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Abstract

This paper explores the estimation of a panel data model with cross-sectional in-

teraction that is flexible both in its approach to specifying the network of connections

between cross-sectional units, and in controlling for unobserved heterogeneity. It is as-

sumed that there are different sources of information available on a network, which can

be represented in the form of multiple weights matrices. These matrices may reflect

observed links, different measures of connectivity, groupings or other network struc-

tures, and the number of matrices may be increasing with sample size. A penalised

quasi-maximum likelihood estimator is proposed which aims to alleviate the risk of

network misspecification by shrinking the coefficients of irrelevant weights matrices to

exactly zero. Moreover, controlling for unobserved factors in estimation provides a

safeguard against the misspecification that might arise from unobserved heterogeneity.

The asymptotic properties of the estimator are derived in a framework where the true

value of each parameter remains fixed as the total number of parameters increases. A

Monte Carlo simulation is used to assess finite sample performance, and in an empiri-

cal application the method is applied to study the prevalence of network spillovers in

determining growth rates across countries. .
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1 Introduction

Increased attention is being given over to panel data models which take into account cross-

sectional interaction. These models have proven to be empirically relevant in a diverse range

of economic settings, such as social interactions between individuals, business connections

between firms, trading relations between nations, and dependencies between financial as-

sets. At the heart of many econometric models of this kind lies a weights matrix, which

summarises the network of connections between interacting cross-sectional units. Yet net-

works are rarely fully observed, and the uncertainty in how a weights matrix should be

specified has been a common critique of this growing literature (see, e.g., Blume et al.,

2015; de Paula et al., 2020; Lewbel et al., 2021). In practice, situations in which networks

are partially observed are more frequent, with some information being available on cross-

sectional links, or their absence, as well as information on other network structures such as

groupings. As an example, within a school one might observe family, friendship, classroom

and cohort groupings, each of which provide information on the network of connections

between different students. In other settings, such as international networks, there are

multiple ways to quantify connectivity between nations, including economic measures such

as trade and foreign direct investment flows, physical distance, and infrastructure links.

Nevertheless, it is not usually obvious how these pieces of the jigsaw fit together, and this

uncertainty inevitably increases the risk of model misspecification.

Typical methods to inform the choice of weights matrix include sequential specification

testing, or model selection with reference to an information criterion (e.g., Zhang and Yu,

2018). These approaches have largely been focused on the problem of discerning a single

best weights matrix from a set of mutually exclusive competitors. In contrast, there are

many cases in which weights matrices manifest equally relevant, rather than competing,

specifications and, in cases such as these, a model that includes multiple weights matri-

ces may be preferable. This presents a more challenging model selection problem since

prospective model specifications may be nested in one another, generating a large number

of alternative models. In order to tackle this empirically important issue the current pa-

per uses penalised estimation methods, which retain relevant weights matrix specifications,

while at the same time, shrink the coefficients of irrelevant matrices to exactly zero.

A related concern in models of this kind is unobserved heterogeneity. Intuitively, there

are likely to be many common factors which are unobserved, and yet have an influence

on the outcomes of cross-sectional units; for example exposure to common shocks or a

common environment. The presence of common factors can make the identification of

model parameters difficult in the event that these are correlated with covariates. The typical
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approach in dealing with unobserved heterogeneity is to transform the model in a way which

purges the unobserved factors (see, e.g., Yu et al., 2008; Lee and Yu, 2010). Nonetheless, a

transform risks purging the very variation needed to identify network spillovers and therefore

identification remains a delicate issue, with variation in the regressors, the structure of the

weights matrices, and that of the unobserved heterogeneity, each having a part to play.

An additional challenge in transforming the model is that prior knowledge on the nature

of the unobserved heterogeneity is needed to specify a transform. Traditional examples of

this include time, unit and group effect models in which case information on time, unit and

group identities is used. Yet with a complex structure of cross-sectional interaction, it is

desirable to go beyond these models and to allow for more general forms of heterogeneity.

The present paper models a factor structure in the error, which provides this flexibility since

common factors may vary across time and have a fully heterogeneous effect on the cross-

section. By way of principal component methods, a transform to purge these factors is, in

effect, estimated alongside model parameters, removing the reliance on prior knowledge to

specify a transform. Taken together, multiple weights matrices, penalisation, and a factor

structure error, provide a means of estimating various network spillovers which addresses

some of the empirical concerns raised in models of cross-sectional interaction. Moreover,

the properties of the estimator are studied in a framework where, although the true value

of each coefficient is assumed to be fixed, the total number may be increasing with sample

size. Such a regime better reflects the intuition that as sample size grows, so too is the

amount of information available on a network likely to accumulate.

The present paper lies in the intersection of several literatures, including social and spa-

tial network models, high-dimensional estimation, and models with factor structured errors.

In the social network literature, estimation and identification of network spillovers has been

extensively discussed; e.g., Lee (2007), Bramoullé et al. (2009) and Lee et al. (2010). These

papers each devote attention to the challenges which may arise in the presence of unob-

served heterogeneity, in models where a time dimension is absent. Elsewhere, panel data

models which combine interaction and factor structures in the error term have been consid-

ered; see, for example, Shi and Lee (2017), Bai and Li (2021) and Kuersteiner and Prucha

(2020). In a likelihood framework, Shi and Lee (2017) studies the estimation of a dy-

namic spatial model with interactive fixed effects and use a single weights matrix to rep-

resent dependencies between outcomes. Bai and Li (2021) do similarly, though explicitly

allowing for cross-sectional heteroskedasticity. The present paper also pursues a likelihood

based estimation approach, and generalises these papers to allow for multiple weights ma-

trices and the possibility that the number of such matrices may be increasing with sample
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size. Kuersteiner and Prucha (2020) consider estimation of a model with multiple poten-

tially endogenous weights matrices alongside a factor structure in the error, by way of

a method of moments estimator. The approach of Shi and Lee (2017) is partly inspired

by Moon and Weidner (2015), who derive the properties of an estimator using an eigen-

value perturbation approach. On the other hand, Bai and Li (2021) more closely follow

Bai (2009), who derives results using first order conditions as a starting point for analysis.

In terms of theory, this paper follows the latter approach, and proceeds from first order

conditions in similar fashion to Bai (2009).

In the high-dimensional estimation literature, Lu and Su (2016) examine a model with

interactive fixed effects and an increasing number of parameters, but without cross-sectional

interaction. They make use of the adaptive Lasso penalty of Zou (2006) to induce spar-

sity amongst both estimated coefficients and factor loadings, assuming that many of these

are redundant. Their procedure yields efficiency gains when compared to estimating the

model with the number of factors overestimated. The present paper also uses the adaptive

Lasso, which penalises the ℓ1 norm of the estimated parameter vector, encouraging sparsity

amongst coefficient estimates. High-dimensional spatial models have also been studied else-

where, such as Lam and Souza (2019), who consider a model which allows for an increasing

number of spatial weights matrices, and also use the adaptive Lasso as a penalty, though do

not consider unobserved heterogeneity beyond standard fixed effect approaches. Liu (2017)

similarly uses penalised estimation in a cross-sectional model with many spatial weights

matrices. Gupta and Robinson (2015, 2018) consider estimation of a cross-sectional spatial

model, with the number of weights matrices increasing with sample size, by using instru-

mental variables and quasi-maximum likelihood respectively. The authors carefully study

the asymptotic behaviour of these estimators, but do not pursue penalised estimation nor

discuss unobserved heterogeneity.

Some recent works have also considered the case where the network is entirely unob-

served, such as de Paula et al. (2020) and Lewbel et al. (2021). This situation is especially

relevant in the context of social interactions, where connections between individuals might

be particularly hard to observe or to quantify. The approach taken in de Paula et al. (2020)

involves estimating an entire weights matrix using observations on the same set of individ-

uals across multiple time periods. This can be seen as an extreme case of the current paper

in which each weights matrix consists of a single nonzero element taking a value of one.

Lewbel et al. (2021) takes a different perspective whereby multiple groups of individuals

are observed, a special case of which is when each group consists of the same individuals

observed in different time periods. In contrast, the focus of the present paper is where the
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network is partially observed, which in practice may be quite common. Moreover, estab-

lishing identification of the entire weights matrix once a factor term is introduced into the

error may be a nontrivial matter.

Outline: The model of interest is introduced in Section 2, alongside some basic as-

sumptions and the estimation method. This is followed by asymptotic results in Section 3,

and a discussion on implementation in Section 4. In Section 5 finite sample performance

is assessed be means of a small Monte Carlo study, followed by an empirical application

of the method to consider whether network spillovers are prevalent in determining growth

rates across countries. Section 6 concludes. Proofs of the main results can be found in

Appendix A. For further discussion, proofs of lemmas and additional simulation output, see

the Supplementary Material.

Notation: Throughout the paper, all vectors and matrices are real. For an n×1 vector

b with elements bi, ||b||1 :=
∑n

i=1 |bi|, ||b||2 :=
√

∑n
i=1 b

2
i , ||b||∞ := max1≤i≤n |bi|. Let B be

an n×mmatrix with elements Bij . Whenm = n, and the eigenvalues of B are real, they are

denoted by µn(B) ≤ . . . ≤ µ1(B). The following matrix norms are those induced by their

vector counterparts: ||B||1 := max1≤j≤m

∑n
i=1 |Bij| which is the maximum absolute column

sum of B, ||B||2 :=
√

µ1(B
′B), and ||B||∞ := max1≤i≤n

∑m
j=1 |Bij | which is the maximum

absolute row sum of B. The Frobenius norm of B is denoted ||B||F :=
√

∑n
i=1

∑m
j=1B

2
ij =

√

tr(B′B). Let PB := B(B′B)+B′ and MB := In−PB, where Im is the m×m identity

matrix and the superscript + denotes the Moore-Penrose generalised inverse. A sequence

of n × n matrices Cn is said to be uniformly bounded in absolute row and column sums

(UB) if both the sequences ||Cn||1 and ||Cn||∞ are bounded. Throughout c, potentially

indexed when there are many, is used to denote some arbitrary positive constant which,

unless stated otherwise, is assumed not to depend on sample size. Finally, ‘w.p.a.1’ is used

to indicate ‘with probability approaching 1’.

2 Model and Estimation

2.1 Model

The model studied in this paper supposes that, amongst n cross-sectional units in time

period t = 1, . . . , T , outcomes are generated according to

yt =

QnT
∑

q=1

ρqWqyt +

KnT
∑

k=1

βkxkt + ηt, (1)
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where yt,xkt and ηt are n× 1 vectors of outcomes, covariates and error terms, respectively,

and Wq is an n×n weights matrix specified in advance. Both the number QnT of potentially

relevant weights matrices and the numberKnT of potentially relevant regressors can increase

with sample size. The covariates may be subdivided into various types, such that

KnT
∑

k=1

βkxkt =

K∗
nT
∑

κ=1

δκx
∗
κt + φ1yt−1 +

QnT
∑

q=1

φq+1Wqyt−1. (2)

The first K∗
nT regressors may be either primitive exogenous covariates, or formed by the

interaction of weights matrices and primitive exogenous covariates. It is assumed that there

is at least one relevant exogenous covariate, i.e. this paper does not study the case of

a pure network autoregression. Moreover, lagged outcomes and the interaction of these

with weights matrices can provide additional covariates of the form Wqyt−1. It may be

that many of the parameters ρq, δκ and φq are truly zero since many of the covariates or

weights matrix specifications may be irrelevant. Such restrictions need not be imposed a

priori, since penalised estimation induces the estimates of these parameters to take values

of exactly zero.

The weights matrices Wq contain information about the connections between the cross-

sectional units, with larger elements – positive or negative – measuring a stronger connec-

tion. The literature often assumes that the weights matrices have positive elements and are

row normalised such that each of the rows of Wq sum to 1. These assumptions lend products

of the form Wqb the interpretation of a weighted average of the entries of a vector b. While

these two assumptions are not necessary in this paper, the assumption that the weights ma-

trices have zero diagonals, which forbids self-links, is retained. The coefficients ρq on Wqyt

capture endogenous spillovers; that is, the impact on the outcome of each unit, generated

by the units that are neighbours according to the q-th weights matrix. Analogously, those

δκ coefficients on covariates of the form Wqx
∗
κt capture exogenous spillovers, also referred to

as contextual effects in the social interaction literature. The coefficients φq+1 on products

Wqyt−1 capture dynamic spillovers. Combined, the endogenous, exogenous and dynamic

spillovers, allow model (1) to quantify a breadth of different network spillovers.

