.23 and Lemma 7.35) for representations

with and without the dissociation under the separate exchangeability. Assumption 2 is closely related

to Assumptions 3.1 of CCDDHNR (2018). It requires the score to be Neyman near orthogonal –

see their Section 2.2.1 for the procedure of orthogonalizing a non-orthogonal score. It also imposes

some mild smoothness and identification conditions. Assumption 3 corresponds to Assumption 3.2 of

CCDDHNR (2018). It imposes some high level conditions on the quality of the nuisance parameter

estimator as well as the non-degeneracy of the asymptotic variance. This rules out the degenerate

cases such as Example 1.6 of Menzel (2017).

Remark 4 (Partial Distributions). Assumptions 2 and 3 state conditions based on W00, differently

from CCDDHNR (2018), because of our need to deal with dependent observations in cross fitting in

our multiway DML framework.
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The following result presents the main theorem of this paper, establishing the linear representa-

tion and asymptotic normality of the multiway DML estimator. It corresponds to Theorem 3.1 of

CCDDHNR (2018), and is an extension of it to the case of multiway cluster sampling.

Theorem 1 (Main Result). Suppose that Assumptions 1, 2 and 3 are satisfied. If δn ≥ C−1/2 for all

C ≥ 1, then

√
Cσ−1(θ̃ − θ0) =

√
C

NM

N∑

i=1

M∑

j=1

ψ̄(Wij) +OP (ρn) N(0, Idθ )

holds uniformly over P ∈ Pn, where the size of the remainder terms follows

ρn := C−1/2 + rn + r′n + C1/2λn +C1/2λ′n . δn,

the influence function takes the form ψ̄(·) := −σ−1J−1
0 ψ(·; θ0, η0), and the asymptotic variance is given

by

σ2 := J−1
0 Γ(J−1

0 )′. (3.1)

As is commonly the case in practice, we need to estimate the unknown asymptotic variance. The

following theorem shows the validity of our proposed multiway DML variance estimator.

Theorem 2 (Variance Estimator). Under the assumptions required by Theorem 1, we have

σ̂2 = σ2 +OP (ρn).

Furthermore, the statement of Theorem 1 holds true with σ̂2 in place of σ2.

Theorems 1 and 2 can be used for constructing confidence intervals.

Corollary 1. Suppose that all the Assumptions required by Theorem 1 are satisfied. Let r be a dθ-

dimensional vector. The (1− a) confidence interval of r′θ0 given by

CIa := [r′θ̃ ± Φ−1(1− a/2)
√
r′σ̂2r/C]

satisfies

sup
P∈Pn

|PP (θ0 ∈ CIa)− (1− a)| → 0.
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As in Section 3.4 of CCDDHNR (2018), we can also repeatedly compute multiway DML estimates

and variance estimates S-times for some fixed S ∈ N and consider the average or median of the

estimates as the new estimate. This does not have an asymptotic impact, yet it can reduce the impact

of a random sample splitting on the estimate.

4 Simulation Studies

4.1 Simulation Setup

Consider the partially linear IV model introduced in Section 2.3. We specifically focus on the following

high-dimensional linear representations

Yij =Dijθ0 +X ′
ijζ0 + ǫij

Dij =Zijπ10 +X ′
ijπ20 + υij ,

Zij =X
′
ijξ0 + Vij ,

where the parameter values are set to θ0 = π10 = 1.0 and ζ0 = π20 = ξ0 = (0.5, .0.52 , · · · , 0.5dim(X))′

for some large dim(X). The primitive random vector (X ′
ij , ǫij , υij , Vij)

′ is constructed by

Xij = (1− ωX
1 − ωX

2 )αX
ij + ωX

1 α
X
i + ωX

2 α
X
j ,

ǫij = (1− ωǫ
1 − ωǫ

2)α
ǫ
ij + ωǫ

1α
ǫ
i + ωǫ

2α
ǫ
j ,

υij = (1− ωυ
1 − ωυ

2 )α
υ
ij + ωυ

1α
υ
i + ωυ

2α
υ
j , and

Vij = (1− ωV
1 − ωV

2 )α
V
ij + ωV

1 α
V
i + ωV

2 α
V
j

with two-way clustering weights (ωX
1 , ω

X
2 ), (ωǫ

1, ω
ǫ
2), (ω

υ
1 , ω

υ
2 ), and (ωV

1 , ω
V
2 ), where α

X
ij , α

X
i , and αX

j

are independently generated according to

αX
ij , α

X
i , α

X
j ∼ N




0,




s0X s1X · · · s
dim(X)−2
X s

dim(X)−1
X

s1X s0X · · · s
dim(X)−3
X s

dim(X)−2
X

...
...

. . .
...

...

s
dim(X)−2
X s

dim(X)−3
X · · · s0X s1X

s
dim(X)−1
X s

dim(X)−2
X · · · s1X s0X







,
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(αǫ
ij , α

υ
ij)

′, (αǫ
i , α

υ
i )

′, and (αǫ
j , α

υ
j )

′ are independently generated according to


 αǫ

ij

αυ
ij


 ,


 αǫ

i

αυ
i


 ,


 αǫ

j

αυ
j


 ∼ N


0,


 1 sǫυ

sǫυ 1




 ,

and αV
ij , α

V
i , and α

V
j are independently generated according to

αV
ij , α

V
i , α

V
j ∼ N(0, 1).

The weights (ωX
1 , ω

X
2 ), (ωǫ

1, ω
ǫ
2), (ω

υ
1 , ω

υ
2 ), and (ωV

1 , ω
V
2 ) specify the extent of dependence in two-way

clustering in Xij, ǫij , υij, and Vij, respepctively. The parameter sX specifies the extent of collinearity

among the high-dimensional regressors Xij . The parameter sǫυ specifies the extent of endogeneity.

We set the values of these parameters to (ωX
1 , ω

X
2 ) = (ωǫ

1, ω
ǫ
2) = (ωυ

1 , ω
υ
2 ) = (ωV

1 , ω
V
2 ) = (0.25, 0.25)

and sX = sǫυ = 0.25.

4.2 Results

Monte Carlo simulations are conducted with 2,500 iterations for each set. Table 1 reports simulation

results. The first four columns in the table indicate the data generating process (N , M , C, and

dim(X)). The next column indicates the integer K for our K2-fold cross fitting method. We use

K = 2 and 3 in the simulations for the displayed results, since 22(≈ 5) and 32(≈ 10) are close to the

common numbers of folds used in cross fitting in practice. The next column indicates the machine

learning method for estimation of η̂kℓ. We use the ridge, elastic net, and lasso. The last four columns

of the table report Monte Carlo simulation statistics, including the bias (Bias), standard deviation

(SD), root mean square error (RMSE), and coverage frequency for the nominal probability of 95%

(Cover).

For each covariate dimension dim(X) ∈ {100, 200}, for each choice K ∈ {2, 3} for the number K2

of multiway cross fitting, and for each of the three machine learning methods, we observe the following

patterns as the effective sample size C = N ∧M increases: 1) the bias tends to zero; 2) the standard

deviation decreases approximately at the
√
C rate; and 3) the coverage frequency converges to the

nominal probability. These results confirm the theoretical properties of the proposed method. We

ran several other sets of simulations besides those displayed in the table, and this pattern remains the

same across different sets.
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Comparing the results across the three machine learning methods, we observe that the ridge entails

larger bias and smaller variance relative to the elastic net and lasso in finite sample. This makes the

coverage frequency of the ridge less accurate compared with the elastic net and lasso. This result is

perhaps specific to the data generating process used for our simulations. On one hand, the choice

K = 3 (i.e., 9-fold) of the multiway cross fitting contributes to mitigating the large bias of the ridge

relative to the choice K = 2, and hence K = 3 produces more preferred results for the ridge. On the

other hand, the choice K = 2 tends to yield preferred results in terms of coverage accuracy for the

elastic net and lasso. In light of these results, we recommend the elastic net or lasso along with the

use of 22- fold (i.e., 4-fold) cross fitting. This number of folds in cross fitting is in fact similar to that

recommended by CCDDHNR (2018) for i.i.d. sampling – see their Remark 3.1 where they recommend

4- or 5-fold cross fitting.

5 Empirical Illustration: Demand Analysis with Market Share Data

Let us revisit the demand model of Example 1 in Section 2.3. Recall that, for the consumer demand

model of Berry (1994) introduced in Example 1, Lu et al. (2019, Equation (9)) derive the partial-linear

equation

Yij = Dijθ0 + g0(Xij) + ǫij (5.1)

for estimation of θ0, where Yij = log(Sij)− log(S0j) denotes the observed log share of product i relative

to the log of the outside share in market j, Dij denotes the log price of product i in market j, and Xij

denotes a vector of observed attributes of product i in market j. To deal with the likely endogeneity

of Dij, researchers often use instruments Zij such that EP [ǫij |Xij , Zij ] = 0. Such instruments often

consist of observed attributes of other products in the market.

The implied equation (5.1) together with this mean independence assumption yields the reduced-

form model (2.7). Furthermore, we write the innocuous nonparametric projection equation (2.8).

Therefore, we apply Algorithm 1 in Section 2.3 for the two-way cluster robust DML estimation of θ0

with a robust standard error.

We present an application of the proposed algorithm to the U.S. automobile data of Berry, Levinsohn, and Pakes

(1995). The sample consists of unbalanced two-way clustered observations with N = 557 models of
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automobiles and M = 20 markets. The observed attributes Xij consist of horsepower per weight,

miles per dollar, miles per gallon, and size. The instrument Zij is defined as the sum of the values of

these attributes of other products.

For the purpose of highlighting the effect of clustering assumptions, we report estimates and

standard errors under the zero-way cluster robust DML (based on the i.i.d. assumption) and the

one-way cluster robust DML (based on clustering along each of the product and market dimensions),

as well as the two-way cluster robust DML (along both of the product and market dimensions). The

number K = 4 of folds of cross fitting is used for the zero- and one-way cluster robust DML, while

the number K2 = 4 of folds of two-way cross fitting is used for the two-way cluster robust DML

following the recommendations from Section 4 and those by CCDDHNR (2018, Remark 3.1). To

mitigate the uncertainty induced by sample splitting, we compute estimates based on the average of

ten rerandomized DML following CCDDHNR (2018, Section 3.4) with variance estimation according

to CCDDHNR (2018, Equation 3.13) adapted to our two-way cluster-robustness.

Table 2 summarizes the results. For each of the zero-, one-, and two-way cluster robust DML, both

the point estimates and standard errors are similar across all the choices of instrument. Furthermore,

the point estimates are also similar across all of the zero-, one-, and two-way cluster robust DML.

On the other hand, the standard errors tend to increase as the assumed number of ways of clustering

increases. In other words, the zero-way cluster robust DML reports the smallest standard error while

the two-way cluster robust DML reports the largest standard error. To robustly account for possible

cross-sectional dependence of observations in such two-way cluster sampled data as this market share

data, we recommend that researchers use the two-way cluster robust DML although it may incur

larger standard errors as is the case with this application.

6 Conclusion

In this paper, we propose a multiway DML procedure based on a new multiway cross fitting algorithm.