It is assumed that the error term has a factor structure of the form

ηt = Λft + εt, (3)

where Λ is an n×R matrix of time-invariant loadings, ft is an R×1 vector of unit-invariant

factors, and εt is an n × 1 vector of idiosyncratic error terms. In addition, the rows of Λ

are denoted by λi, for i = 1, . . . , n, and the factors are arranged in the T × R matrix
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F := (f1, . . . ,fT )
′. Throughout, the number of factors R is assumed to be a constant

independent of sample size. Following a fixed effects approach, both factors and loadings

are treated as (nuisance) parameters in estimation. Thus, in the model, either is allowed

to be arbitrarily correlated with covariates. The framework is very general; for instance

ft could be aggregate shocks affecting the entire network at time t, with a heterogenous

effect on each individual. Moreover, this factor structure nests more traditional fixed effect

models as special cases.

It is worth stressing that unobserved heterogeneity may arise from various sources.

Consider, as a simple example, a model with a single exogenous regressor and no endogenous

spillovers, i.e.,

yt = β∗x∗
t +

QnT
∑

q=1

αqWqx
∗
t + δWLx

∗
t + εt, (4)

with Wq being the q-th observed weights matrix, and β∗, αq, δ being scalars. Suppose

that WL is unobserved and is either low rank or well approximated by a low rank matrix.

This may represent, for example, low rank measurement error in some Wq, or unobserved

connections between cross-sectional units arising due to network sampling; see, for instance,

Wang (2018). Defining Λ∗f∗
t := δWLx

∗
t , it is clear that (4) is nested in model (1) and

highlights that the decomposition of the unobserved term into factors Λ∗ and loadings f∗
t is

arbitrary; it is the low rank restriction on δWLx
∗
t that allows this term to be distinguished

and controlled for.

Going forward, it is convenient to introduce some new notation. The subscript nT used

previously is suppressed from QnT , KnT , K
∗
nT , and the following parameter vectors and

covariate matrices are defined: ρ := (ρ1, . . . , ρQ)
′, δ := (δ1, . . . , δK∗)′, φ := (φ1, . . . , φQ+1)

′,

β := (β1, . . . , βK)′ := (δ′,φ′)′, θ := (ρ′,β′)′, and Xt := (X∗
t ,yt−1,W1yt−1, . . . ,WQyt−1),

where X∗
t
:= (x∗

1t, . . . ,x
∗
K∗t), and S(ρ) := In−

∑Q
q=1 ρqWq. Given these, model (1) can be

restated more succinctly as

S(ρ)yt = Xtβ +Λf t + εt. (5)

Throughout, the superscript 0 is used to distinguish the true values of the factors, loadings,

and parameters, as well as the true numbers of these, and the framework is one in which n

and T diverge simultaneously. The total number of parameters in the vector θ is P := Q+K,

of which only P 0 are truly nonzero. In fact, one might often expect that the vector θ is sparse

in the sense that many of its components are zero, particularly in cases with a large number

of weights matrices and covariates. Accordingly θ may be reordered as ϑ := (θ′
(1),θ

′
(2))

′,
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where θ(1) is the P 0 × 1 vector of nonzero parameters, and θ0
(2) = 0(P−P 0)×1. Sparsity,

however, is not necessary and indeed the results of this paper equally allow for the possibility

that all of the weights matrices and covariates may be relevant. The n × T data matrix

for the κ-th exogenous covariate is denoted X ∗
κ := (x∗

κ1, . . . ,x
∗
κT ) for κ = 1, . . . ,K∗, and

the n × T data matrix for the lagged outcomes is denoted Y−1 := (yt−1, . . . ,yt−T ). The

data matrix for the generic k-th covariate of any type, X ∗
κ, Y−1 or WqY−1, is denoted

X k := (xk1, . . . ,xkT ), for k = 1, . . . ,K. Also, A(ρ,φ) := S−1(ρ)(φ1In +
∑Q

q=1 φq+1Wq),

A := A(ρ0,φ0), S := S(ρ0), Gq(ρ) := WqS
−1(ρ), and Gq := Gq(ρ

0).

2.2 Assumptions

The first set of assumptions concerns the idiosyncratic error term εit.

Assumption 1. .

1.1 The errors εit are identically and independently distributed over i and t with E[εit] = 0,

E[ε2it] = σ2
0 ≥ c > 0, and fourth moments uniformly bounded over i and t.

1.2 The errors εit are independent of the elements of the matrices Λ0, F 0, and X ∗
κ, for

κ = 1, . . . ,K∗.

These assumptions have been employed across various papers. Cross-sectional ho-

moskedasticity and independence is commonly assumed, though this can be relaxed by

estimation of a more general n × n covariance matrix Σ0, at the expense of additional

parameters; see for example Bai and Liao (2017) and Bai and Li (2021). Additional struc-

ture in the error term could also be considered as is commonplace throughout the spatial

econometrics literature. Yet since the factor structure provides a mechanism for capturing

such correlation, Assumption 1.1 assumes Σ0 = σ2
0In. Differing assumptions concerning the

relationship between the errors, the factors, and the loadings appear across the literature;

these are comprehensively surveyed by Hsiao (2018). Assumption 1.2 imposes independence

of the factors and the loadings from the error term as in Bai (2009).

Some additional assumptions are required regarding the other components of the model.

Let | · | denote the entrywise absolute value of a vector or matrix, Θ denote the parameter

space for θ, and Θρ and Θφ denote the parameter spaces for ρ and φ, respectively. Since

Θ, Θρ and Θφ depend on n and T , in the following it is understood that any assumptions

which relate to these parameter spaces are to hold for any (n, T ).

Assumption 2. .
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2.1 The parameter vector θ0 is in the interior of Θ, with Θ being a compact subset of

R
P .

2.2 The weights matrices Wq are nonstochastic and UB uniformly over q.

2.3 For all ρ ∈ Θρ and φ ∈ Θφ, S(ρ) is invertible, S(ρ),S−1(ρ) and
∑∞

h=1 |Ah(ρ,φ)|
are UB, ||A(ρ,φ)||2 < 1− c for some c > 0, and lim infn,T→∞ infρ∈Θρ det(S(ρ)) 6= 0.

2.4 The elements of the matrices X ∗
κ have fourth moments uniformly bounded over i, t and

κ, and elements of the matrix
∑K

k=1 β
0
kX k have fourth moments uniformly bounded

over i, t and K.

2.5 The true number of factors R0 is constant.

2.6 The elements of the matrices F 0 and Λ0 have eighth moments uniformly bounded over

i and t.

Assumption 2.1 considers a sequence of compact parameter spaces over which to max-

imise the objective function. The condition in Assumption 2.2 that the weights matrices

are UB is standard and serves to limit interactions to a manageable degree. Here, uni-

form boundedness over q is also required, due to the possibility that the number of weights

matrices increases with sample size. Assumption 2.3 ensures that the model admits a re-

duced form, and the dynamic process in stationary. Restrictions on the parameter space

of ρ which ensure that S(ρ) is invertible have been discussed elsewhere in the literature,

particularly in the case Q = 1. A general condition sufficient for the invertibility of S(ρ)

is ||∑Q
q=1 ρqWq|| < 1 for some matrix norm || · ||, though with Q > 1 more informative

conditions can be difficult to obtain outside of exceptional cases.1 However, as noted by

Gupta and Robinson (2018), even when it is possible to characterise inadmissible values of

ρ and exclude these, the resulting parameter space is unlikely to be compact. It is therefore

commonplace in the literature to restrict attention to a region around the origin in which

S(ρ) can be guaranteed to be invertible. This is where
∑Q

q=1 |ρq| < (max1≤q≤Q ||Wq||)−1.2

Yet while the set of ρ which satisfy this is bounded, it is also open. Therefore to ensure

the existence of a maximiser over this space, a closed subset can be considered such that

1One such case is where the matrices W1, . . . ,WQ are simultaneously diagonalisable, for example where

they consist of powers of a single weights matrix. Another example is where the weights matrices consist of

nonoverlapping blocks.
2This inequality is obtained from the condition ||∑Q

q=1 ρqWq|| < 1 and the fact that ||∑Q
q=1 ρqWq|| ≤

∑Q
q=1 |ρq|max1≤q≤Q ||Wq|| for any matrix norm || · ||.
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∑Q
q=1 |ρq| ≤ (1 − τ)(max1≤q≤Q ||Wq||)−1, with τ ∈ (0, 1). Row normalisation of the matri-

ces Wq further simplifies this condition since it implies max1≤q≤Q ||Wq||∞ = 1. Model (5)

can be rewritten as yt = Ayt−1 + S−1(X∗
t δ + Λft + εt), or, after recursive substitution,

yt =
∑∞

h=0A
hS−1(X∗

t−hδ + Λf t−h + εt−h); Assumption 2.3 guarantees that this series

converges. Further discussion of parameter restrictions ensuring convergence of this series

can be found in Lee and Yu (2014) and Shi and Lee (2017).3 The first part of Assumption

2.4 ensures that ||X ∗
k||F = OP (

√
nT ), for k = 1, . . . ,K. For the second part, notice that

GqXtβ
0 can be used as an instrument in the estimation of ρq.

4 With a diverging num-

ber of parameters, the second part of Assumption 2.4 assures that for these instruments

||∑K
k=1 β

0
kGqX k||F = OP (

√
nT ). An alternative condition sufficient for this is ||β0||1 < c,

which follows by Hölder’s inequality or, alternatively, Assumption 2.4 could be replaced

by one restricting the growth of K0 and n, T . Assumption 2.5 is common throughout the

literature, but could be relaxed at the expense of slower rates of convergence. Several dif-

fering assumptions concerning the moments of the factors and the loadings appear in the

literature. Given the possible presence of lagged outcomes as covariates, Assumption 2.6

serves the same purpose as Assumption 5(vi) in Moon and Weidner (2017), and ensures

that yit has uniformly bounded fourth moments.

2.3 Objective Function

The estimation strategy employed in this paper is penalised quasi-maximum likelihood

(PQML), using the multivariate standard normal distribution for the error term, i.e.,

εit
iid∼ N (0, σ2

0), and following a fixed effects approach. Maximum likelihood estimation

is a standard in the literature for models of this type, since the simultaneity in the de-

termination of outcomes generates an endogeneity problem which results in least squares

estimates being biased. The parameter of interest is θ, whereas Λ,F , σ2 are treated as

nuisance parameters. Since fixing θ results in a pure factor model (and Λ,F , σ2 are not

penalised), the estimators of Λ and F for fixed θ are a solution to a standard principal com-

ponent problem (see, e.g., Bai, 2009). In this subsection R is fixed such that R ≥ R0; this is

discussed in greater detail in Section 3.1. With R fixed, the average (quasi) log-likelihood

is

L(θ,Λ,F , σ2) := −1

2
log(2π) +

1

n
log(det(S(ρ)))− 1

2
log(σ2)

3For example, where the weights matrices consist of nonoverlapping blocks,
∑Q

q=1 |ρq |+
∑Q+1

q=1 |φq| < 1−c

is sufficient for ||A(ρ,φ)||2 < 1− c.
4Observing that S−1 = In+

∑Q
q=1 ρ

0
qGq , then yt = Xtβ

0+
∑Q

q=1 ρ
0
qGqXtβ

0+S−1
Λ

0f0
t +S−1εt, which

makes the role of GqXtβ
0 as an instrument for Wqyt transparent.
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− 1

2σ2

1

nT

T
∑

t=1

(S(ρ)yt −Xtβ −Λft)
′(S(ρ)yt −Xtβ −Λft) (6)

and its penalised counterpart is

Q(θ,Λ,F , σ2) := L(θ,Λ,F , σ2)− ̺(θ,γ, ζ), (7)

where ̺(θ,γ, ζ) is a penalty function and γ, ζ are regularisation parameters. The specific

form of penalty function is introduced in Section 2.4, and the choice of regularisation pa-

rameters is discussed in Section 4.1, however for the moment these are both also taken to

be fixed alongside the number of factors. Concentrating out σ2, as well as the factors, and

dropping the constant in (7) yields the concentrated expression

Q(θ,Λ) :=
1

n
log(det(S(ρ)))− 1

2
log
(

σ̂2(θ,Λ)
)

− ̺(θ,γ, ζ), (8)

where σ̂2(θ,Λ) := 1
nT

∑T
t=1 e

′
tMΛet and et := S(ρ)yt−Xtβ. Hereafter the terms likelihood

and log-likelihood are used synonymously. In order to maximise (8) with respect to Λ, note

that

min
Λ∈Rn×R

1

nT

T
∑

t=1

e′tMΛet =
1

nT

T
∑

t=1

e′tet − max
Λ∈Rn×R

1

nT

T
∑

t=1

e′tPΛet

= tr

(

1

nT

T
∑

t=1

ete
′
t

)

− max
VΛ∈Rn×R:V ′

Λ
VΛ=IR

tr

(

1

nT

T
∑

t=1

V ′
Λete

′
tVΛ

)

= tr

(

1

nT

T
∑

t=1

ete
′
t

)

−
R
∑

r=1

µr

(

1

nT

T
∑

t=1

ete
′
t

)

, (9)

where the second line follows from the fact that any orthogonal projector PB can be written

as VBV ′
B, with the columns of VB forming an orthonormal basis for the column space of B,

and the third line follows from a standard result (e.g., Horn and Johnson, 2012, Corollary

4.3.39).5 Hence, (9) can be used to concentrate out Λ in (8), whereby the PQML estimator

of θ0 is characterised as

θ̂ := argmax
θ∈Θ

Q(θ), (10)

where

Q(θ) :=
1

n
log(det(S(ρ)))− 1

2
log

(

n
∑

i=R+1

µi

(

1

nT

T
∑

t=1

ete
′
t

))

− ̺(θ,γ, ζ). (11)

5For example, by the QR decomposition, B = VBR with VB ∈ R
n×m having orthonormal columns and

R ∈ R
m×m being upper triangular. Since B has full column rank R is invertible (e.g., Horn and Johnson,

2012, Theorem 2.1.14) and therefore PB := B(B′B)−1B = VBV
′
B.
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It is worth highlighting that both the factors and the loadings have been concentrated

out without imposing any of the normalisations typically encountered in the wider factor

literature. This is due to the treatment of both the factors and the loadings as nuisance

parameters, in which case only the space spanned by the loadings implicitly features in

the objective function (11). It would, of course, be possible to consider estimators of

the factors and the loadings, however the same fundamental indeterminacy issue would

arise in separating these as is encountered elsewhere in the factor literature, and therefore

some normalisations would typically be required in order to do this. It should also be

pointed out that neither the concentrated likelihood nor the penalised objective function

Q(θ) are concave in θ. Although subsequent sections establish the desirable asymptotic

properties of global maximisers of these objective functions, it is nonetheless the case that

local maximisers which do not possess these properties may indeed exist.

2.4 Penalty

The present paper adopts the adaptive Lasso, which induces sparsity in parameter estima-

tion by augmenting an objective function with a constraint on the ℓ1 norm of the estimated

parameter vector. A desirable feature of this method of penalisation is that it can achieve

the oracle property; that is, perform consistent variable selection and, at the same time,

possess an optimal rate of convergence. This is done by using an initial consistent estimator

of the parameters to weight the penalty. The cost of this is the need to find an initial

consistent estimator, which can be difficult in settings where the number of parameters is

greater than the number of observations (nT < P in the present case). This complication

is not considered in this paper and attention is restricted to the nT > P setting. Explicitly,

the penalty function employed in this paper has the additive form

̺(θ,γ, ζ) := γρ

Q
∑

q=1

ωq|ρq|+ γβ

K
∑

k=1

ωQ+k|βk|, (12)

where ωp := |θ†p|−ζ , with θ†p being an initial consistent estimate of the p-th parameter, and

γ := (γρ, γβ)
′ and ζ are regularisation parameters.6 The parameter ζ is a positive constant

and is used to adjust the weight of penalisation according the rate of consistency of the

initial estimator. Combined, ζ and θ†p generate bespoke weights ωp for each parameter that

will increase for truly zero coefficients and tend to a constant for truly nonzero coefficients.

The other penalty parameters γρ and γβ are positive sequences which tend towards zero as

6If θ†p = 0 then ωp is set equal to ∞.
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n and T increase. The form of the penalty term in (12) allows the penalty parameters γρ

and γβ to differ across the two types of parameter, ρq and βk. In general the penalty term

can be easily modified to allow for a greater or lesser degree of heterogeneity, as applications

dictate.

Let θ0 and θ̄0 denote, respectively, the minimum and maximum element of |θ0
(1)|. Note

that both θ0 and θ̄0 can vary with sample size due to the increasing dimension of θ0
(1). The

following are assumed.

Assumption 3. .

3.1 0 < c1 ≤ θ0 ≤ θ̄0 ≤ c2 < ∞.

3.2 max{γρ, γβ}min{n, T} = O(1).

3.3 ||θ† − θ0||2 = OP (rnT ), for some sequence rnT → 0 as n, T → ∞.

In this paper it is assumed that, while the dimension of θ0 may be increasing with

sample size, the value of each element is fixed.7 Nonetheless, this does not rule out either

the minimum or maximum (in absolute value) nonzero elements in θ0 becoming arbitrarily

small or large as its dimension increases, and therefore Assumption 3.1 imposes that the

nonzero elements in θ0 are uniformly bounded away from zero and from infinity. Assumption

3.2 requires the penalty parameters γρ and γβ to converge to zero sufficiently fast that they

do not adversely impact the rate of consistency of the estimator. Assumption 3.3 requires

consistency of the initial estimator θ† at some rate rnT . If the speed at which rnT → 0

is especially slow, then ζ can be adjusted to compensate for this. In the following it is

shown that the unpenalised likelihood can be used to produce a initial consistent estimator,

though other estimation procedures might equally be considered.

In principle it would also be possible to obtain several of the results in this paper under

a ‘moving parameter’ framework, where the values of the nonzero elements in θ0 might vary

with sample size; in particular, where some may converge to zero asymptotically. However,

the rate at which they could be allowed do so would need to be sufficiently slow that a choice

of γρ and γβ could still be made to ensure the consistency and model selection consistency of

the procedure. Moreover, in Section 3.3 the assumption that the value of nonzero elements

in θ0 are fixed is important for the validity of the asymptotic distribution derived in that

section. Therefore, this assumption is maintained throughout this paper.

7More precisely, it is assumed that θ0p does not depend on n, T , for any n, T such that θp enters the model.
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3 Asymptotic Results

3.1 Consistency

Mirroring Bai (2009), in this section a preliminary consistency result is established which

will be improved upon later. Yet, before proceeding, it is worth providing a few remarks

on the identification of model parameters. In the standard consistency argument for an

extremum estimator, the essence of the idea is to show that “the limit of the maximum θ̂

should be the maximum of the limit”, with the latter being unique (Newey and McFadden,

1994, p..2120). In that argument the role that identification plays is transparent, and

with identification established, uniform convergence of the sample objective function to

the limiting objective function often then appeals to a uniform law of large numbers, and

consistency follows thereafter. Yet in models where the number of parameters, nuisance or

otherwise, depends on the sample size, there is no fixed population distribution from which

a sample is drawn, and therefore uniform convergence must be considered more carefully.

In cases such as these, consistency is often shown directly, forgoing an explicit identification

result. For these same reasons this paper also proceeds directly to consistency, with further

discussion on identification being available in Appendix B of the Supplementary Material.

Before formulating the next assumption, it is necessary to introduce some additional

notation. Define the n× P matrix of instruments Zt := (G1Xtβ
0, . . . ,GQXtβ

0,Xt). The

n×T data matrix for the instrument associated with some ρq is
∑K

k=1 β
0
kGqX k. The generic

n × T data matrix of either type, X k or
∑K

k=1 β
0
kGqX k, is denoted Zp := (zp1, . . . ,zpT ),

where zpt is the p-th column of Zt, for p = 1, . . . , P . Finally, let H1(Λ,F ) := 1
nT

Z ′(MF ⊗
MΛ)Z and H2 :=

1
nT

Z ′Z , where Z := (Z ′
1, . . . ,Z

′
T )

′ is a nT × P matrix.

Assumption 4. .

4.1 R ≥ R0.

4.2 inf
Λ∈Rn×R,F∈RT×R0 µP (H1(Λ,F )) ≥ c1 > 0 w.p.a.1 as n, T → ∞.

4.3 µ1(H2) ≤ c2 < ∞ w.p.a.1 as n, T → ∞.

4.4 P
min{n,T} → 0.

Assumption 4.1 allows for the true number of factors R0 to be unknown, as long as

the number of factors R used in estimation is no less than R0; see Moon and Weidner

(2015). Assumption 4.2 demands a certain level of variation in sample data after projecting

out arbitrary factors and factor loadings. This condition can intuitively be understood by
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considering the particular case of individual or time effects, in which case the projections

perform between individual and between time period differences to the data. It is also worth

noting that Assumptions 4.2 and 4.3 imply that, w.p.a.1,

sup
Λ∈Rn×R,F∈RT×R0

µ1 (H1(Λ,F )) ≤ c2 < ∞ (13)

and

µP (H2) ≥ c1 > 0, (14)

which ensures both H1 and H2 are well defined asymptotically (see Appendix C in the

Supplementary Material for details). Assumption 4.4 requires that the number of param-

eters does not grow too fast in relation to n and T . This is necessary since consistency is

stated in terms of the ℓ2 norm of a vector with increasing dimension. Recall that θ̂ denotes

the maximiser of the penalised likelihood function and let θ̃ denote the maximiser of the

unpenalised likelihood function.

Proposition 1 (Consistency). Under Assumptions 1–4, ||θ̃ − θ0||2 = OP (anT ) and ||θ̂ −
θ0||2 = OP (anT ), where anT :=

√

P
min{n,T} .

This preliminary result is an important step towards those which follow. Moreover, the

result is of interest in and of itself since it applies provided that the number of factors is

not underspecified, and irrespective of the relationship between n and T , as long as both

diverge to infinity. In contrast later in the paper, it will be required that the true number

of factors is known, and that n and T grow in proportion (see Assumption 6). Despite both

the factors and the loadings having been concentrated out, the spaces spanned by both are

implicitly estimated by their respective first order conditions, and as a result both n and T

are required to diverge. The rate anT is in line with the existing literature; see for example

Theorem 4.1 in Moon and Weidner (2015), where a preliminary
√

min{n, T}-consistency
rate is established for a fixed number of (non-nuisance) parameters.8

3.2 Selection Consistency

In addition to the consistency result established in Proposition 1, it is also desirable that the

proposed estimator is selection consistent. This requires that, with probability approaching

1, the estimates of the truly zero coefficients are zero, while those of nonzero coefficients

are nonzero.
8By imposing sparsity, and, with a judicious and data specific choice of penalty parameters, it may be

possible to obtain faster rates of convergence. This may be of particular significance in very high dimensional

settings with potentially P > nT , though such results are not pursued in this paper.
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Assumption 5. . min{γρ, γβ}r−ζ
nT → ∞ as n, T → ∞.

Assumption 5 ensures selection consistency of the estimator by taking advantage of

the singularity of the penalty term at zero. Under Assumption 5, min{γρ, γβ}|θ†p|−ζ will

be explosive in probability for those truly zero θp and as a result, asymptotically, the first

order conditions cannot not be met unless θ̂p takes a value of exactly zero. For the following,

recall from the end of Section 2.1 that θ(2) contains the truly zero θp.

Proposition 2 (Selection Consistency). Under Assumptions 1–5,

Pr
(

||θ̂(2)||2 = 0
)

→ 1 as n, T → ∞. (15)

Proposition 2 demonstrates that the estimator will correctly set coefficients with a true

value of zero to exactly zero with probability approaching 1. Moreover, the consistency

result proved in Proposition 1 implies that, with probability approaching 1, the estimates

of nonzero coefficients must be nonzero. Thus together, Propositions 1 and 2 indicate that,

with an appropriate choice of regularisation parameters, the PQMLE is model selection

consistent.