This multiway DML procedure is valid in the presence of multiway cluster sampled data, which is

frequently used in empirical research. We present an asymptotic theory showing that multiway DML

is valid under nearly identical reguarity conditions to those of CCDDHNR (2018). The proposed
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method covers a large class of econometric models as is the case with CCDDHNR (2018), and is

compatible with various machine learning based estimation methods. Simulation studies indicate that

the proposed procedure has attractive finite sample performance under various multiway cluster sam-

pling environments for various machine learning methods. To accompany the theoretical findings, we

provide easy-to-implement algorithms for multiway DML. Such algorithms are readily implementable

using existing statistical packages.

There are a couple of possible directions for future research. First, whereas we focused on

linear orthogonal scores that cover a wide range of applications, it may be possible to develop a

method and theories for non-linear orthogonal scores as in CCDDHNR (2018; Section 3.3). Second,

whereas we focused on unconditional moment restrictions, it may be possible and will be impor-

tant to develop a method and theories for conditional moment restrictions (Ai and Chen, 2003, 2007;

Chen, Linton, and Van Keilegom, 2003; Chen and Pouzo, 2015). We leave these and other extensions

for future research.
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Appendix

A Proofs of the Main Results

For any (i, j) ∈ Ik × Jℓ, we use the shorthand notation EP [f(Wij)|Ick × Jc
ℓ ] to denote the conditional

expectation EP [f(Wij)|(Wi′j′)(i′,j′)∈([N ]\Ik)×([M ]\Jℓ)] whenever one exists.

A.1 Proof of Theorem 1

Proof. In this proof we try to follow as parallelly as possible the five steps of the proof of Theorem

3.1 of CCDDHNR (2018) although all the asymptotic arguments are properly modified to account for

multiway cluster sampling.

Denote En for the event η̂kℓ ∈ Tn for all k, ℓ ∈ [K]2. Assumption 3 (i) implies P (En) ≥ 1−K2∆n.

Step 1. This is the main step showing linear representation and asymptotic normality for the proposed

estimator. Denote

Ĵ :=
1

K2

∑

(k,ℓ)∈[K]2

En,kℓ[ψ
a(W ; η̂kℓ)], Rn,1 := Ĵ − J0,

Rn,2 :=
1

K2

∑

(k,ℓ)∈[K]2

En,kℓ[ψ(W ; θ0, η̂kℓ)]−
1

NM

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0).

We will later show in Steps 2, 3, 4 and 5, respectively, that

‖Rn,1‖ = OPn(C
−1/2 + rn), (A.1)

‖Rn,2‖ = OPn(C
−1/2r′n + λn + λ′n), (A.2)

∥∥∥
√
C(NM)−1

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0)
∥∥∥ = OPn(1), (A.3)

‖σ−1‖ = OPn(1). (A.4)

Then, under Assumptions 2 and 3, C−1/2 + rN ≤ ρn = o(1) and all singular values of J0 are bounded

away from zero. Therefore, with Pn-probability at least 1− o(1), all singular values of Ĵ are bounded

away from zero. Thus with the same Pn probability, the multiway DML solution is uniquely written
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as

θ̃ = −Ĵ−1 1

K2

∑

(k,ℓ)∈[K]2

En,kℓ[ψ
b(W ; η̂kℓ)],

and

√
C(θ̃ − θ0) =−

√
CĴ−1 1

K2

∑

(k,ℓ)∈[K]2

(
En,kℓ[ψ

b(W ; η̂kℓ)] + Ĵθ0

)

=−
√
CĴ−1 1

K2

∑

(k,ℓ)∈[K]2

En,kℓ[ψ(W ; θ0, η̂kℓ)]

=−
(
J0 +Rn,1

)−1
×
( √

C

NM

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0) +
√
CRn,2

)
. (A.5)

Using the fact that

(
J0 +Rn,1

)−1
− J−1

0 = −(J0 +Rn,1)
−1Rn,1J

−1
0 ,

we have

‖(J0 +Rn,1)
−1 − J−1

0 ‖ =‖(J0 +Rn,1)
−1Rn,1J

−1
0 ‖ ≤ ‖(J0 +Rn,1)

−1‖ ‖Rn,1‖ ‖J−1
0 ‖

=OPn(1)OPn(C
−1/2 + rn)OPn(1) = OPn(C

−1/2 + rn).

Furthermore, r′n +
√
C(λn + λ′n) ≤ ρn = o(1), it holds that

∥∥∥
√
C

NM

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0) +
√
CRn,2

∥∥∥ ≤
∥∥∥
√
C

NM

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0)
∥∥∥+

∥∥∥
√
CRn,2

∥∥∥

=OPn(1) + oPn(1) = OPn(1),

where the first equality is due to (A.3) and (A.4). Combining above two bounds gives

∥∥∥
(
J0 +Rn,1

)−1
− J−1

0

∥∥∥×
∥∥∥
√
C

NM

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0) +
√
CRn,2

∥∥∥ =OPn(C
−1/2 + rn)OPn(1)

=OPn(C
−1/2 + rn). (A.6)

Therefore, from (A.4), (A.5) and (A.6), we have

√
Cσ−1(θ̃ − θ0) =

√
C

NM

N∑

i=1

M∑

j=1

ψ̄(Wij) +OPn(ρn).
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The first term on the RHS above can be written as Gnψ̄. Applying Lemma 1, we obtain the indepen-

dent linear representation

Hnψ̄ :=
N∑

i=1

√
C

N
EPn [ψ̄(Wij)|Ui0] +

M∑

j=1

√
C

M
EPn [ψ̄(Wij)|U0j ]

and it holds Pn-a.s. that

V (Gnψ̄) =V (Hnψ̄) +O(C−1) = J−1
0 Γ(J−1

0 )′ +O(C−1) and

Gnψ̄ =Hnψ̄ +OP (C
−1/2)

under Assumption 3 (iv). Recall that q ≥ 4, the third moments of both summands ofHnψ̄ are bounded

over n under Assumptions 2(v) and 3 (ii) (iv). We have verified all the conditions for Lyapunov’s CLT.

An application of Lyapunov’s CLT and Cramer-Wold device gives

Hnψ̄  N(0, Idθ )

and an application of Theorem 2.7 of van der Vaart (1998) concludes the proof.

Step 2. Since K is fixed, it suffices to show for any (k, ℓ) ∈ [K]2,

∥∥∥En,kℓ[ψ
a(W ; η̂kℓ)]− EP [ψ

a(W11; η0)]
∥∥∥ = OPn(C

−1/2 + rn).

Fix (k, ℓ) ∈ [K]2,

∥∥∥En,kℓ[ψ
a(W ; η̂kℓ)]− EPn [ψ

a(Wij ; η0)]
∥∥∥ ≤ I1,kℓ + I2,kℓ.

where

I1,kℓ :=
∥∥∥En,kℓ[ψ

a(W ; η̂kℓ)]− EPn [ψ
a(Wij ; η̂kℓ)|Ick × Jc

ℓ ]
∥∥∥

I2,kℓ :=
∥∥∥EPn [ψ

a(Wij ; η̂kℓ)|Ick × Jc
ℓ ]− EPn [ψ

a(W11; η0)]
∥∥∥.

Notice that I2,kℓ ≤ rn with Pn-probability 1−o(1) follows directly from Assumptions 1 (ii) and 3 (iii).

Now denote ψ̃a
ij,m = ψa

m(Wij ; η̂kℓ)−EPn [ψ
a
m(Wij ; η̂kℓ)|Ick×Jc

ℓ ] and ψ̃
a
ij = (ψ̃a

ij,m)m∈[dθ ]. To bound I1,kℓ,
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note that conditional on Ick × Jc
ℓ , it holds that

EPn [I2
1,kℓ|Ick × Jc

ℓ ] =EPn

[∥∥∥En,kℓ[ψ
a(W ; η̂kℓ)]− EPn [ψ

a(Wij ; η̂kℓ)|Ick × Jc
ℓ ]
∥∥∥
2∣∣∣Ick × Jc

ℓ

]

=
1

(|I||J |)2EPn

[ dθ∑

m=1

( ∑

(i,j)∈Ik×Jℓ

ψ̃a
ij,m

)2∣∣∣Ick × Jc
ℓ

]

=
1

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

j′∈Jℓ,j′ 6=j

EPn

[ dθ∑

m=1

ψ̃a
ij,mψ̃

a
ij′,m

∣∣∣Ick × Jc
ℓ

]

+
1

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

i′∈Ik,i′ 6=i

EPn

[ dθ∑

m=1

ψ̃a
ij,mψ̃

a
i′j,m

∣∣∣Ick × Jc
ℓ

]

+
1

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

EPn

[ dθ∑

m=1

(ψ̃a
ij,m)2

∣∣∣Ick × Jc
ℓ

]
+ 0

=
1

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

j′∈Jℓ,j′ 6=j

EPn [〈ψ̃a
ij , ψ̃

a
ij′〉|Ick × Jc

ℓ ]

+
1

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

i′∈Ik,i′ 6=i

EPn [〈ψ̃a
ij , ψ̃

a
i′j〉|Ick × Jc

ℓ ]

+
1

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

EPn [‖ψ̃a
ij‖2|Ick × Jc

ℓ ]

.
1

|I| ∧ |J |EPn

[∥∥∥ψa(Wij ; θ̂kℓ)− EPn [ψ
a(Wij ; θ̂kℓ)|Ick × Jc

ℓ ]
∥∥∥
2∣∣∣Ick × Jc

ℓ

]

≤ 1

|I| ∧ |J |EPn [‖ψa(Wij ; θ̂kℓ)‖2|Ick × Jc
ℓ ]

≤c21/|I| ∧ |J |

under an application of Cauchy-Schwartz’s inequality and Assumptions 1 and 3 (ii). Note that C .

|I| ∧ |J | . C. Hence an application of Lemma 2 (i) implies I1,kℓ = OPn(C
−1/2). This completes a

proof of (A.1).

Step 3. It again suffices to show that for any (k, ℓ) ∈ [K]2, one has

∥∥∥En,kℓ[ψ(W ; θ0, η̂kℓ)]−
1

|I||J |
∑

(i,j)∈Ik×Jℓ

ψ(Wij ; θ0, η0)
∥∥∥ = OPn(C

−1/2r′n + λn + λ′n)

Denote

Gn,kℓ[φ(W )] =

√
C

|I||J |
∑

(i,j)∈Ik×Jℓ

(
φ(Wij)−

∫
φ(w)dPn

)
,
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where φ is Pn an integrable function on supp(W). Then

∥∥∥En,kℓ[ψ(W ; θ0, η̂kℓ)]−
1

|I||J |
∑

(i,j)∈Ik×Jℓ

ψ(Wij ; θ0, η0)
∥∥∥ ≤ I3,kℓ + I4,kℓ√

C

where

I3,kℓ :=
∥∥
Gn,kℓ[ψ(W ; θ0, η̂k,ℓ)]−Gn,kℓ[ψ(W ; θ0, η0)]

∥∥,

I4,kℓ :=
√
C
∥∥∥EPn [ψ(Wij ; θ0, η̂k,ℓ)|Ik × Jℓ]− EPn [ψ(W11; θ0, η0)]

∥∥∥.