3.3 Asymptotic Distribution

An implication of the model selection consistency result obtained in Proposition 2 is that

the asymptotic distribution of the nonzero coefficient estimates coincides with that of the

infeasible ‘oracle’ estimator, which uses knowledge of which parameters are truly zero. The

limiting distribution of the nonzero coefficient estimates is derived appealing to this result,

and, in keeping with the high dimensional literature, this is done indirectly, by considering

arbitrary linear combinations of parameters. As remarked in Section 2.4, it is important

for the validity of this approach that the true parameters have fixed values that are, by

Assumption 3.1, well separated from zero. If this were not the case then the finite sample

distribution of the estimator could be quite different to that derived in Theorem 1; a point

made clear by Leeb and Pötscher (2005). However, this is a broader issue in the literature

and is particularly difficult to overcome in models of significant complexity, where obtaining

uniform results is often challenging.

Assumption 6. -

6.1 P 5

min{n,T} → 0 as n, T → ∞.

6.2 1
n
Λ0′Λ0 p−→ Σ

Λ
0 as n → ∞ with Σ

Λ
0 being a R0 ×R0 positive definite matrix.
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6.3 1
T
F 0′F 0 p−→ ΣF 0 as T → ∞ with ΣF 0 being a R0 ×R0 positive definite matrix.

6.4 T
n
→ c with 0 < c < ∞.

6.5 R = R0.

6.6 max{γρ, γβ}
√
PnT = o(1).

Assumption 6.1 ensures that the estimation of the coefficients has a negligible effect on

the estimation of the factors and the loadings. Lu and Su (2016), who consider estimation of

a standard regression model without interaction, require P 2/min{n, T} → 0 for analogous

purposes. A stronger condition is needed here to ensure that the estimators of the reduced

form factors S−1(ρ)Λ converge sufficiently fast, since the reduced form is implicitly used in

instrumenting the endogenous variables. As S(ρ) = In−
∑Q

q=1 ρqWq involves an increasing

number of weights matrices, the number of these cannot be allowed to increase too quickly.

Moreover the convergence of the covariance matrix requires further limits on the growth

of P . Fan and Peng (2004) require P 5/n → 0, which corresponds to Assumption 6.1 in a

cross-sectional framework. The condition given in Liu (2017), in a cross-sectional spatial

model without a factor structure error effects, also requires P 5/n → 0. Assumptions 6.2

and 6.3 impose that the factors are strong, that is to say that the factors and loadings have

a nonnegligible impact on the variance of the unobserved term η := (η1, . . . ,ηT ). Other au-

thors consider models with weak factors however this is not pursued here. Assumption 6.4

requires n and T to grow in proportion. Similar asymptotic regimes are assumed in several

papers in which biases arise in models with interactive fixed effects, and which use similar es-

timation approaches. Examples of these include Moon and Weidner (2017) and Shi and Lee

(2017). Other papers, such as Bai (2009) and Lu and Su (2016), consider regimes where

both n/T 2, T/n2 → 0, which provide similar limits on the relative growth rates of n and T .

Assumption 6.5 requires the true number of factors to be known. Nonetheless, Proposition

1 shows that the PQML estimator remains consistent as long as the number of factors is not

understated; that is R ≥ R0. In the absence of interaction, Moon and Weidner (2015) show

that the asymptotic distribution of a least squares estimator is unaffected by overstatement

of the number of factors, under certain conditions. It might, therefore, be expected that

this extends to the present setting, however, since there may be significant complications in

obtaining such results, the asymptotic distribution is derived under the assumption R = R0.

Section 4.2 shows how the number of factors can be chosen consistently with reference to

an information criterion. Assumption 6.6 strengthens the restrictions on the penalty term.

Let D denote the sigma algebra generated by X ∗
1, . . . ,X

∗
K∗ , Λ0 and F 0. With a slight

abuse of notation, in the following the subscripts p and q are also used to refer to an
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element in the indices q = 1, . . . , Q0 and p = 1, . . . , P 0 which indexes quantities associated

only with nonzero parameter values. Define Z̄p := E[Zp|D], ZZZp := M
Λ

0Z̄pMF 0+(Zp−Z̄p),

ZZZ(1) := (vec(ZZZ1), . . . , vec(ZZZP 0)), and Z(1) := (vec(Z1), . . . , vec(ZP 0)), that is, ZZZ(1) and Z(1)

contain only covariates associated with nonzero parameters. Also, let

D :=
1

σ2
0

1

nT
Z ′

(1)(MF 0 ⊗M
Λ

0)Z(1) +

(

Ω 0Q0×K0

0K0×Q0 0K0×K0

)

, (16)

V :=
M3

ε

σ4
0

(Φ+Φ′) +
M4

ε − 3σ4
0

σ4
0

(

Ξ 0Q0×K0

0K0×Q0 0K0×K0

)

, (17)

where the matrices Ω and Ξ are Q0 × Q0 with elements Ωqq′ := 1
n
tr(Gq(Gq′ + G′

q′)) −
2
n2 tr(Gq)tr(Gq′) and Ξqq′ :=

∑T
t=1

∑n
i=1(G

∗
q)ii(G

∗
q′)ii, respectively, for q, q′ = 1, . . . , Q0,

and with G∗
q := Gq − 1

n
tr(Gq)In. The matrix Φ is P 0 × P 0 and has the structure Φ :=

(Φ̄
′
,0P 0×K0)′, with Φ̄qp :=

∑T
t=1

∑n
i=1(ZZZp)it(G

∗
q)ii, for q = 1, . . . , Q0 and p = 1, . . . , P 0.

Assumption 7. -

7.1 For some fixed integer L, SSS is a nonstochastic L× P 0 matrix such that SSSSSS′ converges

to a (entrywise) nonnegative matrix with eigenvalues bounded away from zero and

infinity as n, T → ∞.

7.2 There exist nonstochastic P 0 × P 0 matrices DDD := E[D] and VVV := E[V ] such that

||D −DDD||2 = oP (1), ||V −VVV||2 = oP (1), and the eigenvalues of DDD, VVV and DDD +VVV are

bounded from below by zero and from above by a constant.

Since the limiting distribution of the estimator is difficult to derive directly, a se-

lection matrix SSS is introduced with a finite dimension L. Assumption 7.1 sets out ba-

sic properties of this matrix. Assumption 7.2 ensures that the covariance matrix of the

PQMLE is well defined asymptotically. Let Mm
ε denote the m-th raw moment of εit,

Jh := (0T×(T−h), IT ,0T×h)
′, are recall that θ(1) contains only those truly nonzero coeffi-

cients.

Theorem 1 (Asymptotic Normality). Under Assumptions 1–7,

√
nT
(

SSS(D + V )SSS′
)− 1

2SSS
(

D(θ̂(1) − θ0
(1))−b

b

b

) d−→ N
(

0L×1, IL

)

, (18)

with

b

b

b

:=

(

b

b

b

(1)

0K0×1

)

+







b

b

b

(2)

0K∗0×1

b

b

b

(3)






, (19)
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where the vector bbb(1) is Q0×1 with elements b
(1)
q :=

√

T
n
(R

0

n
tr(Gq)−tr(P

Λ
0Gq)), the vector

b

b

b

(2) is Q0×1 with elements b
(2)
q := − 1√

nT

∑T−1
h=1 tr(J0PF 0J ′

h)tr(WqA
hS−1) and the vector

b

b

b

(3) is (Q0 + 1) × 1 with first element b
(3)
1 := − 1√

nT

∑T−1
h=1 tr(J0P F 0J ′

h)tr(A
h−1S−1) and

remaining elements b
(3)
q+1 := − 1√

nT

∑T−1
h=1 tr(J0P F 0J ′

h)tr(WqA
h−1S−1).9

Theorem 1 describes the asymptotic properties of the estimator for the nonzero coeffi-

cients, detailing the asymptotic covariance matrix and the bias terms which arise. Closer

inspection reveals the bias bbb(1) is of order
√

T/n, while bbb(2) and bbb(3) are of order
√

n/T .

These biases are a consequence of the incidental parameters in both dimensions of the panel.

The bias bbb(1) is comprised to two parts. The first reflects the general loss of information in

Gq resulting from reducing its rank by R0 with the projection M
Λ

0 . The second depends

on the resemblance between the loadings and the network structure; both are sources of

cross-sectional dependence and therefore may be conflated. If the column space of Gq is

orthogonal to the space of loadings, then P
Λ

0Gq = 0n×n and the second part of bbb(1) does

not feature. The second source of bias is characterised in bbb(2) for the ρ coefficients, and in

b

b

b

(3) for the φ coefficients. These two biases arise due to the inclusion of a lagged outcome

and are a generalisation of the usual fixed T bias encountered in dynamic panels with in-

dividual fixed effects. As expected, when the number of parameters is fixed, with SSS = IP 0

the distribution collapses to that of the QMLE where the covariance matrix has a typical

sandwich form.

3.4 Bias Correction

Given the characterisation of the bias term in Theorem 1, it is shown in the following

proposition that this can be consistently estimated and the limiting distribution of the

PQMLE can be recentred. Let D̂ and b̂̂b̂b denote the analogues of D and bbb, respectively,

where θ0,F 0, Λ0 and σ2
0 are replaced by their estimates.

Proposition 3 (Bias Correction). Under Assumptions 1–7,

√
nT
(

SSS(D + V )SSS′
)− 1

2SSSD
(

θ̂
c

(1) − θ0
(1)

) d−→ N
(

0L×1, IL

)

, (20)

with θ̂
c

(1) := θ̂(1) − D̂
−1
b̂̂

b̂

b being the bias corrected estimator.

9Note that here it is assumed that φ0
1 is nonzero so that b

(3)
1 appears in the bias term.
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4 Implementation

This section discusses a way in which the estimation procedure proposed in this paper can

be implemented and, in particular, describes the approach used to obtain the results in

Section 5. This largely concerns how to choose the user specified inputs: the number of

factors R, and the regularisation parameters γρ, γβ and ζ. Two methods to inform these

choices are discussed in Sections 4.1 and 4.2, with the overall suggestion being to proceed in

the following way. First, by Proposition 1 the coefficients can be consistently estimated with

knowledge only of an upper bound on the number of factors. Thus, with a suitable choice

of the penalty parameters (discussed in Section 4.1) penalised estimation can be performed

using a large R, and consistent estimates of the coefficients obtained. Using these coefficient

estimates, a pure factor model can be constructed and the true number of factors detected

(discussed in Section 4.2). Finally, the model should be re-estimated inputting the detected

number of factors to obtain the final estimates. Of course, this multi-step procedure neglects

to account for uncertainty at each stage and ideally it would be preferable to select both

the penalty parameters and the number of factors jointly, however, the approach adopted

here is pragmatic. Additional Monte Carlo results are provided in Appendix J of the

Supplementary Material in order to assess the possible impact of varying the number of

factors on the properties of the estimator.