Denote ψ̃ij,m := ψm(Wij; θ0, η̂k,ℓ) − ψm(Wij; θ0, η0) and ψ̃ij = (ψ̃ij,m)m∈[dθ]. To bound I3,kℓ, notice
that using a similar argument as for the bound of I1,kℓ, one has

EPn
[‖I3,kℓ‖2|Ick × Jc

ℓ ] =EPn
[‖Gn,kℓ[ψ(Wij ; θ0, η̂k,ℓ)− ψ(Wij ; θ0, η0)]‖2|Ick × Jc

ℓ ]

=EPn

[ C

(|I||J |)2
dθ∑

m=1

{ ∑

(i,j)∈Ik×Jℓ

(
ψ̃ij,m − EPn

ψ̃ij,m

)}2∣∣∣Ick × Jc
ℓ

]

=
C

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

j′∈Jℓ,j′ 6=j

EPn

[ dθ∑

m=1

(
ψ̃ij,m − EPn

ψ̃ij,m

)(
ψ̃ij′,m − EPn

ψ̃ij′,m

)∣∣∣Ick × Jc
ℓ

]

+
C

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

i′∈Ik,i′ 6=i

EPn

[ dθ∑

m=1

(
ψ̃ij,m − EPn

ψ̃ij,m

)(
ψ̃i′j,m − EPn

ψ̃i′j,m

)∣∣∣Ick × Jc
ℓ

]

+
C

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

EPn

[ dθ∑

m=1

(
ψ̃ij,m − EPn

ψ̃ij,m

)2∣∣∣Ick × Jc
ℓ

]
+ 0

=
C

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

j′∈Jℓ,j′ 6=j

EPn

[
〈ψ̃ij − EPn

ψ̃ij , ψ̃ij′ − EPn
ψ̃ij′ 〉

∣∣∣Ick × Jc
ℓ

]

+
C

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

∑

i′∈Ik,i′ 6=i

EPn

[
〈ψ̃ij − EPn

ψ̃ij , ψ̃i′j − EPn
ψ̃i′j〉

∣∣∣Ick × Jc
ℓ

]

+
C

(|I||J |)2
∑

(i,j)∈Ik×Jℓ

EPn

[∥∥∥ψ̃ij − EPn
ψ̃ij

∥∥∥
2∣∣∣Ick × Jc

ℓ

]

.EPn

[∥∥∥ψ(Wij ; θ0, η̂)− ψ(Wij ; θ0, η0)− EPn
[ψ(Wij ; θ0, η̂)− ψ(Wij ; θ0, η0)]

∥∥∥
2∣∣∣Ick × Jc

ℓ

]

≤EPn
[‖ψ(Wij ; θ0, η̂)− ψ(Wij ; θ0, η0)‖2|Ick × Jc

ℓ ]

≤ sup
η∈Tn

EPn
[‖ψ(W00; θ0, η)− ψ(W00; θ0, η0)‖2|Ick × Jc

ℓ ]

= sup
η∈Tn

EPn
[‖ψ(W00; θ0, η)− ψ(W00; θ0, η0)‖2] = (r′n)

2,

where the first inequality follows from Cauchy-Schwartz’s inequality, the second-to-last equality is

due to Assumption 1, and the last equality is due to Assumption 3 (iii).
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Hence, I3,kℓ = OPn(r
′
n). To bound I4,kℓ, let

fkℓ(r) := EPn [ψ(Wij ; θ0, η0 + r(η̂kℓ − η0))|Ick × Jc
ℓ ]− EPn [ψ(W11; θ0, η0)], r ∈ [0, 1].

An application of the mean value expansion coordinate-wise gives

fkℓ(1) = fkℓ(0) + f ′kℓ(0) + f ′′kℓ(r̃)/2,

where r̃ ∈ (0, 1). Note that fkℓ(0) = 0 under Assumption 2 (i), and

‖f ′kℓ(0)‖ =
∥∥∥∂ηEPnψ(W ; θ0, η0)[η̂kℓ − η0]

∥∥∥ ≤ λn

under Assumption 2 (iv). Moreover, under Assumption 3 (iii), on the event En, we have

‖f ′′kℓ(r̃)‖ ≤ sup
r∈(0,1)

‖f ′′kℓ(r)‖ ≤ λ′n.

This completes a proof of (A.2).

Step 4. Note that

EPn

[∥∥∥
√
C

NM

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0)
∥∥∥
2]

=
C

(NM)2
EPn

[ dθ∑

m=1

( N∑

i=1

M∑

j=1

ψm(Wij ; θ0, η0)
)2]

=
C

(NM)2

N∑

i=1

∑

1≤j<j′≤M

EPn

[ dθ∑

m=1

ψm(Wij ; θ0, η0)ψm(Wij′ ; θ0, η0)
]

+
C

(NM)2

∑

1≤i<i′≤N

M∑

j=1

EPn

[ dθ∑

m=1

ψm(Wij ; θ0, η0)ψm(Wi′j; θ0, η0)
]

+
C

(NM)2

N∑

i=1

M∑

j=1

EPn

[ dθ∑

m=1

ψ2
m(Wij; θ0, η0)

]
+ 0

.EPn [‖ψ(Wij ; θ0, η0)‖2] ≤ c21

under Assumptions 1 and 3 (ii). Therefore, an application of Markov’s inequality implies

∥∥∥
√
C

NM

N∑

i=1

M∑

j=1

ψ(Wij ; θ0, η0)
∥∥∥ = OPn(1).

This completes a proof of (A.3).

Step 5. Note that all singular values of J0 are bounded from above by c1 under Assumption 2 (v)

and all eigenvalues of Γ are bounded from below by c0 under Assumption 3 (iv). Therefore, we have

‖σ−1‖ ≤ c1/
√
c0 and thus ‖σ−1‖ = OPn(1). This completes a proof of (A.4).
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A.2 Proof of Theorem 2

Proof. Step 2 of the proof of Theorem 1 proves ‖Ĵ − J0‖ = Op(C
−1/2 + rn) and Assumption 2 (v)

implies ‖J−1
0 ‖ ≤ c−1

0 . Therefore, to prove the claim of the theorem, it suffices to show

∥∥∥ 1

K2

∑

(k,ℓ)∈[K]2

{ |I| ∧ |J |
(|I||J |)2

∑

i∈Ik

∑

j,j′∈Jℓ

ψ(Wij ; θ̃, η̂kℓ)ψ(Wij′ ; θ̃, η̂kℓ)
′

+
|I| ∧ |J |
(|I||J |)2

∑

i,i′∈Ik

∑

j∈Jℓ

ψ(Wij ; θ̃, η̂kℓ)ψ(Wi′j ; θ̃, η̂kℓ)
′
}

− µ̄NEP [ψ(W11; θ0, η0)ψ(W12; θ0, η0)
′]− µ̄MEP [ψ(W11; θ0, η0)ψ(W21; θ0, η0)

′]
∥∥∥ = OP (ρn).

Moreover, since K and dθ are constants and µN → µ̄N ≤ 1 and µM → µ̄M ≤ 1, it suffices to show

that for each (k, ℓ) ∈ [K]2 and l,m ∈ [dθ], it holds that

∣∣∣ |I| ∧ |J |
(|I||J |)2

∑

i∈Ik

∑

j,j′∈Jℓ

ψl(Wij; θ̃, η̂kℓ)ψm(Wij′ ; θ̃, η̂kℓ)− µNEP [ψl(W11; θ0, η0)ψm(W12; θ0, η0)]
∣∣∣ = OP (ρn)

and

∣∣∣ |I| ∧ |J |
(|I||J |)2

∑

i,i′∈Ik

∑

j∈Jℓ

ψl(Wij ; θ̃, η̂kℓ)ψm(Wi′j ; θ̃, η̂kℓ)− µMEP [ψl(W11; θ0, η0)ψm(W21; θ0, η0)]
∣∣∣ = OP (ρn).

We will show the second statement since the first one follows analogously. Denote the left-hand

side of the equation as Ikℓ,lm. First, note that (|I| ∧ |J |)/|J | = µM , and apply the triangle inequality

to get

Ikℓ,lm ≤ Ikℓ,lm,1 + Ikℓ,lm,2,

where

Ikℓ,lm,1 :=
∣∣∣ 1

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

{
ψl(Wij ; θ̃, η̂kℓ)ψm(Wi′j ; θ̃, η̂kℓ)− ψl(Wij ; θ0, η0)ψm(Wi′j ; θ0, η0)

}∣∣∣

Ikℓ,lm,2 :=
∣∣∣ 1

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

ψl(Wij; θ0, η0)ψm(Wi′j; θ0, η0)− EP [ψl(W11; θ0, η0)ψm(W21; θ0, η0)]
∣∣∣.
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We first find a bound for Ikℓ,lm,2. Since q > 4, it holds that

EP [I2
kℓ,lm,2] =

1

|I|4|J |2EP

[∣∣∣
∑

i,i′∈Ik

∑

j∈Jℓ

ψl(Wij ; θ0, η0)ψm(Wi′j; θ0, η0)− EP [ψl(W11; θ0, η0)ψm(W21; θ0, η0)]
∣∣∣
2]

≤ 1

|I|4|J |2EP

[ ∑

i,i′,i′′∈Ik

∑

j,j′∈Jℓ

ψl(Wij ; θ0, η0)ψm(Wi′j ; θ0, η0)ψl(Wij′ ; θ0, η0)ψm(Wi′′j′ ; θ0, η0)
]

+
1

|I|4|J |2EP

[ ∑

i,i′,i′′,i′′′∈Ik

∑

j∈Jℓ

ψl(Wij ; θ0, η0)ψm(Wi′j ; θ0, η0)ψl(Wi′′j; θ0, η0)ψm(Wi′′′j ; θ0, η0)
]

+ o((|I| ∧ |J |)−1) + 0

.
1

|I| ∧ |J |EP [‖ψ(W ; θ0, η0)‖4] . c41/C = O(C−1/2).

Now, to bound Ikℓ,lm,1, we make use of the following identity coming from the proof of Theorem

3.2 in CCDDHNR (2018): for any numbers a, b, δa, δb such that |a| ∨ |b| ≤ c and |δa| ∨ |δb| ≤ r, it

holds that |(a+ δa)(b+ δb)−ab| ≤ 2r(c+ r). Denote ψij,h := ψl(Wij ; θ0, η0) and ψ̂ij,h := ψl(Wij ; θ̃, η̂kℓ)

for h ∈ {l,m} and apply the above identity with a = ψij,l, b = ψi′j,m, a+ δa = ψ̂ij,l, b+ δb = ψ̂i′j,m,

r = |ψ̂ij,l − ψij,l| ∨ |ψ̂i′j,m − ψi′j,m| and c = |ψij,l| ∨ |ψi′j,m|. Then

Ikℓ,lm,1 =
∣∣∣ 1

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

{
ψ̂ij,lψ̂i′j,m − ψij,lψi′j,m

}∣∣∣

≤ 1

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

|ψ̂ij,lψ̂i′j,m − ψij,lψi′j,m|

≤ 2

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

(|ψ̂ij,l − ψij,l| ∨ |ψ̂i′j,m − ψi′j,m|)

×
(
|ψij,l| ∨ |ψi′j,m|+ |ψ̂ij,l − ψij,l| ∨ |ψ̂i′j,m − ψi′j,m|

)

≤
( 2

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

|ψ̂ij,l − ψij,l|2 ∨ |ψ̂i′j,m − ψi′j,m|2
)1/2

×
( 2

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

{
|ψij,l| ∨ |ψi′j,m|+ |ψ̂ij,l − ψij,l| ∨ |ψ̂i′j,m − ψi′j,m|

}2)1/2

≤
( 2

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

|ψ̂ij,l − ψij,l|2 ∨ |ψ̂i′j,m − ψi′j,m|2
)1/2

×
{( 2

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

|ψij,l|2 ∨ |ψi′j,m|2
)1/2

+
( 2

|I|2|J |
∑

i,i′∈Ik

∑

j∈Jℓ

|ψ̂ij,l − ψij,l|2 ∨ |ψ̂i′j,m − ψi′j,m|2
)1/2}

,
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where the second to the last inequality follows the Cauchy-Schwartz’s inequality and Minkowski’s

inequality. Notice that

∑

i,i′∈Ik

∑

j∈Jℓ

|ψij,l|2 ∨ |ψi′j,m|2 ≤ |I|
N∑

i=1

M∑

j=1

‖ψ(Wij ; θ0, η0)‖2,

∑

i,i′∈Ik

∑

j∈Jℓ

|ψ̂ij,l − ψij,l|2 ∨ |ψ̂i′j,m − ψi′j,m|2 ≤ |I|
N∑

i=1

M∑

j=1

‖ψ(Wij ; θ̃, η̂kℓ)− ψ(Wij ; θ0, η0)‖2.