4.1 Choosing the Penalty Parameters

The fixed regularisation parameter ζ can typically be chosen in line with the rate of conver-

gence of the initial estimator, in order to scale the parameter-specific weights ωp appropri-

ately. For example, if rnT is known to converge to zero slowly, ζ can be increased in order to

ensure Assumptions 5 is satisfied.10 The other regularisation parameters γρ and γβ, which

must convergence to zero, could also be chosen simply as sequences which, in combination

with ζ, ensure Assumptions 3.2, 5 and 6.6 are satisfied.11 However, as an alternative, this

section considers an information criterion that can be used to select γρ and γβ , similar to

what is proposed in Lu and Su (2016). This is suggested in order to go some way in tailoring

the choice of γρ and γβ to the data. Recalling γ := (γρ, γβ)
′, the information criterion takes

10In both the simulations and the application ζ is set equal to 4, which performs well in practice and, with

θ̃ as an initial estimate, would also be suitable for a general choice of γρ and γβ; see footnote 11.
11For example, if rnT = anT , then ζ = 4 and γρ = γβ = 1/min{n, T} would satisfy Assumptions 3.2 and

5 as long as P 2/min{n, T} → 0. With n ∝ T under Assumption 6.4, and again, with rnT = anT , then ζ = 4

and γρ = γβ = n−3/2 would satisfy Assumptions 3.2, 5 and 6.6 as long as P 4/min{n, T} → 0.
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the form

IC∗(γ) := σ̂2(γ) + ̺ρ|Sρ(γ)|+ ̺β|Sβ(γ)|, (21)

where the notation σ̂2(γ) is used for σ̂2(θ̂, Λ̂) to emphasise the dependence on γ, ̺ρ and

̺β are some positive penalty functions of (n, T ), Sρ(γ), Sβ(γ) denote the index sets for

the nonzero elements of the parameter estimates under γ, and | · | denotes the cardinality

of a set. Following closely the exposition in Lu and Su (2016), define SF,ρ := {1, . . . , Q}
and SF,β := {1, . . . ,K} as the index sets for the full set of weights matrices and for all

covariates respectively. Analogous sets ST,ρ := {1, . . . , Q0} and ST,β := {1, . . . ,K0} contain

the indices of the relevant covariates and weights matrices. Next, define two closed intervals,

Γρ := [0, γ̄ρ] and Γβ := [0, γ̄β ], with Γρ,Γβ ⊂ R+ and where γ̄ρ, γ̄β are two upper bounds

beyond which all parameters would be set to zero. The space Γ := Γρ×Γβ can be subdivided

into three regions:

Γ0 := {γ ∈ Γ : Sρ(γ) = ST,ρ and Sβ(γ) = ST,β},

Γ− := {γ ∈ Γ : Sρ(γ) 6⊇ ST,ρ or Sβ(γ) 6⊇ ST,β)},

Γ+ := {γ ∈ Γ : Sρ(γ) ⊃ ST,ρ,Sβ(γ) ⊃ ST,β and |Sρ(γ)|+ |Sβ(γ)| > |ST,ρ|+ |ST,β|}.

Respectively, these are the sets of γ in which the true model is selected, the model is

underfitted and the model is overfitted. The following assumptions are made.

Assumption 8. -

8.1 P 2

min{n,T} → 0 as n, T → ∞.

8.2 As n, T → ∞, (
√
QanT )

−1̺ρ → ∞, (
√
QanT )

−1̺β → ∞, Q0̺ρ → 0, and K0̺β → 0.

8.3 For any γ ∈ Γ−, there exists σ2
− such that σ̂2(γ)

p−→ σ2
− > σ2

0.

Assumption 8 is analogous to Assumptions A.7 and A.8 in Lu and Su (2016). Assump-

tion 8.1 is required to ensure that for those γ which yield either the true model or an

overfitted model, σ̂2(γ) is consistent for σ2
0 . Assumption 8.2 requires that the penalty func-

tions ̺ρ and ̺β relax sufficiently fast as sample size increases. In practice, there may be

many functions which satisfy Assumption 8.2, though these may have different impacts in

finite samples; for further discussion see Bai and Ng (2002). Assumption 8.3 ensures that

underfitted models yield a larger mean squared error than a correctly fitted model.
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Proposition 4 (Information Criterion Consistency). Under Assumptions 1–5 and 8,

Pr

(

inf
γ∈Γ−∪Γ+

IC∗(γ) > IC∗(γ0)

)

→ 1 as n, T → ∞, (22)

for any γ0 ∈ Γ0.

4.2 Choosing the Number of Factors

Following the procedure outlined at the beginning of Section 4, penalised estimation can

first be performed with the number of factors R set to a large enough value, denoted by

Rmax, in order to obtain consistent estimates of the parameters, denoted by ρ̌ and β̌. A

pure factor model can then be constructed as

S(ρ̌)Y −
K
∑

k=1

β̌kZk = Λ0F 0′ + ε̌, (23)

with ε̌ :=
∑Q

q=1(ρ
0
q − ρ̌q)Gq

(
∑K

k=1 β
0
kX k +Λ0F 0′ + ε

)

+
∑K

k=1(β
0
k − β̌k)X k + ε. Existing

information criteria can then be used to detect the number of factors, and this suggested

number can be input into a second estimation step. For example, Shi and Lee (2017)

consider information criteria of the form

IC(R) := log

(

1

nT

n
∑

i=R+1

µi

(

(

Λ0F 0′ + ε̌
)(

Λ0F 0′ + ε̌
)′)

)

+ ̺fR, (24)

with ̺f being a positive penalty function of (n, T ). With minor modification to Theorem

5 in that paper, it can be shown that the information criterion in (24) is consistent in

determining the number of factors, in the sense that limn,T→∞Pr(R∗ = R0) = 1, with R∗ :=

argmin0≤R≤Rmax
IC(R) and under the additional assumption that the penalty function ̺f

satisfies ̺f → 0 and anT̺f → ∞, with anT being the preliminary rate established in

Proposition 1.

5 Illustration

This section demonstrates the finite sample performance and practicability of the procedure

through the use of a small Monte Carlo study and an empirical example.

5.1 Simulations

In the following design, the data are generated according to model (1), with the number of

parameters and weights matrices increasing with sample size. The design is summarised in
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Table 1 with a little under half of the parameters taking a true value of 0 for each sample

size. Dashes in the table indicate that a covariate is absent.

Table 1: True parameter values

n T ρ01 ρ02 ρ03 ρ04 ρ05 δ01 δ02 δ03 δ04 δ05 δ011 δ012 δ013 δ014 δ015 φ0
1 φ0

2 φ0
3 φ0

4 φ0
5

25 0.2 0.2 0 - - 3 0 −3 - - 1 0 −1 - - 0.15 0 −0.15 - -

25 50 0.2 0.2 0 - - 3 0 −3 0 - 1 0 −1 - - 0.15 0 −0.15 - -

100 0.2 0.2 0 - - 3 0 −3 0 3 1 0 −1 - - 0.15 0 −0.15 - -

25 0.2 0.2 0 0.2 - 3 0 −3 - - 1 0 −1 0 - 0.15 0 −0.15 0 -

50 50 0.2 0.2 0 0.2 - 3 0 −3 0 - 1 0 −1 0 - 0.15 0 −0.15 0 -

100 0.2 0.2 0 0.2 - 3 0 −3 0 3 1 0 −1 0 - 0.15 0 −0.15 0 -

25 0.2 0.2 0 0.2 0 3 0 −3 - - 1 0 −1 0 1 0.15 0 −0.15 0 0

100 50 0.2 0.2 0 0.2 0 3 0 −3 0 - 1 0 −1 0 1 0.15 0 −0.15 0 0

100 0.2 0.2 0 0.2 0 3 0 −3 0 3 1 0 −1 0 1 0.15 0 −0.15 0 0

The error term εit, the loadings λ0
ir and the factors f0

tr are generated as standard nor-

mal variables.12 Primitive exogenous variables are generated according to x∗κit = ν +
∑R0

r=1 λ
0
irf

0
rt + eit with ν being uniformly drawn from the integers {−10, . . . , 10} and eit ∼

N (0, 2). By design these are correlated with the factors and the loadings and have asso-

ciated coefficients δ0κ. There are also additional covariates formed by interacting the q-th

weights matrix with the first primitive exogenous regressor in the manner of (2). These

covariates have associated coefficients δ01q. The number of weights matrices is increasing

with n, with the first weights matrix being constructed as if the cross-sectional units were

arrayed on a line and connected only to the units immediately to the left and right. This

is the simplest example of a path and produces a matrix with ones along the diagonals di-

rectly above and below the main diagonal, and zeros elsewhere. The remaining matrices are

specified in similar fashion, but now represent neighbours to the q-th degree. All matrices

are then row normalised. Finally, a lag of outcomes is included, as well as interactions of

this lagged outcome and the weights matrices.13

Table 2 reports bias corrected estimates θ̂
c
, across various n and T , each with 1000

Monte Carlo replications, and where R = R0 = 3.

12For simplicity results are reported here only for idiosyncratic errors that are normally distributed. Similar

results can be obtained under alternative error distributions and additional simulation results are available

in Appendix J in the Supplementary Material.
13Assumptions 1–8 are verified for this design in Appendix I of the Supplementary Material.
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Table 2: Bias of bias corrected estimates of nonzero parameters (R = R0)

n T ρ1 ρ2 ρ4 δ1 δ3 δ5 δ11 δ13 δ15 φ1 φ3

25 0.0002 −0.0004 - 0.0008 −0.0014 - −0.0027 0.0031 - −0.0004 0.0004

25 50 0.0001 −0.0002 - −0.0002 −0.0006 - −0.0016 0.0026 - −0.0002 0.0002

100 0.0001 −0.0002 - 0.0001 −0.0005 0.0005 −0.0014 0.0017 - −0.0001 0.0001

25 0.0001 0 −0.0001 0.0005 0.0005 - −0.0007 0.0005 - −0.0002 0.0002

50 50 0.0002 −0.0003 0 0.0002 −0.0006 - −0.0005 0.0013 - −0.0001 0.0001

100 0 −0.0001 0 −0.0001 −0.0003 0.0003 0 0.0005 - −0.0002 0.0002

25 −0.0001 −0.0002 0.0002 0.0003 −0.0011 - −0.0004 0.0022 −0.0006 −0.0003 0.0003

100 50 0 0 0 0.0003 −0.0002 - 0.0001 0.0005 −0.0006 −0.0003 0.0002

100 0.0001 −0.0001 0 0 −0.0001 0.0002 −0.0004 0.0007 −0.0001 −0.0002 0.0002

Table 2 shows that the biases are generally decreasing with both n and T and tend to be

larger for the parameters δ1, δ3 and δ5, as well as the exogenous spillovers δ11, δ13 and δ15.

This is unsurprising since the covariates X ∗
κ are directly correlated with the loadings and the

factors by design. The biases of the ρq parameters are lower since these implicitly use the

instrument GqXtβ
0, which may not itself be strongly correlated with the factors and the

loadings. The same is true of the coefficients φ1 and φ3, since the lags Y−1 and interactions

WqY−1 are less directly correlated with the factors and the loadings. These biases can be

favourably compared with Table 6 in Appendix J in the Supplementary Material, which

presents biases of the PQMLE without controlling for interactive effects, where there are

large biases which persist with n and T .

Table 3: Coverage of nonzero parameter estimates (R = R0)

n T ρ1 ρ2 ρ4 δ1 δ3 δ5 δ11 δ13 δ15 φ1 φ3

25 0.901 0.902 - 0.885 0.908 - 0.891 0.897 - 0.904 0.907

25 50 0.906 0.922 - 0.921 0.924 - 0.922 0.928 - 0.916 0.922

100 0.930 0.919 - 0.926 0.929 0.920 0.917 0.930 - 0.929 0.915

25 0.920 0.932 0.931 0.924 0.927 - 0.927 0.927 - 0.913 0.920

50 50 0.939 0.935 0.931 0.936 0.926 - 0.932 0.917 - 0.926 0.930

100 0.946 0.942 0.922 0.932 0.934 0.932 0.945 0.921 - 0.921 0.928

25 0.929 0.929 0.923 0.930 0.921 - 0.926 0.916 0.932 0.934 0.931

100 50 0.937 0.935 0.947 0.941 0.926 - 0.920 0.939 0.939 0.931 0.934

100 0.947 0.930 0.942 0.950 0.946 0.948 0.941 0.957 0.942 0.922 0.921

Table 3 presents coverage probabilities of Wald confidence intervals based on Theorem

1 and with a nominal coverage of 95%. These generally improve with n and T , though due

to the complexity of the design it is unsurprising that they do not do so monotonically.

Table 4 shows the percentage of true zero parameters correctly estimated as such, with the
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procedure performing well and achieving near 100% accuracy across all n and T .

Table 4: Percentage of true zeros (R = R0)

n T ρ3 ρ5 δ2 δ4 δ12 δ14 φ2 φ4 φ5

25 99.9 - 100 - 99.9 - 99.9 - -

25 50 99.8 - 100 100 100 - 99.8 - -

100 99.8 - 100 100 100 - 99.9 - -

25 100 - 100 - 100 100 100 100 -

50 50 99.9 - 100 100 100 100 99.9 99.9 -

100 99.6 - 100 100 100 100 99.6 99.6 -

25 99.9 99.9 99.9 - 99.9 99.9 99.9 99.9 99.9

100 50 99.8 99.8 100 100 100 100 99.8 99.8 99.8

100 99.7 99.8 100 100 100 100 99.7 99.7 99.7

The results reported in Tables 2–4 are computed with the correct number of factors

inputted (R = R0 = 3), however, in practice, the true number of factors will not be known.