Thus, the above bound for Ikℓ,lm,1 implies that

I2
kℓ,lm,1 .Rn ×

( 1

|I||J |
∑

(i,j)∈Ik×Jℓ

‖ψ(Wij ; θ0, η0)‖2 +Rn

)
,

where

Rn :=
1

|I||J |
∑

(i,j)∈Ik×Jℓ

‖ψ(Wij ; θ̃, η̂kℓ)− ψ(Wij ; θ0, η0)‖2.

Notice that

1

|I||J |
∑

(i,j)∈Ik×Jℓ

‖ψ(Wij ; θ0, η0)‖2 = OP (1),

which is implied by Markov’s inequality and the calculations

EP

[ 1

|I||J |
∑

(i,j)∈Ik×Jℓ

‖ψ(Wij ; θ0, η0)‖2
]
=EP [‖ψ(W11; θ0, η0)‖2] ≤ c21

under Assumptions 1 and 3 (ii). Finally, to bound Rn, using Assumption 2 (ii),

Rn .
1

|I||J |
∑

(i,j)∈Ik×Jℓ

‖ψa(Wij ; η̂kℓ)(θ̃ − θ0)‖2 +
1

|I||J |
∑

(i,j)∈Ik×Jℓ

‖ψ(Wij ; θ0, η̂kℓ)− ψ(Wij ; θ0, η0)‖2.

The first term on RHS is bounded by

( 1

|I||J |
∑

(i,j)∈Ik×Jℓ

‖ψa(Wij ; η̂kℓ)‖2
)
× ‖θ̃ − θ0‖2 = OP (1)×OP (C

−1) = OP (C
−1)

due to Assumption 3 (ii), Markov’s inequality, and Theorem 1. Furthermore, given that (Wij)(i,j)∈Ic
k
×Jc

ℓ

satisfies η̂kℓ ∈ Tn,

EP

[
‖ψ(Wij ; θ0, η̂kℓ)− ψ(Wij ; θ0, η0)‖2

∣∣∣Ick × Jc
ℓ

]
≤ sup

η∈Tn

EP

[
‖ψ(Wij ; θ0, η)− ψ(Wij ; θ0, η0)‖2

∣∣∣Ick × Jc
ℓ

]
≤ (r′n)

2
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due to Assumptions 1 and 3 (iii). Also, the event η̂kℓ ∈ Tn happens with probability 1− o(1), we have

Rn = OP (C
−1 + (r′n)

2). Thus we conclude that

Ikℓ,lm,1 = OP (C
−1/2 + r′n).

This completes the proof.

B Useful Lemmas

We collect some of the useful auxiliary results in this section.

First, for any f : supp(W) → R

d for a fixed d ∈ N, we use

Gnf :=
√
C
{ 1

NM

N∑

i=1

M∑

j=1

f(Wij)− EP [f(W11)]
}

to denote its multiway empirical process. The following is a multivariate version of Chiang and Sasaki

(2019), Lemma 1; see also Lemma D.2 in Davezies et al. (2018).

Lemma 1 (Independentization via Hájek Projections). If Assumption 1 holds and f : supp(W) → R

d

for some fixed d ∈ N and suppose EP‖f(W11)‖2 < K for a finite constant K that is independent of

n, then there exist i.i.d. uniform random variables Ui0 and U0j such that the Hájek projection Hnf of

Gnf on

Gn =
{ N∑

i=1

gi0(Ui0) +

M∑

j=1

g0j(U0j) : gi0, g0j ∈ L2(Pn)
}

is equal to

Hnf =

√
C

N

N∑

i=1

EP

[
f(Wi1)− EP f(W11)

∣∣∣Ui0

]
+

√
C

M

M∑

j=1

EP

[
f(W1j)− EP f(W11)

∣∣∣U0j

]

for each n. Furthermore,

V (Gnf) = V (Hnf) +O(C−1) = µ̄NCov(f(W11), f(W12)) + µ̄MCov(f(W11), f(W21)) +O(C−1)

holds a.s.

Proof. The proof is essentially the same as the proof for Lemma 1 of Chiang and Sasaki (2019) and

is therefore omitted.
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The following re-states Lemma 6.1. of CCDDHNR (2018):

Lemma 2 (Conditional Convergence Implies Unconditional). Let (Xn) and (Yn) be sequences of

random vectors.

(i) If for ǫn → 0, P (‖Xn‖ > ǫn|Yn) = oP (1) in probability, then P (‖Xn‖ > ǫn) = o(1). In particular,

this occurs if EP [‖Xn‖q/ǫqn|Yn] = oP (1) for some q ≥ 1.

(ii) Let (An) be a sequence of positive constants. If ‖Xn‖ = OP (An) conditional on Yn, then ‖Xn‖ =

OP (An) unconditional, namely, for any ln → ∞, P (‖Xn‖ > lnAn) = o(1).

C Extension to General Multiway Clustering

In this section, we extend the main results to general multiway cluster sampling framework. Notations

in the current section are independent of those in the remaining parts of the paper – we introduce dif-

ferent notations in order to enhance the readability of the main results of the paper while economizing

complicated notations in the current extension section. Consider the ℓ-way clustered data for a fixed

dimension ℓ ∈ N. With Ci ∈ N denoting the number of clusters in the i-th cluster dimension for each

i ∈ {1, ..., ℓ}, each cell of the ℓ-way clustered sample is indexed by the ℓ-dimensional multiway cluster

indices j = (j1, ..., jℓ) ∈ ×ℓ
i=1[Ci]. The ℓ-dimensional size (C1, ..., Cℓ) ∈ N

ℓ of the ℓ-way clustered

sample will be index by n ∈ N as (C1, ..., Cℓ) = (C1(n), ..., Cℓ(n)), where Ci(n) is non-decreasing in

n for each i ∈ {1, ..., ℓ} and
ℓ∏

i=1
Ci(n) is increasing in n. With this said, we will suppress the index

notation and write (C1, ..., Cℓ) without n for simplicity. Also define the notations C = (C1, ..., Cℓ),
∏

C =
ℓ∏

i=1
Ci, C = min1≤i≤ℓCi, C = max1≤i≤ℓCi, and µi = C/Ci for each i ∈ {1, ..., ℓ}. Suppose

that µi → µ̄i for some constant µ̄i for each i ∈ {1, ..., ℓ}. The number of observations in the j-th

cell is denoted by Nj, which is treated as an {0, 1, ..., N}-valued random variable for some N ∈ N not

depending on n. When [·] takes the random variable Nj as an argument, we extend the definition of

[·] to [Nj] := {1, ..., Nj} if Nj ≥ 1 and := ∅ if Nj = 0. The observed vector for unit ı ∈ [Nj] in the j-th

cell is denoted by Wı,j. Let {Pn}n be a sequence of sets of probability laws of (Nj, (Wı,j)1≤ı≤N )j≥1,

where 1 := (1, ..., 1) for a short-hand notation and we write j ≥ j ′ to mean ji ≥ ji
′ for all i ∈ {1, ..., ℓ}.
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Example 2. The sampling setting in Section 2.1 fits in the current general framework with ℓ = 2,

C1 = N , C2 =M , and (Nj,W1,j) = (1,Wj1j2) for all j ∈ [N ]× [M ] with probability one. △

The econometric model has the true parameters (θ0, η0) ∈ Θ × T satisfying the score moment

restriction

EP

[ N1∑

ı=1

ψ(Wı,1; θ0, η0)
]
= 0, (C.1)

where we focus on the linear Neyman orthogonal score of the form

ψ(w; θ, η) = ψa(w; η)θ + ψb(w; η), for all w ∈ supp(W), θ ∈ Θ, η ∈ T (C.2)

for supp(W):= ∪N
ı=1supp(Wı,1), Θ ⊂ R

dθ and a convex set T .

For a fixed integer K > 1, we randomly split the data into K folds in each of the ℓ cluster

dimensions, resulting inKℓ folds in total. Specifically, randomly partition [Ci] intoK parts {I1i , ..., IKi }

for each i ∈ {1, ..., ℓ}. We use the ℓ-dimensional indices k := (k1, ..., kℓ) to index the ℓ-way fold

Ik := Ik1 × · · · × Ikℓ and its complementary product Ick := Ick1 × · · · × Ickℓ for each k ∈ [K]ℓ. Let

η̂k = η̂(((Wι,j)ι∈[Nj])j∈Ick )

be a machine learning estimate of η using the subsample ((Wι,j)ι∈[Nj])j∈Ick for each k ∈ [K]ℓ. Let

Ĵ :=
1

Kℓ

∑

k∈[K]ℓ

En,k

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
]

where

En,k

[ ∑

ı∈[Nj]

f(Wı,j)
]
:=

1

|Ik|
∑

j∈Ik

∑

ı∈[Nj]

f(Wı,j) for each k ∈ [K]ℓ

for any Borel measurable function f , the sum
∑

ı∈[Nj]

is treated as zero whenNj = 0, and |Ik| := ⌊
∏ℓ

i=1 Ci

Kℓ ⌋.

With these setup and notations, the multiway DML estimator is defined by

θ̃ =− Ĵ−1 1

Kℓ

∑

k∈[K]ℓ

En,k

[ ∑

ı∈[Nj]

ψb(Wı,j; η̂k)
]
. (C.3)

Let |Ik| = min{|Ik1 |, ..., |Ikℓ |} for a short-hand notation. Also let I(j) denote the multiway fold

containing the j-th multiway cluster, i.e., I(j) ⊂ ×ℓ
i=1[Ci] satisfies Ik = I(j) for some k ∈ [K]ℓ and

j ∈ I(j). With these additional notations, we propose to estimate the asymptotic variance of
√
C(θ̃−θ0)
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by

σ̂2 =Ĵ−1
[ 1

Kℓ

∑

k∈[K]ℓ

|Ik|
|Ik|2

ℓ∑

i=1

∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψ(Wı,j; θ̃, η̂k)ψ(Wı,j ′ ; θ̃, η̂k)
′
]
(Ĵ−1)′. (C.4)

Example 2, Continued. The two-way DML in Section 2.2 is a special case of the current gen-

eral methodological framework with {I11 , ..., IK1 } = {I1, ..., IK}, {I12 , ..., IK2 } = {J1, ..., JK}, η̂(k1,k2) =

η̂((Wj1j2)(j1,j2)∈([N ]\Ik1 )×([M ]\Jk2
), Ĵ = 1

K2

∑
(k1,k2)∈[K]2 En,(k1,k2)[ψ

a(Wj1j2 ; η̂(k1,k2))] where En,(k1,k2)

[f(Wj1j2)] =
1

|Ik1 ||Jk2 |

∑
(j1,j2)∈Ik1×Jk2

f(Wj1j2), θ̃ = −Ĵ−1 1
K2

∑
(k1,k2)∈[K]2 En,(k1,k2)

[
ψb(Wj1j2 ; η̂(k1,k2))

]
,

and σ̂2 = Ĵ−1Γ̂(Ĵ−1)′ where Γ̂ = 1
K2

∑
(k1,k2)∈[K]2

{
|Ik1 |∧|Jk2

|

(|Ik1 ||Jk2
|)2

∑
j1∈Ik1

∑
j2,j

′

2
∈Jk2

ψ(Wj1j2 ; θ̃, η̂(k1,k2))ψ(Wj1j
′

2
; θ̃, η̂(k1,k2))

′+

|Ik1 |∧|Jk2
|

(|Ik1 ||Jk2
|)2

∑
j1,j

′

1
∈Ik1

∑
j2∈Jk2

ψ(Wj1j2 ; θ̃, η̂(k1,k2))ψ(Wj′
1
j2
; θ̃, η̂(k1,k2))

′
}
.△

We now state assumptions under which (C.4) is an asymptotically valid variance estimator for
√
C(θ̃ − θ0) with the multiway DML estimator (C.3). We write a . b to mean a ≤ cb for some c > 0

that does not depend on n. We also write a .P b to mean a = OP (b). For any finite dimensional

vector v, ‖v‖ denotes the ℓ2 or Euclidean norm of v. For any matrix A, ‖A‖ denotes the induced

ℓ2-norm of the matrix. The following assumption concerns the multiway clustered sampling.

Assumption 4 (Sampling). The following conditions hold for each n.

(i) The array (Nj, (Wı,j)1≤ı≤N )j≥1 is an infinite sequence of separately exchangeable random vector.

That is, for any ℓ-tuple of permutations (π1, ..., πℓ) of N, we have

(Nj, (Wı,j)1≤ı≤N )j≥1
d
= (Nπ1(j1),...,πℓ(jℓ), (Wı,π1(j1),...,πℓ(jℓ))1≤ı≤N )j≥1.

(ii) (Nj, (Wı,j)1≤ı≤N )j≥1 is dissociated. That is, for any c ≥ 1, (Nj, (Wı,j)1≤ı≤N )1≤j≤c is independent

of (Nj ′ , (Wı′,j ′)1≤ı′≤N )j ′≥c+1

(iii) E(N1) > 0 and Nj ≤ N for each 1 ≤ j ≤ C, where N ∈ N does not depend on n.

(iv) The econometrician observes (Nj, (Wı,j)1≤ı≤Nj
)1≤j≤C.

Remark 5. The dependence among (Wı,j)ı≥1 in each cell j is left unrestricted in this assumption.

Assumption 4 is similar to Assumption 1 of Davezies et al. (2018), except for N . We introduce N to

simplify some concentration arguments.

31



Let c0 > 0, c1 > 0, s > 0, q ≥ 4 be some finite constants with c0 ≤ c1. Let {δn}n≥1 (estimation

errors) and {∆n}n≥1 (probability bounds) be sequences of positive constants that converge to zero such

that δn ≥ C−1/2. Let K ≥ 2 be a fixed integer. Let (N0, (Wı,0)0≤ı≤N ) denote an independent copy

of (N1, (Wı,1)1≤ı≤N ) and therefore is independent from the data and the random set Tn of nuisance

realization. With these notations, we state the following assumptions for the model.

Assumption 5 (Linear Neyman Orthogonal Score). For all C ≥ 3 and P ∈ Pn, the following

conditions hold.

(i) The true parameter value θ0 satisfies (C.1).

(ii) ψ is linear in the sense that it satisfies (C.2).

(iii) The map η 7→ EP

[ ∑
ı∈[N0]

ψ(Wı,0; θ, η)
]
is twice continuously Gateaux differentiable on T .

(iv) ψ satisfies the Neyman near orthogonality condition at (θ0, η0) as

λn := sup
η∈Tn

∥∥∥∂ηEP

[ ∑

ı∈[N0]

ψ(Wı,0; θ0, η0)[η − η0]
]∥∥∥ ≤ δnC

−1/2.

(v) The identification condition holds as the singular values of the matrix J0 := EP

[ ∑
ı∈[N0]

ψa(Wı,0; η0)
]

are between c0 and c1.

Assumption 6 (Score Regularity and Nuisance Parameter Estimators). For all C ≥ 3 and P ∈ Pn,

the following conditions hold.

(i) The realization set Tn contains η0, and the nuisance parameter estimator η̂k = η̂((Wι,j)ι∈[Nj])j∈Ick

belongs to the realization set Tn for each k ∈ [K]ℓ with probability at least 1−∆n.

(ii) The following moment conditions hold:

mn := sup
η∈Tn

(EP

[∥∥∥
∑

ı∈[N0]

ψ(Wı,0; θ0, η)
∥∥∥
q]
)1/q ≤ c1,

m′
n := sup

η∈Tn

(EP

[∥∥∥
∑

ı∈[N0]

ψa(Wı,0; η)
∥∥∥
q]
)1/q ≤ c1.
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(iii) The following conditions on the rates rn, r
′
n and λ′n hold:

rn := sup
η∈Tn

∥∥∥EP

[ ∑

ı∈[N0]

ψa(Wı,0; η)
]
− EP

[ ∑

ı∈[N0]

ψa(Wı,0; η0)
]∥∥∥ ≤ δn,

r′n := sup
η∈Tn

(∥∥∥EP

[ ∑

ı∈[N0]

ψ(Wı,0; θ0, η)
]
− EP

[ ∑

ı∈[N0]

ψ(Wı,0; θ0, η0)
]∥∥∥

2)1/2
≤ δn,

λ′n = sup
r∈(0,1),η∈Tn

∥∥∥∂2rEP

[ ∑

ı∈[N0]

ψ(Wı,0; θ0, η0 + r(η − η0))
]∥∥∥ ≤ δn/

√
C.

(iv) All eigenvalues of the matrix

Γ :=

ℓ∑

i=1

µ̄iΓi =

ℓ∑

i=1

µ̄iEP




N1∑

ı=1

N2i∑

ı′=1

ψ(Wı,1; θ0, η0)ψ(Wı′,2i ; θ0, η0)
′




are bounded from below by c0, where 2i denotes the ℓ−tuple vector with 2 in each entry but for

1 in the i-th entry.

The following theorems generalize Theorems 1 and 2 to cover general ℓ-way cluster sampling. Their

proofs are contained in Section D.

Theorem 3 (Main Result). Suppose that Assumptions 4, 5 and 6 are satisfied. If δn ≥ C−1/2 for all

C ≥ 1, then

√
Cσ−1(θ̃ − θ0) =

√
C∏
C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ̄(Wı,j) +OP (ρn) N(0, Idθ )

holds uniformly for all P ∈ Pn, where
∏

C =
ℓ∏

i=1
Ci, the influence function takes the form ψ̄(·) :=

−σ−1J−1
0 ψ(·; θ0, η0), the size of the remainder terms follows

ρn := C−1/2 + rn + r′n + C1/2λn +C1/2λ′n . δn,

and the asymptotic variance is given by

σ2 := J−1
0 Γ(J−1

0 )′. (C.5)

Theorem 4 (Variance Estimator). Under the assumptions required by Theorem 3, we have

σ̂2 = σ2 +OP (ρn).

Furthermore, the statement of Theorem 3 holds true with σ̂2 in place of σ2.
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D Proofs of the Extended Results

D.1 Proof of Theorem 3

Proof. Let En denote the event η̂(k1,...,kℓ) ∈ Tn for all (k1, ...kℓ) ∈ [K]ℓ and define k := (k1, ..., kℓ).

Assumption 6 (i) implies Pn(En) ≥ 1 −Kℓ∆n. Let e ∈ {0, 1}ℓ, and define Ae := {(j, j ′) : 1 ≤ j, j ′ ≤

C : ∀i = 1, ..., ℓ, ei = 1 ⇔ ji = j′i}, and εm := {e ∈ {0, 1}ℓ :∑ℓ
i′=1 ei′ = m}.

Step 1. This is the main step showing linear representation and asymptotic normality for the proposed

estimator. Denote

Ĵ :=
1

Kℓ

∑

k∈[K]ℓ

En,k

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
]
, Rn,1 := Ĵ − J0,

Rn,2 :=
1

Kℓ

∑

k∈[K]ℓ

En,k

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)
]
− 1∏

C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0).

We will later show in Steps 2, 3, 4 and 5, respectively, that

‖Rn,1‖ = OPn(C
−1/2 + rn), (D.1)

‖Rn,2‖ = OPn(C
−1/2r′n + λn + λ′n), (D.2)

∥∥∥
√
C

1∏
C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥ = OPn(1), (D.3)

‖σ−1‖ = OPn(1). (D.4)

Then, under Assumptions 5 and 6, C−1/2 + rN ≤ ρn = o(1) and all singular values of J0 are bounded

away from zero. Therefore, with Pn-probability at least 1− o(1), all singular values of Ĵ are bounded

away from zero. Thus with the same Pn probability, the multiway DML solution is uniquely written

as

θ̃ = −Ĵ−1 1

Kℓ

∑

k∈[K]ℓ

En,k

[ ∑

ı∈[Nj]

ψb(Wı,j; η̂k)
]
,
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and

√
C(θ̃ − θ0) =−

√
CĴ−1 1

Kℓ

∑

k∈[K]ℓ

(
En,k

[ ∑

ı∈[Nj]

ψb(Wı,j; η̂k)
]
+ Ĵθ0

)

=−
√
CĴ−1 1

Kℓ

∑

k∈[K]ℓ

En,k

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)
]

=−
(
J0 +Rn,1

)−1
×
(√C∏

C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0) +
√
CRn,2

)
. (D.5)

Using the fact that

(
J0 +Rn,1

)−1
− J−1

0 = −(J0 +Rn,1)
−1Rn,1J

−1
0 ,

we have

‖(J0 +Rn,1)
−1 − J−1

0 ‖ =‖(J0 +Rn,1)
−1Rn,1J

−1
0 ‖ ≤ ‖(J0 +Rn,1)

−1‖ ‖Rn,1‖ ‖J−1
0 ‖

=OPn(1)OPn(C
−1/2 + rn)OPn(1) = OPn(C

−1/2 + rn).

Furthermore, r′n +
√
C(λn + λ′n) ≤ ρn = o(1), it holds that

∥∥∥
√
C∏
C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0) +
√
CRn,2

∥∥∥ ≤
∥∥∥
√
C∏
C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥+

∥∥∥
√
CRn,2

∥∥∥

=OPn(1) + oPn(1) = OPn(1),

where the first equality is due to (D.3) and (D.4). Combining above two bounds gives

∥∥∥
(
J0 +Rn,1

)−1
− J−1

0

∥∥∥×
∥∥∥
√
C∏
C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0) +
√
CRn,2

∥∥∥ =OPn(C
−1/2 + rn)OPn(1)

=OPn(C
−1/2 + rn).