To address this it was suggested in Section 4 to first perform penalised estimation of the

model using an upper bound on the number of factors (R = Rmax) and then to construct a

pure factor model and use the information criterion described in Section 4.2 to detect the

true number of factors. After this the model can be re-estimated inputting the detected

number of factors to obtain the final estimates. In order to asses the effectiveness of this

strategy, additional estimations are performed using an upper bound on the number of

factors Rmax = 6 > R0.14 A pure factor model is then constructed using these estimates

and the information criterion (24) computed. Table 5 presents the number of times, as a

percentage, that the true number of factors is found to minimise the information criterion.

Three variants of this criterion are used (IC1, IC2 and IC3) which differ only in their choice

of penalty function ̺f .
15 As sample size increases, the performance of all three variants

improves, though there is significant variability between the three criteria.16

14Table 15 in Appendix J provides additional results with Rmax = 10; the results are very similar.
15The functions used in IC1, IC2 and IC3 are, respectively, log(min{n, T})/min{n, T}, ((n +

T )/(nT )) log(min{n, T}) and ((n + T )/(nT )) log((nT )/(n + T )). For both ̺ρ and ̺β in IC∗,

log(min{n, T})/min{n, T} is used.
16The penalty function IC1 is smaller in magnitude than IC2 and IC3 across all samples sizes. Moreover,

unlike IC2 and IC3, IC1 only decreases when min{n, T} decreases. The overall result of this is under-

penalisation for a larger R and poor performance in smaller samples when n = T .
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Table 5: True number of factors is selected % (R = Rmax = 6)

T 25 50 100

n IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

25 0 96.5 79.2 46.1 99.6 99.4 99.9 99.9 99.9

50 43.8 99.1 98.8 7.3 100 100 100 100 100

100 99.7 99.8 99.8 100 100 100 99.9 100 100

To gauge the likely impact of the factors not being known, estimation results with the

number factors misspecified are provided in Appendix J in the Supplementary Material.

These results illustrate cases in which the correct number of factors R0 remains fixed at 3,

and yet R = 1, R = 6 and R = 10 are inputted in estimation. In line with the result in

Proposition 1, when the number of factors is underestimated (R = 1) large biases persist,

while the estimator remains consistent with the number of factors overestimated (R = 6),

even significantly so (R = 10), though overestimation can result in considerable inefficiency.

5.2 Application

As an empirical demonstration, the method is applied to study the determinants of economic

growth, using a panel data set where several countries are observed over multiple time

periods. It is natural to suppose that economic growth might be influenced by unobserved

shocks, as well as observable regressors, and in this spirit Lu and Su (2016) estimate a model

of economic growth controlling for unobserved factors. In that paper, the authors focus,

in particular, on applying shrinkage methods to determine an unknown number of factors.

Extending their work to include interaction is well motivated, since one might reasonably

expect the growth rates of different countries to be interrelated. Yet in such cases it can be

difficult to specify weights matrices a priori. Indeed Durlauf et al. (2009) remark: “Spatial

methods may yet have an important role to play in growth econometrics. However, when

these methods are adapted from the spatial statistics literature, they raise the problem of

identifying the appropriate notion of space . . . . countries are perhaps best thought of as

occupying some general socio-economic-political space defined by a range of factors; spatial

methods then require a means to identify their locations”. The model studied in this paper

may provide insight into growth rate determination, where uncertainty in specifying cross-

national interactions provides an example of the type of uncertainty which the present

methodology seeks to address.

The data are obtained from Lu and Su (2016), with additional data on income classi-

fications from the World Bank. The outcome yit is the growth rate (Grth) in real GDP
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per capita for one of a cross-section of 108 countries observed between the years 1970–2005.

The same 9 primitive exogenous covariates are used as in Lu and Su (2016), which include

variables such as life expectancy, population growth, and consumption, investment and gov-

ernment expenditure shares. A series of weights matrices are specified based on grouping

countries according to four Word Bank classifications: high income (W 1), upper-middle

income (W 2), lower-middle income (W 3) and low income (W 4) economies, and reflect the

more general notion of a socio-economic space remarked upon on by Durlauf et al. (2009).

Each of these weights matrices are constructed by setting the (i, j)-th element to 1 if country

i and j share the same income classification, and setting it equal to zero otherwise, before

then row normalising each of the matrices.

Table 6: Estimation results without interaction.

R Young Fert Life Popu Invpri Con Gov Inv Open Lag1 IC1 IC2 IC3

0
estimate 0 0 0 −0.462 0 0 0 0.099 0 0.161

3.662 3.662 3.662
t-stat 0 0 0 −8.030 0 0 0 17.394 0 10.386

1
estimate 0 0 0 −0.474 0 0 −0.051 0.118 0 0.137

3.508 3.541 3.531
t-stat 0 0 0 −7.317 0 0 −4.224 18.504 0 8.855

2
estimate 0 0.444 0 −0.489 0 0 −0.238 0.228 0 0

3.449 3.515† 3.494
t-stat 0 4.804 0 −5.186 0 0 −9.424 19.112 0 0

3
estimate 0 0 0 −0.061 0 0 −0.170 0.228 0 0

3.420† 3.519 3.487†
t-stat 0 0 0 −0.690 0 0 −8.644 19.821 0 0

6
estimate 0 0.165 0 −0.432 0 0 −0.174 0.217 0 0

3.437 3.636 3.572
t-stat 0 2.131 0 −4.393 0 0 −7.779 19.524 0 0

Table 6 reports bias corrected estimates θ̂
c
in the absence of interaction.17 Three variants

(IC1, IC2 and IC3) of the information criterion given in (24) are computed using estimates

generated inputting R = Rmax = 6.18 In two out of three cases, the information criteria

suggest that the number of factors R is 3, matching the number suggested in Lu and Su

(2016). The estimates corresponding to R = 3 can be compared to the results for the

AgLasso (which selects R = 3) given in Table 7 of Lu and Su (2016). In this case coefficient

estimates and t-statistics are similar.

17Note that, in the absence of interaction, the quasi-maximum likelihood estimator reduces to the usual

principal component least squares estimator (e.g., Bai, 2009).
18These variants are the same as those used in simulations.
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Table 7: Estimation results with endogenous interaction and temporal lags.

R W1×Grth W2×Grth W3×Grth W4×Grth Young Fert Life Popu Invpri Con Gov Inv Open

0
estimate 0.210 0.150 0 0.258 0 0 0 −0.492 0 0 0 0.090 0

t-stat 3.167 1.297 0 3.795 0 0 0 −8.460 0 0 0 15.115 0

1
estimate 0.295 0.289 −0.192 0.345 0 −0.070 0 −0.443 0 0 −0.050 0.111 0

t-stat 3.688 4.060 −1.475 5.141 0 −1.239 0 −4.977 0 0 −4.511 16.372 0

2
estimate 0.100 0 −0.325 0.207 0 0.355 0 −0.477 0 0 −0.237 0.218 0

t-stat 1.323 0 −2.383 2.808 0 3.958 0 −5.107 0 0 −9.493 17.823 0

3
estimate 0.195 0 −0.305 0.227 0 −0.001 0 −0.095 0 0 −0.188 0.215 0

t-stat 2.603 0 −2.277 3.099 0 −0.016 0 −0.953 0 0 −8.129 18.055 0

6
estimate 0 0 −0.202 0 0.093 −0.946 0 −0.570 0 0 −0.225 0.220 0

t-stat 0 0 −2.224 0 6.179 −4.760 0 −5.703 0 0 −8.536 16.954 0

Table 7 Continued: Estimation results with endogenous interaction and temporal lags.

R Lag1 W1×Lag1 W2×Lag1 W3×Lag1 W4×Lag1 IC1 IC2 IC3

0
estimate 0.159 0 0 0 0

3.723 3.723 3.723
t-stat 10.279 0 0 0 0

1
estimate 0.129 0.172 0 0.400 0

3.496 3.529 3.519
t-stat 8.145 1.730 0 2.695 0

2
estimate 0.031 0 0 0.177 0

3.442 3.508† 3.487
t-stat 1.965 0 0 1.137 0

3
estimate 0.033 0 0 0.233 0

3.417† 3.516 3.484†
t-stat 2.070 0 0 1.572 0

6
estimate 0 0 0 0 0

3.433 3.632 3.568
t-stat 0 0 0 0 0

Table 7 reports estimation results once endogenous interaction and dynamic interaction

is added. Government spending and investments shares in particular remain highly sig-

nificant. However there is also evidence to suggest that there are significant endogenous

spillovers, especially between high income and low income countries. The results indicate

that amongst these two groups of countries, growth rates are interrelated with a positive

spillover. In addition, there is evidence to suggest the presence of dynamic spillovers, these

being positive, between lower-middle income countries.

6 Conclusion

To conclude, this paper considers the estimation of a model of cross-section interaction,

whose salient features are a potentially increasing number of weights matrices and a factor

structure in the error term. A penalised quasi-maximum likelihood estimator is proposed,

in order to perform inference on network spillovers of various kinds, and its asymptotic

properties are studied. A small Monte Carlo study reports good finite sample performance,

and an empirical application studying the determinants of economic growth finds positive
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spillovers between the growth rates of high income and low income countries.

This work could be extended in several directions. For instance, one might consider pos-

sible endogeneity of the weights matrices as in Shi and Lee (2018) and Kuersteiner and Prucha

(2020), or extend the use of weights matrices to the error term. Since they are observed, the

possibility of time varying weights matrices might also be of interest. With some modified

assumptions, the consistency result in Proposition 1 could be extended quite readily to this

case, though additional work would be required to characterise the asymptotic distribution.

Another prospect might be to consider higher dimensional settings, for example, one might

consider an entirely unknown weights matrix, modelled in this framework as a series of

weights matrices containing a single unitary element. However, identification in this setting

would need to be carefully studied since including parameters which increase too quickly

with n, alongside the factor loadings, may present complications. As a final thought, it

might also be natural to allow the number of factors to increase with sample size. When

the number of interacting cross-sectional units increases, and more units in a network are

observed, it might be expected that additional latent structures in the error term would

lead to an increase in the rank of the factor term.

Appendix A. Proofs of Main Results

This appendix provides proofs of the main results before which a series of lemmas are

stated. The proofs of these lemmas are given in the Supplementary Material. The following

facts are used repeatedly (proofs can be found, for instance, in Moon and Weidner, 2017).

Let A and B be two conformable matrices. Then ||A||2 ≤ ||A||F ≤
√

rank(A)||A||2,
||A||2 ≤

√

||A||1||A||∞ and ||AB||F ≤ ||A||F ||B||2 ≤ ||A||F ||B||F . Let the i-th row of

an n × m matrix B be denoted (B)i., and the j-th column be denoted (B).j . Then
(
∑m

j=1 ||B.j||22
)

1
2 =

(
∑n

i=1 ||Bi.||22
)

1
2 = ||B||F . Finally, under Assumption 1.1, ||ε||2 =

OP (
√

min{n, T}) (see Latala, 2005).

Estimated factors and loadings: The maximiser of Q(θ,Λ) with respect to Λ is not

unique, since for any Λ∗ = ΛH , with H being an R × R invertible matrix, MΛ = MΛ
∗ .

In order to achieve uniqueness of the estimators of Λ and F , the normalisations that
1
n
Λ′Λ = IR and F ′F is a diagonal matrix are adopted, see for example Bai (2009).19

19It is straightforward to see that such matrices exist. For example, by the singular value decomposition,

decompose ΛF ′ = USV ′. Let Λ̌ be the R columns of
√
nU associated with the nonzero singular values

and F̌
′
be the corresponding R rows of SV ′/

√
n. As the columns of U and V are orthogonal, and S is

diagonal, it follows that Λ̌
′
Λ̌/n = IR, F̌

′
F̌ is diagonal and Λ̌F̌

′
= ΛF ′.
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Under these normalisations, define

Λ̂(θ) := argmin
Λ: 1

n
Λ

′
Λ=IR

{

1

nT

T
∑

t=1

e′tMΛet

}

= argmax
Λ: 1

n
Λ

′
Λ=IR

{

1

n
tr

(

Λ′ 1

nT

T
∑

t=1

ete
′
tΛ

)}

. (A.1)

It can be shown that the columns of Λ̂(θ) are equal to R orthonormal eigenvectors of the

matrix 1
nT

∑T
t=1 e

′
tet associated with the R largest eigenvalues. With F̂

′
F̂ being diagonal,

Λ̂(θ) will be unique, up to a permutation of its rows and a column-wise change of sign,

provided the diagonal entries of F̂
′
F̂ are distinct. Hereafter Λ̂ := Λ̂(θ̂).