(D.6)

Therefore, from (D.4), (D.5) and (D.6), we have

√
Cσ−1(θ̃ − θ0) =

√
C∏
C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ̄(Wı,j) +OPn(ρn).

The first term on the RHS above can be written as Gnψ̄. Applying Lemma 3, we obtain the indepen-

dent linear representation

Hnψ̄ :=

C1∑

j1=1

√
C

C1
EPn

[ ∑

ı∈[Nj]

ψ̄(Wı,j)
∣∣∣Uj1,0...0

]
+ ...+

Cℓ∑

jℓ=1

√
C

Cℓ
EPn

[ ∑

ı∈[Nj]

ψ̄(Wı,j)
∣∣∣U0...0,jℓ

]

35



and it holds Pn-a.s. that

Vn(Gnψ̄) =Vn(Hnψ̄) +O(C−1) = J−1
0 Γ(J−1

0 )′ +O(C−1) and

Gnψ̄ =Hnψ̄ +OP (C
−1/2),

where Vn(·) = EPn [(· − EPn [·])2]. Under Assumption 6 (iv). Recall that q ≥ 4, the third moments of

both summands of Hnψ̄ are bounded over n under Assumptions 5(v) and 6 (ii) (iv). We have verified

all the conditions for Lyapunov’s CLT. An application of Lyapunov’s CLT and Cramer-Wold device

gives

Hnψ̄  N(0, Idθ )

and an application of Theorem 2.7 of van der Vaart (1998) concludes the proof.

Step 2. Since K is fixed, it suffices to show for any k ∈ [K]ℓ,

∥∥∥En,k

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
]
− EP

[ ∑

ı∈[N0]

ψa(Wı,0; η0)
]∥∥∥ = OPn(C

−1/2 + rn).

Fix k ∈ [K]ℓ,

∥∥∥En,k

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
]
− EPn

[ ∑

ı∈[N0]

ψa(Wı,0; η0)
]∥∥∥ ≤ I1,k + I2,k,

where

I1,k :=
∥∥∥En,k

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
]
− EPn

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
∣∣∣Ick1 × ...× Ickℓ

]∥∥∥,

I2,k :=
∥∥∥EPn

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
∣∣∣Ick1 × ...× Ickℓ

]
− EPn

[ ∑

ı∈[N0]

ψa(Wı,0; η0)
]∥∥∥.

Notice that I2,k ≤ rn with Pn-probability 1− o(1) follows directly from Assumptions 4 (ii) and 6 (iii).

Now denote ψ̃a
j,m =

∑
ı∈[Nj]

ψa
m(Wı,j; η̂k)− EPn

[ ∑
ı∈[Nj]

ψa
m(Wı,j; η̂k)

∣∣∣Ick1 × ... × Ickℓ

]
and ψ̃a

j = (ψ̃a
j,m)m∈[dθ ],

and |Ik| = min{|Ik1 |, ..., |Ikℓ |}. Let us denote Ik := (Ik1 × ...× Ikℓ) and Ick := (Ick1 × ... × Ickℓ). Let

j 7→ I(j) ∈ I, and define Be := {(j, j ′) : ∀i = 1, ..., ℓ, ei = 1 ⇔ Ii(j) = Ii(j
′) : j, j ′ ∈ I}, where

I := {I11 , ..., IK1 }× ...×{I1ℓ , ..., IKℓ }, and ǫm := {e ∈ {0, 1}ℓ :∑ℓ
i′=1 ei′ = m}. To bound I1,k, note that
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conditional on Ick, it holds that

EPn [I2
1,k|Ick] =EPn

[∥∥∥En,k

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
]
− EPn

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
∣∣∣Ick
]∥∥∥

2∣∣∣Ick
]

=
1

|Ik|2
EPn

[ dθ∑

m=1

(∑

j∈Ik

ψ̃a
j,m

)2∣∣∣Ick
]

=
1

|Ik|2
∑

e∈ǫ1

∑

(j ′,j)∈Be

EPn

[ dθ∑

m=1

ψ̃a
j,mψ̃

a
j ′,m

∣∣∣Ick
]

+
1

|Ik|2
ℓ∑

r=2

∑

e∈ǫr

∑

(j ′,j)∈Be

EPn

[ dθ∑

m=1

ψ̃a
j,mψ̃

a
j ′,m

∣∣∣Ick
]

+
1

|Ik|2
∑

e∈ǫ0

∑

(j ′,j)∈Be

EPn

[ dθ∑

m=1

ψ̃a
j,mψ̃

a
j ′,m

∣∣∣Ick
]

=
1

|Ik|2
∑

e∈ǫ1

∑

(j ′,j)∈Be

EPn [〈ψ̃a
j , ψ̃

a
j ′〉|Ick ] +R+ 0

.
1

|Ik|
EPn

[∥∥∥
∑

ı∈[Nj]

ψa(Wı,j; η̂k)− EPn

[ ∑

ı∈[Nj]

ψa(Wı,j; η̂k)
∣∣∣Ick
]∥∥∥

2∣∣∣Ick
]

≤ 1

|Ik|
EPn

[∥∥∥
∑

ı∈[Nj]

ψa(Wı,j; η̂k)
∥∥∥
2∣∣∣Ick

]
≤ c21

|Ik|
.

In the third equility, the last term corresponds to the covariance between cells sharing no common

cluster. By independence, the last term is zero. Let us denote the second term in the third equality

by R. Under Cauchy-Schwarz inequality and Assumption 4 (ii),

|R| ≤ 1

|Ik|2
∑

e∈∪ℓ
l=2ǫl

|Be|EPn

[ dθ∑

m=1

(ψ̃a
j,m)2

∣∣∣Ick
]
. (D.7)

For r ≥ 1 and e ∈ ǫr, we have

|Be| = |Ik| ×
∏

i:ei=0

(|Iki | − 1). (D.8)

Therefore, R = O(|Ik|−2). Note that C . |Ik| . C. Hence an application of Lemma 2 (i) implies

I1,k = OPn(C
−1/2). This completes a proof of (D.1).

Step 3. It again suffices to show that for any k ∈ [K]ℓ, one has

∥∥∥En,k

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)
]
− 1

|Ik|
∑

j∈Ik

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥ = OPn(C

−1/2r′n + λn + λ′n).

37



Denote

Gn,k

[ ∑

ı∈[Nj]

φ(Wı,j)
]
=

√
C

|Ik|
∑

j∈Ik

∑

ı∈[Nj]

(
φ(Wı,j)−

∫
φ(w)dPn

)
.

Then

∥∥∥En,k

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)
]
− 1

|Ik|
∑

j∈Ik

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥ ≤ I3,k + I4,k√

C
,

where

I3,k :=
∥∥∥Gn,k

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)
]
−Gn,k

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
]∥∥∥,

I4,k :=
√
C
∥∥∥EPn

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)
∣∣∣Ik
]
− EPn

[ ∑

ı∈[N0]

ψ(Wı,0; θ0, η0)
]∥∥∥.

Denote ψ̃j,m :=
∑

ı∈[Nj]

ψm(Wı,j; θ0, η̂k) −
∑

ı∈[Nj]

ψm(Wı,j; θ0, η0) and ψ̃j = (ψ̃j,m)m∈[dθ ]. To bound I3,k,

notice that using a similar argument as for the bound of I1,k, one has

EPn
[‖I3,k‖2|Ick ] =EPn

[∥∥∥Gn,k

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
]∥∥∥

2∣∣∣Ick
]

=EPn

[ C

|Ik|2
dθ∑

m=1

{∑

j∈Ik

(
ψ̃j,m − EPn

ψ̃j,m

)}2∣∣∣Ick
]

=
C

|Ik|2
∑

e∈ǫ1

∑

(j,j ′)∈Be

EPn

[ dθ∑

m=1

(
ψ̃j,m − EPn

ψ̃j,m

)(
ψ̃j ′,m − EPn

ψ̃j ′,m

)∣∣∣Ick
]

+
C

|Ik|2
ℓ∑

r=2

∑

e∈ǫr

∑

(j,j ′)∈Be

EPn

[ dθ∑

m=1

(
ψ̃j,m − EPn

ψ̃j,m

)(
ψ̃j ′,m − EPn

ψ̃j ′,m

)∣∣∣Ick
]

+
C

|Ik|2
∑

e∈ǫ0

∑

(j,j ′)∈Be

EPn

[ dθ∑

m=1

(
ψ̃j,m − EPn

ψ̃j,m

)(
ψ̃j ′,m − EPn

ψ̃j ′,m

)∣∣∣Ick
]

=
C

|Ik|2
∑

e∈ǫ1

∑

(j,j ′)∈Be

EPn

[
〈ψ̃j − EPn

ψ̃j, ψ̃j ′ − EPn
ψ̃j ′〉

∣∣∣Ick
]
+R′ + 0

.EPn

[∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)− EPn

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
]∥∥∥

2∣∣∣Ick
]

≤EPn

[∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2∣∣∣Ick

]

≤ sup
η∈Tn

EPn

[∥∥∥
∑

ı∈[N0]

ψ(Wı,0; θ0, η)−
∑

ı∈[N0]

ψ(Wı,0; θ0, η0)
∥∥∥
2∣∣∣Ick

]

= sup
η∈Tn

EPn

[∥∥∥
∑

ı∈[N0]

ψ(Wı,0; θ0, η)−
∑

ı∈[N0]

ψ(Wı,0; θ0, η0)
∥∥∥
2]

= (r′n)
2,
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where the first inequality follows from Cauchy-Schwartz’s inequality, the second-to-last equality is

due to Assumption 4, and the last equality is due to Assumption 6 (iii). Using the similar argument

for R, we have R′ = O(C−1).

Hence, I3,k = OPn(r
′
n). To bound I4,k, let

fk(r) := EPn

[ ∑

ı∈[Nj]

ψ(Wı,j; θ0, η0 + r(η̂k − η0))
∣∣∣Ick
]
− EPn

[ ∑

ı∈[N0]

ψ(Wı,0; θ0, η0)
]
, r ∈ [0, 1].

An application of the mean value expansion coordinate-wise gives

fk(1) = fk(0) + f ′k(0) + f ′′k (r̃)/2,

where r̃ ∈ (0, 1). Note that fk(0) = 0 under Assumption 5 (i), and

‖f ′k(0)‖ =
∥∥∥∂ηEPn

[ ∑

ı∈[Nj]

ψ(W ; θ0, η0)[η̂k − η0]
]∥∥∥ ≤ λn

under Assumption 5 (iv). Moreover, under Assumption 6 (iii), on the event En, we have

‖f ′′k (r̃)‖ ≤ sup
r∈(0,1)

‖f ′′k (r)‖ ≤ λ′n.

This completes a proof of (D.2).

Step 4. Note that

EPn

[∥∥∥
√
C∏
C

C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2]

=
C
∏2

C

EPn

[ dθ∑

m=1

( C1∑

j1=1

...