Additional notation: For a matrix (and implicitly also for a vector) B, B = OP (anT )

means that ||B||2 = OP (anT ). Similarly B = oP (anT ) means that ||B||2 = oP (anT ). The

elements of the matrices X ∗
κ, X k, Zp, ε, Λ and F are respectively denoted x∗κit, xkit, zpit,

εit, λir and ftr. For any other n × m matrix B, the (i, j)-th element is denoted (B)ij .

Finally, the l-th raw moment of some random variable s is denoted Ml
s.

Lemma A.1. For any n×n diagonalisable positive definite matrix B, det(B)
1
n ≤ 1

n
tr(B),

with equality if and only if B = cIn for some c > 0.

Lemma A.2. Under Assumptions 1–2,

(i) S(ρ)S−1 = In +
∑Q

q=1(ρ
0
q − ρq)Gq;

(ii) ||Zp||2 ≤ ||Zp||F = OP (
√
nT ) for p = 1, . . . , P ;

(iii) ||Λ0||2 ≤ ||Λ0||F = OP (
√
n), ||F 0||2 ≤ ||F 0||F = OP (

√
T );

(iv) (
∑P

p=1 ||Zp||22)
1

2 , (
∑T

t=1 ||Zt||22)
1

2 = OP (
√
PnT );

(v) E
[
∑P

p=1 tr(Z
′
pS(ρ)S

−1ε)2
]

= O(PnT );

(vi) ||ε||F = OP (
√
nT );

(vii) (
∑T

t=1 ||Xtβ
0||22)

1

2 = OP (
√
nT );

(viii) ||S(ρ)S−1 − In||2 = OP (
√
Q||θ0 − θ||2).

Lemma A.3. Under Assumptions 1–4,

(i) ( 1
nT

∑T

t=1 ||Zt(θ
0 − θ)||22)

1

2 = OP (||θ0 − θ||2);

(ii) σ̂−2(θ̂,Λ) = OP (1).
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Lemma A.4. Under Assumptions 1–6,

D
√
nT (θ̂(1) − θ0

(1)) =
1

σ2
0

1√
nT

Z ′
(1)(MF 0 ⊗M

Λ
0)vec(ε)

+
1

σ2
0

1√
nT















tr ((G∗
1ε)

′M
Λ

0εMF 0)
...

tr
(

(G∗
Q0ε)′MΛ

0εMF 0

)

0K0×1















+ oP (1),

where the matrix D is defined in equation (16) and the matrices G∗
q, q = 1, . . . , Q0, are

those associated with nonzero coefficients.

Lemma A.5. Under Assumptions 1–6,

(i) ||D−1 − D̂
−1||2 = OP ((Q

0)1.5P 0||θ0 − θ̂||2) +OP

(

Q0P 0√
min{n,T}

)

;

(ii) E

[

∑Q0

q=1

(

tr((G∗
qε)

′PΛ0ε)− σ2
0T tr(PΛ0G∗

q)
)2
]

= O(Q0T );

(iii) E

[

∑Q0

q=1

(

tr((G∗
qε)

′PΛ0εPF 0)− σ2
0R

0tr(PΛ0G∗
q)
)2
]

= O(Q0);

(iv) E

[

∑Q0

q=1

(

tr((G∗
qε)

′εPF 0)− σ2
0R

0tr(G∗
q)
)2
]

= O(Q0n);

(v)
1

σ2
0

1√
nT









tr
(

(Z1 − Z̄1)
′(PΛ0ε+MΛ0εP F 0)

)

...

tr
(

(ZP 0 − Z̄P 0)′(PΛ0ε+MΛ0εPF 0)
)









=







b

b

b

(2)

0K∗0×1

b

b

b

(3)






+ oP (1),

where the matrices G∗
q, q = 1, . . . , Q0, and the variables Zp − Z̄p, p = 1, . . . , P 0, are those

associated with nonzero coefficients.

Lemma A.6. Under Assumptions 1–7, 1√
nT

1
σ2
0
(SSS(DDD+VVV)SSS′)−

1
2 SSSc

d−→ N (0L×1, IL), where

c := ZZZ
′
(1)vec(ε) + (tr(ε′G∗

1ε), . . . , tr(ε
′G∗

Q0ε),01×K0)′, the matrices SSS,DDD and VVV are defined

in Assumptions 7.1 and 7.2, and the matrices G∗
q, q = 1, . . . , Q0, those associated with

nonzero coefficients.

Proof of Proposition 1. Here only a sketch of the proof is provided. A more detailed

version can be found in Appendix D of the Supplementary Material.

Consistency of the QMLE θ̃

First, consider the average concentrated quasi-likelihood

L(θ) := sup
Λ∈Rn×R

{

1

n
log(det(S(ρ)))− 1

2
log
(

σ̂2(θ,Λ)
)

}

. (A.2)
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Evaluated at θ0, a lower bound, denoted L(θ0), can be established by substituting in the

true DGP, and using Assumptions 1.1 and 1.2,

L(θ0) :=
1

n
log(det(S))− 1

2
log

(

σ2
0 +OP

(

1

min{n, T}

))

=
1

n
log(det(S))− 1

2
log
(

σ2
0 +OP (a

2
nT )
)

≤ L(θ0). (A.3)

Second, using Lemmas A.2(i), A.2(iv), A.2(v), A.3(i) and Assumption 4.2, an upper bound

for L(θ), denoted L̄(θ), can also be established,

L(θ) ≤ 1

n
log(det(S(ρ))) − 1

2
log

(

c1||θ0 − θ||22 +OP

(

1

min{n, T}

)

+
σ2
0

n
tr((S(ρ)S−1)′S(ρ)S−1) +OP

(

1√
nT

)

+ ||θ0 − θ||2OP

(
√

P

nT

))

=
1

n
log(det(S(ρ))) − 1

2
log
(

c1||θ − θ0||22 +OP (anT )||θ − θ0||2 +OP (a
2
nT )

+
σ2
0

n
tr((S(ρ)S−1)′S(ρ)S−1)

)

=: L̄(θ). (A.4)

Now, since θ̃ is a global maximiser, L(θ0) ≤ L(θ̃) and therefore L(θ0) ≤ L̄(θ̃). Using the

expressions for these bounds derived in (A.3) and (A.4) gives

1

n
log(det(S))− 1

2
log
(

σ2
0 +OP (a

2
nT )
)

≤ 1

n
log(det(S(ρ̃)))− 1

2
log
(

c1||θ̃ − θ0||22 +OP (anT )||θ̃ − θ0||2 +OP (a
2
nT )

+
σ2
0

n
tr((S(ρ̃)S−1)′S(ρ̃)S−1)

)

. (A.5)

Multiplying both sides of (A.5) by −2, exponentiating, and then noticing that, by Lemma

A.1, σ2
0det((S(ρ̃)S

−1)′S(ρ̃)S−1)
1
n ≤ σ2

0
n
tr((S(ρ̃)S−1)′S(ρ̃)S−1), results in

0 ≥ c1||θ̃ − θ0||22 +OP (anT )||θ̃ − θ0||2 +OP (a
2
nT ). (A.6)

Completing the square, 0 ≥ (
√
c1||θ̃−θ0||2+OP (anT ))

2+OP (a
2
nT ), whereby it follows that

||θ̃ − θ0||2 = OP (anT ).

Consistency of the PQMLE θ̂

Since θ̂ is the maximiser of the penalised quasi-likelihood function, Q(θ0) ≤ Q(θ̂). Thus,

Q(θ0) = L(θ0)−



γρ

Q
∑

q=1

ωq|ρ0q |+ γβ

K
∑

k=1

ωQ+k|β0
k|
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≤ Q(θ̂)

= L(θ̂)−



γρ

Q
∑

q=1

ωq|ρ̂q|+ γβ

K
∑

k=1

ωQ+k|β̂k|





≤ L(θ̂). (A.7)

Consider the penalty term. Under Assumption 3.1,

γρ

Q
∑

q=1

ωq|ρ0q |+ γβ

K
∑

k=1

ωQ+k|β0
k | ≤ c2 max{γρ, γβ}P 0

(∣

∣

∣

∣

∣

θ†p

θ0p

∣

∣

∣

∣

∣

)−ζ

|θ0p|−ζ , (A.8)

where p := argmin1≤p≤P :.θ0p 6=0 |θ†p|. Since the initial estimate θ† satisfies ||θ† − θ0||2 =

OP (rnT ) = oP (1), it follows that |θ†p/θ0p − 1| ≤ 1
|θ0p|

||θ† − θ0||2 = oP (1) which implies θ†p/

θ0p = OP (1). Hence,

γρ

Q
∑

q=1

ωq|ρ0q |+ γβ

K
∑

k=1

ωQ+k|β0
k | = max{γρ, γβ}OP (P

0) = OP (a
2
nT ), (A.9)

under Assumption 3.2. Next, using (A.9), and applying the lower and upper bounds derived

in (A.3) and (A.4) to (A.7) gives

1

n
log(det(S))− 1

2
log(σ2

0 +OP (a
2
nT )) +OP (a

2
nT ) ≤

1

n
log(det(S(ρ̂)))

− 1

2
log
(

c1||θ̂ − θ0||22 +OP (anT )||θ̂ − θ0||2 +OP (a
2
nT ) +

σ2
0

n
tr((S(ρ̂)S−1)′S(ρ̂)S−1)

)

.

(A.10)

After rearranging and simplifying this becomes

log
(

σ2
0det((S(ρ̂)S−1)′S(ρ̂)S−1)

1
n +OP (a

2
nT )
)

+OP (a
2
nT )

≥ log
(

c1||θ̂ − θ0||22 +OP (anT )||θ̂ − θ0||2 +OP (a
2
nT ) +

σ2
0

n
tr((S(ρ̂)S−1)′S(ρ̂)S−1)

)

.

(A.11)

Exponentiating, using Lemma A.1, and the fact that by Assumption 4.4 OP (a
2
nT ) = oP (1)

gives the result

0 ≥ c1||θ̂ − θ0||22 +OP (anT )||θ̂ − θ0||2 +OP (a
2
nT ), (A.12)

whereby completing the square yields ||θ̂ − θ0||2 = OP (anT ).
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Proof of Proposition 2. Since the PQMLE θ̂ is consistent for θ0 by Proposition 1, and

by Assumption 2.1 θ0 is in the interior of Θ, θ̂ must also be in the interior of Θ w.p.a.1 as

n, T → ∞. Thus, w.p.a.1, θ̂ must solve the first order condition

∂Q(θ,Λ)

∂θ
=

∂L(θ,Λ)

∂θ
− ∂̺(θ,γ, ζ)

∂θ
= 0P×1, (A.13)

where

∂L(θ,Λ)

∂θ
=

























− 1
n
tr(G1(ρ)) +

1
σ̂2(θ,Λ)

1
nT

∑T
t=1(W 1yt)

′MΛ(S(ρ)yt −Xtβ)
...

− 1
n
tr(GQ(ρ)) +

1
σ̂2(θ,Λ)

1
nT

∑T
t=1(WQyt)

′MΛ(S(ρ)yt −Xtβ)
1

σ̂2(θ,Λ)
1
nT

∑T
t=1 x

′
1tMΛ(S(ρ)yt −Xtβ)
...