Cℓ∑

jℓ=1

∑

ı∈[Nj]

ψm(Wı,j; θ0, η0)
)2]

=
C
∏2

C

∑

e∈ε1

∑

(j,j ′)∈Ae

EPn

[ dθ∑

m=1

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψm(Wı,j; θ0, η0)ψm(Wı′,j ′ ; θ0, η0)
]

+
C
∏2

C

ℓ∑

r=2

∑

e∈εr

∑

(j,j ′)∈Ae

EPn

[ dθ∑

m=1

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψm(Wı,j; θ0, η0)ψm(Wı′,j ′ ; θ0, η0)
]

+
C
∏2

C

∑

e∈ε0

∑

(j,j ′)∈Ae

EPn

[ dθ∑

m=1

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψm(Wı,j; θ0, η0)ψm(Wı′,j ′ ; θ0, η0)
]

.EPn

[∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2]

≤ c21.
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Step 5. Note that all singular values of J0 are bounded from above by c1 under Assumption 5 (v)

and all eigenvalues of Γ are bounded from below by c0 under Assumption 6 (iv). Therefore, we have

‖σ−1‖ ≤ c1/
√
c0 and thus ‖σ−1‖ = OPn(1). This completes a proof of (D.4).

D.2 Proof of Theorem 4

Proof. Step 2 of the proof of Theorem 3 proves ‖Ĵ − J0‖ = Op(C
−1/2 + rn) and Assumption 5 (v)

implies ‖J−1
0 ‖ ≤ c−1

0 . Therefore, to prove the claim of the theorem, it suffices to show

∥∥∥ 1

Kℓ

∑

k∈[K]ℓ

|Ik|
|Ik|2

ℓ∑

i=1

∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψ(Wı,j; θ̃, η̂k)ψ(Wı′,j ′ ; θ̃, η̂k)
′

−
ℓ∑

i=1

µ̄iEP

[ N1∑

ı=1

N2i∑

ı′=1

ψ(Wı,1; θ0, η0)ψ(Wı′,2i ; θ0, η0)
′
] ∥∥∥ = OP (ρn).

Moreover, since K and dθ are constants and µi → µ̄i ≤ 1, it suffices to show that for each k ∈ [K]ℓ

and l,m ∈ [dθ], it holds that

∣∣∣
|Ik|
|Ik|2

∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψl(Wı,j; θ̃, η̂k)ψm(Wı′,j ′ ; θ̃, η̂k)− µiEP

[ N1∑

ı=1

N2i∑

ı′=1

ψl(Wı,1; θ0, η0)ψm(Wı′,2i ; θ0, η0)
]∣∣∣

= OP (ρn).

Denote the left-hand side of the equation as Ik,lm. First, note that |I |/|Iki | = µi. We denote i′ for

Iki such that |Iki′ | = |Ik|, and apply the triangle inequality to get

Ik,lm ≤ Ik,lm,1 + Ik,lm,2,

where

Ik,lm,1 :=
∣∣∣ 1∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

{ ∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψl(Wı,j; θ̃, η̂k)ψm(Wı′,j ′ ; θ̃, η̂k)

−
∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψl(Wı,j; θ0, η0)ψm(Wı′,j ′ ; θ0, η0)
}∣∣∣,

Ik,lm,2 :=
∣∣∣ 1∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψl(Wı,j; θ0, η0)ψm(Wı′,j ′ ; θ0, η0)

− EP [

N1∑

ı=1

N2i∑

ı′=1

ψl(Wı,1; θ0, η0)ψm(Wı′,2i ; θ0, η0)]
∣∣∣.
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We first find a bound for Ik,lm,2. Since q > 4, it holds that

EP [I2
k,lm,2] =

1∏
i 6=i′ |Iki |4|Iki′ |2

EP

[∣∣∣
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψl(Wı,j; θ0, η0)ψm(Wı′,j ′ ; θ0, η0)

− EP

[ N1∑

ı=1

N2i∑

ı′=1

ψl(Wı,1; θ0, η0)ψm(Wı′,2i ; θ0, η0)
]∣∣∣

2]

≤ 1∏
i 6=i′ |Iki |4|Iki′ |2

EP

[ ∑

j,j ′,j′′,j′′′∈Ik
Ii(j)=Ii(j

′),Ii(j
′′)=Ii(j

′′′)

∑

Is(j)=Is(j′′)
s 6=i

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

∑

ı′′∈[Nj′′ ]

∑

ı′′′∈[Nj′′′ ]

ψl(Wı,j; θ0, η0)ψm(Wı′,j′ ; θ0, η0)ψl(Wı′′,j”; θ0, η0)ψm(Wı′′′,j”’; θ0, η0)
]

+
1∏

i 6=i′ |Iki |4|Iki′ |2
EP

[ ∑

j,j ′,j′′,j′′′∈Ik
Ii(j)=Ii(j

′)=Ii(j
′′)=Ii(j

′′′)

∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

∑

ı′′∈[Nj′′ ]

∑

ı′′′∈[Nj′′′ ]

ψl(Wı,j; θ0, η0)ψm(Wı′,j′ ; θ0, η0)ψl(Wı′′,j′′ ; θ0, η0)ψm(Wı′′′,j′′′ ; θ0, η0)
]

+ o(|Ik|−1) + 0

.
1

|Ik|
EP

[∥∥∥
∑

ı∈[N0]

ψ(Wı,0; θ0, η0)
∥∥∥
4]
. c41/C = O(C−1).

Now, to bound Ik,lm,1, we make use of the following identity coming from the proof of Theorem 3.2

in CCDDHNR (2018): for any numbers a, b, δa, δb such that |a| ∨ |b| ≤ c and |δa| ∨ |δb| ≤ r, it holds

that |(a + δa)(b + δb) − ab| ≤ 2r(c + r). Denote ψj,h := ψl(Wı,j; θ0, η0) and ψ̂j,h := ψl(Wı,j; θ̃, η̂k) for

h ∈ {l,m} and apply the above identity with a =
∑

ı∈[Nj]

ψj,l, b =
∑

ı′∈[Nj ′ ]

ψj ′,m, a+δa =
∑

ı∈[Nj]

ψ̂j,l, b+δb =

∑
ı′∈[Nj ′ ]

ψ̂j ′,m, r =
∣∣∣
∑

ı∈[Nj]

ψ̂j,l−
∑

ı∈[Nj]

ψj,l

∣∣∣∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m− ∑
ı′∈[Nj ′ ]

ψj ′,m

∣∣∣ and c =
∣∣∣
∑

ı∈[Nj]

ψj,l

∣∣∣∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣.
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Then

Ik,lm,1 =
∣∣∣ 1∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

{ ∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψ̂j,lψ̂j ′,m −
∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψj,lψj ′,m

}∣∣∣

≤ 1∏
i 6=i′ |Iki |2|Iki′ |

∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∣∣∣
∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψ̂j,lψ̂j ′,m −
∑

ı∈[Nj]

∑

ı′∈[Nj ′ ]

ψj,lψj ′,m

∣∣∣

≤ 2∏
i 6=i′ |Iki |2|Iki′ |

∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

(∣∣∣
∑

ı∈[Nj]

ψ̂j,l −
∑

ı∈[Nj]

ψj,l

∣∣∣ ∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m −
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
)

×
(∣∣∣
∑

ı∈[Nj]

ψj,l

∣∣∣ ∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣+
∣∣∣
∑

ı∈[Nj]

ψ̂j,l −
∑

ı∈[Nj]

ψj,l

∣∣∣ ∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m −
∑

ı′∈[Nj ′ ]

ψj’,m

∣∣∣
)

≤
( 2∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∣∣∣
∑

ı∈[Nj]

ψ̂j,l −
∑

ı∈[Nj]

ψj,l

∣∣∣
2
∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m −
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
2)1/2

×
( 2∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

{∣∣∣
∑

ı∈[Nj]

ψj,l

∣∣∣ ∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣

+
∣∣∣
∑

ı∈[Nj]

ψ̂j,l −
∑

ı∈[Nj]

ψj,l

∣∣∣ ∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m −
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
}2)1/2

≤
( 2∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∣∣∣
∑

ı∈[Nj]

ψ̂j,l −
∑

ı∈[Nj]

ψj,l

∣∣∣
2
∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m −
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
2)1/2

×
{( 2∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∣∣∣
∑

ı∈[Nj]

ψj,l

∣∣∣
2
∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
2)1/2

+
( 2∏

i 6=i′ |Iki |2|Iki′ |
∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∣∣∣
∑

ı∈[Nj]

ψ̂j,l −
∑

ı∈[Nj]

ψj,l

∣∣∣
2
∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m −
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
2)1/2}

,

where the second to the last inequality follows the Cauchy-Schwartz’s inequality and Minkowski’s
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inequality. Notice that

∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∣∣∣
∑

ı∈[Nj]

ψj,l

∣∣∣
2
∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
2
≤ max

1≤i≤ℓ
{|Iki |}

C1∑

j1=1

...

Cℓ∑

jℓ=1

∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2
,

∑

j,j ′∈Ik
Ii(j)=Ii(j

′)

∣∣∣
∑

ı∈[Nj]

ψ̂j,l −
∑

ı∈[Nj]

ψj,l

∣∣∣
2
∨
∣∣∣
∑

ı′∈[Nj ′ ]

ψ̂j ′,m −
∑

ı′∈[Nj ′ ]

ψj ′,m

∣∣∣
2

≤ max
1≤i≤ℓ

{|Iki |}
C1∑

j1=1

...

Cℓ∑

jℓ=1

∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ̃, η̂k)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2
.

Thus, the above bound for Ik,lm,1 implies that

I2
k,lm,1 .Rn ×

( 1

|Ik|
∑

j∈Ik

∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2
+Rn

)
,

where

Rn :=
1

|Ik|
∑

j∈Ik

∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ̃, η̂k)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2
.

Notice that

1

|Ik|
∑

j∈Ik

∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2
= OP (1),

which is implied by Markov’s inequality and the calculations

EP

[ 1

|Ik|
∑

j∈Ik

∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2]

=EP

[∥∥∥
N0∑

ı=1

ψ(Wı,0; θ0, η0)
∥∥∥
2]

≤ c21

under Assumptions 4 and 6 (ii). Finally, to bound Rn, using Assumption 5 (ii),

Rn .
1

|Ik|
∑

j∈Ik

∥∥∥
∑

ı∈[Nj]

ψa(Wı,j; η̂k)(θ̃ − θ0)
∥∥∥
2

+
1

|Ik|
∑

j∈Ik

∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2
.

The first term on RHS is bounded by

( 1

|Ik|
∑

j∈Ik

∥∥∥
∑

ı∈[Nj]

ψa(Wı,j; η̂k)
∥∥∥
2)

× ‖θ̃ − θ0‖2 = OP (1)×OP (C
−1) = OP (C

−1)
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due to Assumption 6 (ii), Markov’s inequality, and Theorem 3. Furthermore, given that (Wı,j)j∈Ic
k

satisfies η̂k ∈ Tn,

EP

[∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η̂k)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2∣∣∣Ick

]

≤ sup
η∈Tn

EP

[∥∥∥
∑

ı∈[Nj]

ψ(Wı,j; θ0, η)−
∑

ı∈[Nj]

ψ(Wı,j; θ0, η0)
∥∥∥
2∣∣∣Ick

]
≤ (r′n)

2

due to Assumptions 4 and 6 (iii). Also, the event η̂k ∈ Tn happens with probability 1− o(1), we have

Rn = OP (C
−1 + (r′n)

2). Thus we conclude that

Ik,lm,1 = OP (C
−1/2 + r′n).

This completes the proof.

E Additional Lemma

In this section, we establish a multiway generalization of Lemma 1. For any r = 1, ..., ℓ,we let Ir(C) =
{
c = j ⊙ e : e ∈ Er,1 ≤ j ≤ C

}
and εm = {e ∈ {0; 1}ℓ :

∑ℓ
i=1 ei = m} , with ⊙ the Hadamard

product on R
ℓ.

For each n ∈ N, let (Nn
j , (W

n
ı,j)1≤ι≤N )j≥1 be a set of random variables. For any f : supp(Wn) → R

d

for a fixed d ∈ N, let us define the multiway empirical process

Gnf :=
√
C
{ 1∏

C

ℓ∑

i=1

Ci∑

ji=1

∑

ι∈Nn
j

f(W n
ı,j)− EP [

∑

ı∈[Nn
1 ]

f(W n
ı,1)]

}
.

Lemma 3 (Independentization via Hájek Projections). For each n ∈ N, suppose that (Nn
j , (W

n
ı,j)1≤ι≤N )j≥1

satisfies Assumption 4. Let Fn, |Fn| = d, be a family of functions f : supp(Wn) → R that satisfies

E

[( ∑
ı∈[Nn

1 ]

f
(
W n

ı,1

))2]
< K <∞ for some K independent of n. In addition, assume that C → ∞ and

for every e ∈ ε1,
C∏
C
→ µi ≥ 0, where i is the nonzero coordinate of e. Then there exists a family of

mutually independent standard uniform r.v.’s (Uc)c>0 such that the Hnf , the Hájek projection of Gnf

on the set of statistics of the form
∑

c∈Ir(C) gc(Uc) (with gc(Uc) square integrable, satisfies

Hnf =
∑

c∈I1(C)

√
C∏

i:ci 6=0Ci


E



Nn

c∨1∑

ı=1

f
(
W n

ı,c∨1

) ∣∣∣Uc


− E


 ∑

ı∈[Nn
1 ]

f
(
W n

ı,1

)



 . (E.1)
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In addition, it holds uniformly over Fn that

V (Gnf) = V (Hnf) +O(C−1) =
∑

e∈ε1

µ̄iCov(

Nn
1∑

ı=1

f(W n
ı,1),

Nn
2-e∑

ı=1

f(W n
ı,2−e)) +O(C−1).

Proof. Throughout the proof, we drop the superscript n for simplicity. Under Assumption 4(i) and

(ii), for each n, one can apply Lemma 7.35 of Kallenberg (2006) and obtain a measurable function τn

such that

(Nj, (Wı,j)1≤ι≤N )j≥1 =
(
τn(Uj⊙e)1≺e�1

)
j≥1

(E.2)

where (Uc)c≥0 denote a family of mutually independent uniform random variables on [0, 1].

The rest of our proof closely follows that of Lemma D.2 in Davezies et al. (2018) with r = r = 1.

The Hájek projection Hnf is characterized by

E
[
(Gnf −Hnf)×

∑

c∈I1(C)

gc (Uc)
]
= 0 for any (gc)c∈I1(C) ∈

(
Lℓ([0; 1])

)|I1(C)|
.

As a result,we have

E [Gnf |Uc] = E [Hnf |Uc] for any c ∈ I1(C).

Because the range Hn is closed subspace of square integrable random variables,

Hnf =
∑

c∈I1(C)

E (Hnf |Uc) .

Next

Hnf =
∑

c∈I1(C)

E (Gnf |Uc) .

Note that for any c ∈ I1(C), c ∧ 1 is the unique element ε1 such that c = j ⊙ e for some j (note

that j is not unique). Moreover, for any c ∈ I1(C) independence between the U ′ s ensures that
∑

ı∈[Nj]

f (Wı,j) ⊥ Uc if j⊙ e 6= c. This implies

E (Gnf |Uc) =

√
C

ΠC

∑

1≤j≤C

E


∑

ı∈[Nj]

f (Wı,j)− E


 ∑

ı∈[N1]

f (Wı,1)



∣∣∣Uc




=

√
C

ΠC

∑

1≤j≤C

1{j⊙ e = c}E


∑

ı∈[Nj]

f (Wı,j)− E


 ∑

ı∈[N1]

f (Wı,1)



∣∣∣Uc


 .
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The representation of (Nj, (Wı,j)1≤ι≤N )j≥1 in terms of the U ’s implies that

E




Nj∑

ı=1

f (Wı,j)− E



∑

ı∈[N1]

f (N1,Wı,1)



∣∣∣Uc


 = E



Nc∨1∑

ı=1

f (Wı,c∨1)− E



∑

ı∈[N1]

f (Wı,1)



∣∣∣Uc




for any j such that j⊙ e = c. Moreover,

E (Gnf |Uc) =

√
C

ΠC

∑

1≤j≤C

1{j⊙ e = c}E



Nc∨1∑

ı=1

f (Wı,c∨1)− E


 ∑

ı∈[N1]

f (Wı,1)



∣∣∣Uc




=

√
C
∏

i:ci=0 Ci

ΠC
E



Nc∨1∑

ı=1

f (Wı,c∨1)− E


 ∑

ı∈[N1]

f (Wı,1)



∣∣∣Uc




=

√
C∏

i:ci 6=0Ci


E

[
Nc∨1∑

ı=1

f (Wı,c∨1)
∣∣∣Uc

]
− E


 ∑

ı∈[N1]

f (Wı,1)




 .

It follows that

Hnf =
∑

c∈I1(C)

√
C∏

i:ci 6=0Ci


E

[
Nc∨1∑

ı=1

f (Wı,c∨1)
∣∣∣Uc

]
− E


 ∑

ı∈[N1]

f (Wı,1)




 .

This shows the first claim of the lemma.

Since Fn is a finite family, we are left to prove that for each f ∈ Fn,

V (Gnf) = V (Hnf) +O(C−1) =

ℓ∑

i=1

µ̄iCov(

N1∑

ı=1

f(Wı,1),

N2i∑

ı=1

f(Wı,2i)) +O(C−1),

where 2i denotes the ℓ−tuple vector with 2 in each entry but for 1 in the i−th entry. Note that

V (Hnf) =
∑

e∈ε1

C∏
i:ei=1 Ci

V


E



∑

ı∈[N1]

f (Wı,1)
∣∣∣Ue




 . (E.3)

To conclude, it suffices to show that for each e ∈ ε1,

V


E


 ∑

ı∈[N1]

f (Wı,1)
∣∣∣Ue




 = Cov


 ∑

ı∈[N1]

f (Wı,1) ,

N2−e∑

ı=1

f (Wı,2−e)


 .

As (Nj, (Wı,j)1≤ι≤N )j≥1 =
(
τ
(
(Uj⊙e)e∈∪ℓ

r=1εr

))
j≥1

with i.i.d. U ’s, we have E

[
∑

ı∈[N1]

f (Wı,1)
∣∣∣Ue

]
=

E

[
∑

ı∈[Nj]

f (Wı,j)
∣∣∣Ue

]
for any j such that j ⊙ e = 1 ⊙ e = e. Becuase 2 − e ⊙ e = e, we have
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V

(
E

[
∑

ı∈[N1]

f (Wı,1)
∣∣∣Ue

])
= Cov

(
E

[
∑

ı∈[N1]

f (Wı,1)
∣∣∣Ue

]
,E

[
N2−e∑
ı=1

f (Wı,2−e)
∣∣∣Ue

])
. For any e ∈

ε1, we have 2− e 6= 1. The independence of the U ’s ensures

(U1⊙e′)e′∈∪ℓ
r=1εr\e

⊥
(
U(2−e)⊙e′

)
e′∈∪ℓ

r=1εr\e
|Ue

and thus
N1∑
ı=1

f (Wı,1) ⊥
N2−e∑
ı=1

f (Wı,2−e) |Ue.

Hence, for e ∈ ε1

E


Cov


 ∑

ı∈[N1]

f1 (Wı,1) ,

N2−e∑

ı=1

f2 (Wı,2−e)
∣∣∣Ue




 = 0.

By the law of total covariance, we obtain

V


E


 ∑

ı∈[N1]

f(Wı,1)
∣∣∣Ue




 = Cov


 ∑

ı∈[N1]

f (Wı,1) ,

N2−e∑

ı=1

f (Wı,2−e)


 .

This establishes the second claim of the lemma.
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N M C dim(X) K (K2) Machine Learning Bias SD RMSE Cover

25 25 25 100 2 (4) Ridge 0.069 0.074 0.102 0.835

Elastic Net 0.010 0.079 0.080 0.963

Lasso 0.005 0.080 0.080 0.965

50 50 50 100 2 (4) Ridge 0.014 0.047 0.049 0.940

Elastic Net -0.002 0.048 0.048 0.956

Lasso -0.001 0.049 0.049 0.955

25 25 25 200 2 (4) Ridge 0.190 0.053 0.197 0.118

Elastic Net 0.016 0.077 0.079 0.969

Lasso 0.006 0.080 0.080 0.968

50 50 50 200 2 (4) Ridge 0.037 0.046 0.058 0.876

Elastic Net -0.000 0.048 0.048 0.960

Lasso -0.002 0.048 0.048 0.962

25 25 25 100 3 (9) Ridge 0.042 0.074 0.085 0.962

Elastic Net 0.004 0.074 0.074 0.993

Lasso 0.002 0.075 0.075 0.992

50 50 50 100 3 (9) Ridge 0.007 0.048 0.049 0.962

Elastic Net -0.001 0.047 0.047 0.972

Lasso -0.001 0.048 0.048 0.963

25 25 25 200 3 (9) Ridge 0.081 0.067 0.105 0.896

Elastic Net 0.005 0.073 0.073 0.994

Lasso 0.003 0.076 0.077 0.992

50 50 50 200 3 (9) Ridge 0.018 0.047 0.050 0.944

Elastic Net -0.002 0.048 0.048 0.968

Lasso -0.003 0.049 0.049 0.968

Table 1: Simulation results based on 5,000 Monte Carlo iterations. Results are displayed for each of

the three machine learning methods, including the ridge, elastic net, and lasso. Reported statistics

are the bias (Bias), standard deviation (SD), root mean square error (RMSE), and coverage frequency

for the nominal probability of 95% (Cover).
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0-Way 1-Way 1-Way 2-Way

Instrument (Zij) — Product Market
Product
×Market

Horsepower/weight -5.763 -5.719 -5.815 -5.659

of other products (0.460) (0.640) (1.024) (1.211)

Miles/dollar -6.121 -6.056 -6.191 -6.121

of other products (0.607) (0.865) (1.491) (3.963)

Size -5.684 -5.641 -5.727 -5.593

of other products (0.413) (0.565) (0.892) (1.015)

Table 2: Estimates and standard errors of the coefficient θ0 of log price in the demand model. The

first column indicates the instrumental variable. The second column shows the results of the DML by

lasso not accounting for clustering with the number K = 4 of folds for cross fitting. The third and

fourth columns show the results of the 1-way cluster-robust DML by lasso clustered at product and

market, respectively, with the number K = 4 of folds for cross fitting. The fifth column shows the

results of the 2-way cluster-robust DML by lasso with the number K2 = 4 of folds for two-way cross

fitting. All the results are based on the average of ten rerandomized DML.
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