1
σ̂2(θ,Λ)

1
nT

∑T
t=1 x

′
KtMΛ(S(ρ)yt −Xtβ)

























. (A.14)

In the following it is shown that, as n, T → ∞, this first order condition cannot hold unless

the estimators of those θp which have a true value of zero also take a value of exactly zero

w.p.a.1. To reach a contradiction, suppose that there is some p, call this p∗, for which θ0p = 0

yet Pr(θ̂p = 0) does not go to 1 as n, T → ∞. It is first shown that ∂L(θ,Λ)
∂θp∗

|
θ=θ̂

= OP (1),

i.e., the first order condition evaluated at θ̂ is not explosive in probability. Since θp∗ could

be some ρq or βk, both cases are examined in turn. Consider first the case where θp∗ is some

ρq. Substituting in the true data generating process, the element of ∂L(θ,Λ)
∂θ

|
θ=θ̂

relating to

ρq is equal to

− 1

n
tr(Gq(ρ̂)) +

1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(Wqyt)
′MΛ(S(ρ̂)yt −Xtβ̂)

=− 1

n
tr(Gq(ρ̂)) +

1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(GqXtβ
0)′MΛZt(θ

0 − θ̂)

+
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(GqXtβ
0)′MΛS(ρ̂)S

−1Λ0f0
t +

1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(GqXtβ
0)′MΛS(ρ̂)S

−1εt

+
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(GqΛ
0f0

t )
′MΛZt(θ

0 − θ̂) +
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(GqΛ
0f0

t )
′MΛS(ρ̂)S

−1Λ0f0
t

+
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(GqΛ
0f0

t )
′MΛS(ρ̂)S

−1εt +
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(Gqεt)
′MΛZt(θ

0 − θ̂)

+
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(Gqεt)
′MΛS(ρ̂)S

−1Λ0f0
t +

1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

(Gqεt)
′MΛS(ρ̂)S

−1εt
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=: s1 + . . .+ s10. (A.15)

Since Gq(ρ) is UB, terms s5, . . . , s10 are OP (1) by the same arguments as for their coun-

terparts in the proof of Lemma A.3(ii) (terms l2, . . . , l6; see Supplementary Material),

and using the result in that lemma (whereby 1/σ̂2(θ̂,Λ) = OP (1)). Since the rank of

Gq(ρ) can be no greater than n, using |tr(B)| ≤ rank(B)||B||2 for some square matrix B

(Moon and Weidner, 2017, Lemma S.4.1(v)), and that S−1(ρ) and Wq are UB, one has

|s1| =
1

n
|tr(Gq(ρ̂))| ≤ ||Gq(ρ̂)||2 ≤ ||S−1(ρ̂)||2||Wq||2 = OP (1).− (A.16)

Using Lemmas A.2(vii), A.3(i) and A.3(ii), as well as Proposition 1, yields

|s2| ≤
1√
nT

1

σ̂2(θ̂,Λ)
||Gq||2||MΛ||2

(

T
∑

t=1

||X tβ
0||22

)

1
2
(

1

nT

T
∑

t=1

||Zt(θ
0 − θ̂)||22

)

1
2

=
1√
nT

OP (
√
nT )OP (anT ) = OP (1). (A.17)

The remaining terms, s3 and s4, can be shown to be OP (1) similarly, using Lemmas A.2(iii),

A.2(vi) A.2(vii) and A.3(ii). Next consider the case where θp∗ is some βk. The element of
∂L(θ,Λ)

∂θ
|
θ=θ̂

corresponding to βk is

1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

x′
ktMΛ(S(ρ̂)S

−1(Xtβ
0 +Λ0f0

t + εt)−X tβ̂)

=
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

x′
ktMΛZt(θ

0 − θ) +
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

x′
ktMΛS(ρ̂)S

−1Λ0f0
t

+
1

σ̂2(θ̂,Λ)

1

nT

T
∑

t=1

x′
ktMΛS(ρ̂)S

−1εt

=: p1 + p2 + p3.

Using Lemmas A.2(ii), A.2(iii), A.2(vi), A.3(i) and A.3(ii), one has

|p1| ≤
1

nT

1

σ̂2(θ̂,Λ)
||MΛ||2

(

T
∑

t=1

||xkt||22

)

1
2
(

T
∑

t=1

||Zt(θ
0 − θ̂)||22

)

1
2

=
1√
nT

1

σ̂2(θ̂,Λ)
||MΛ||2||X k||F

(

1

nT

T
∑

t=1

||Z t(θ
0 − θ̂)||22

)

1
2

=
1√
nT

OP (
√
nT )OP (anT ) = OP (1), (A.18)
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|p2| ≤
1

nT

1

σ̂2(θ̂,Λ)
||MΛ||2||S(ρ̂)S−1||2||Λ0||2

(

T
∑

t=1

||xkt||22

)

1
2
(

T
∑

t=1

||f0
t ||22

)

1
2

=
1

nT

1

σ̂2(θ̂,Λ)
||MΛ||2||S(ρ̂)S−1||2||Λ0||2||X k||F ||F 0||F

=
1

nT
OP (

√
n)OP (

√
T )OP (

√
nT ) = OP (1), (A.19)

and

|p3| ≤
1

nT

1

σ̂2(θ̂,Λ)
||MΛ||2||S(ρ̂)S−1||2

(

T
∑

t=1

||xkt||22

)

1
2
(

T
∑

t=1

||εt||22

)

1
2

=
1

nT

1

σ̂2(θ̂,Λ)
||MΛ||2||S(ρ̂)S−1||2||X k||F ||ε||F

=
1

nT
OP (

√
nT )OP (

√
nT ) = OP (1). (A.20)

Combining the previous results gives ∂L(θ,Λ)
∂θp∗

|
θ=θ̂

= OP (1). Turning now to the derivative

of the penalty term, evaluated at θ̂,

∂̺(θ,γ, ζ)

∂θp∗

∣

∣

∣

θ=θ̂
= −γ∗

1

|θ†p∗|ζ
θ̂p∗

|θ̂p∗ |
, (A.21)

where γ∗ ∈ {γρ, γβ} denotes the penalty parameter associated with θp∗. By Assumption 5,

min{γρ, γβ}|θ†p∗ |−ζ is explosive in probability because θ0p∗ = 0 and so |θ†p∗| = |θ†p∗ − θ0p∗| ≤
||θ† − θ0||2 = oP (1) by Assumption 3.3. As such, as n, T → ∞, the first order condition

cannot be satisfied since ∂L(θ,Λ)
∂θp∗

|
θ=θ̂

= OP (1) and yet the derivative of the penalty term

diverges. This contradicts θ̂ being a maximiser of the objective function. Therefore, instead,

it must be that θ̂p∗ = 0 w.p.a.1 as n, T → ∞ for the first order condition (A.13) to be

satisfied. Proof of Theorem 1. Starting with the expression obtained in Lemma

A.4,

D
√
nT (θ̂(1) − θ0

(1)) =
1

σ2
0

1√
nT

Z ′
(1)(MF 0 ⊗M

Λ
0)vec(ε)

+
1

σ2
0

1√
nT















tr ((G∗
1ε)

′M
Λ

0εMF 0)
...

tr
(

(G∗
Q0ε)′MΛ

0εMF 0

)

0K0×1















+ oP (1)
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=
1

σ2
0

1√
nT

c− 1

σ2
0

1√
nT















tr ((G∗
1ε)

′(P
Λ

0ε+M
Λ

0εPF 0))
...

tr
(

(G∗
Q0ε)′(PΛ

0ε+M
Λ

0εPF 0)
)

0K0×1















− 1

σ2
0

1√
nT









tr
(

(Z1 − Z̄1)
′(P

Λ
0ε+M

Λ
0εPF 0)

)

...

tr
(

(ZP 0 − Z̄P 0)′(P
Λ

0ε+M
Λ

0εP F 0)
)









+ oP (1),

(A.22)

where c := ZZZ
′
(1)vec(ε) + (tr(ε′G∗

1ε), . . . , tr(ε
′G∗

Q0ε),01×K0)′, recalling the definition of ZZZ(1)

given just prior to the statement of Assumption 7. By expanding the second term on the

right-hand side of (A.22) and applying Lemmas A.5(ii), A.5(iii), A.5(iv), and also applying

Lemma A.5(v) to the third term, one obtains

D
√
nT (θ̂(1) − θ0

(1)) =
1

σ2
0

1√
nT

c+b

b

b+ oP (1). (A.23)

Rearranging and premultiplying by
(

SSS(D + V )SSS′
)− 1

2 gives

√
nT
(

SSS(D + V )SSS′
)− 1

2SSSD(θ̂(1) −D−1
b

b

b− θ0
(1)) =

(

SSS(D + V )SSS′
)− 1

2SSS
1√
nT

1

σ2
0

c+ oP (1).

(A.24)

Finally, using Lemma A.6 and Assumption 7.2,
(

SSS(D+V )SSS′
)− 1

2SSS
1√
nT

1
σ2
0
c

d−→ N (0L×1, IL),

which yields the result.

Proof of Proposition 3. In order to prove the result, it suffices to show that ||D−1
b

b

b−
D̂

−1
b̂̂

b̂

b||2 = oP (1). Observe that

||D−1
b

b

b− D̂
−1
b̂̂

b̂

b||2 ≤ ||D−1 − D̂
−1||2||b̂̂b̂b||2 + ||D−1||2||bbb− b̂̂

b̂

b||2. (A.25)

It is straightforward to establish that ||D−1 − D̂
−1||2||b̂̂b̂b||2 = oP (1) using Lemma A.5(i)

and the fact that, under Assumptions 1–6, ||θ̂ − θ0||2 = OP

(

√

P
nT

)

, which follows from

(F.17) in the proof of Lemma A.4 in the Supplementary Material. For the second term in

(A.25), ||bbb − b̂̂

b̂

b||2 = oP (1) can be shown using Lemmas A.5(ii)–A.5(v), and the following

two results. To simplify notation, assume that P = P 0, Q = Q0 and φ0
1 is nonzero. First,

||G∗
q −G∗

q(ρ̂)||2 = ||Gq −Gq(ρ̂)−
1

n
tr(Gq)In +

1

n
tr(Gq(ρ̂))In||2

37



≤ ||Gq −Gq(ρ̂)||2 +
1

n
|tr(Gq(ρ̂)−Gq)|

≤ 2||Gq −Gq(ρ̂)||2
= 2||Gq(ρ̂)(S(ρ̂)S−1 − In)||2
≤ 2||Gq(ρ̂)||2||S(ρ̂)S−1 − In||2
= OP (

√

Q||θ0 − θ̂||2), (A.26)

using Lemma A.2(viii). Second,

||A−A(ρ̂, φ̂)||2 = ||S−1(φ0
1In +

Q
∑

q=1

φ0
q+1Wq)− S−1(ρ̂)(φ̂1In +

Q
∑

q=1

φ̂q+1Wq)||2

≤ ||S−1(φ0
1In +

Q
∑

q=1

φ0
q+1Wq)− S−1(ρ̂)(φ0

1In +

Q
∑

q=1

φ0
q+1Wq)||2

+ ||S−1(ρ̂)(φ0
1In +

Q
∑

q=1

φ0
q+1Wq)− S−1(ρ̂)(φ̂1In +

Q
∑

q=1

φ̂q+1Wq)||2

≤ ||S−1||2||(In − SS−1(ρ̂))(φ0
1In +

Q
∑

q=1

φ0
q+1Wq)||2

+ ||S−1(ρ̂)||2||(φ0
1 − φ̂1)In +

Q
∑

q=1

(φ0
q+1 − φ̂q+1)Wq)||2

≤ ||S−1||2||In − SS−1(ρ̂)||2||S||2||A||2

+ ||S−1(ρ̂)||2(|φ0
1 − φ̂1| +

Q
∑

q=1

|φ0
q+1 − φ̂q+1|||Wq||2)

≤ ||S−1||2||In − SS−1(ρ̂)||2||S||2||A||2 + ||S−1(ρ̂)||2||θ̂ − θ0||2
+ ||S−1(ρ̂)||2||θ̂ − θ0||2

√

Q max
1≤q≤Q

||Wq||2

= OP (
√

Q||θ̂ − θ0||2), (A.27)

where ||In − SS−1(ρ̂)||2 = ||SS−1(ρ̂)S(ρ̂)S−1 − SS−1(ρ̂)||2 ≤ ||SS−1(ρ̂)||2||S(ρ̂)S−1 −
In||2 = OP (

√
Q||θ̂ − θ0||2) using Lemma A.2(viii) and Assumption 2.3. The result then

follows.

Proof of Proposition 4. The proof largely follows the same structure as the proof of

Theorem 3.5 in Lu and Su (2016). Details can be found in Appendix D in the Supplementary

Material.
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