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Abstract

This paper studies the problem of optimally allocating treatments in the presence of
spillover effects, using information from a (quasi-)experiment. I introduce a method
that maximizes the sample analog of average social welfare when spillovers occur. I
construct semi-parametric welfare estimators with known and unknown propensity
scores and cast the optimization problem into a mixed-integer linear program, which
can be solved using off-the-shelf algorithms. I derive a strong set of guarantees on
regret, i.e., the difference between the maximum attainable welfare and the welfare
evaluated at the estimated policy. The proposed method presents attractive features for
applications: (i) it does not require network information of the target population; (ii) it
exploits heterogeneity in treatment effects for targeting individuals; (iii) it does not rely
on the correct specification of a particular structural model; and (iv) it accommodates
constraints on the policy function. An application for targeting information on social
networks illustrates the advantages of the method.
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1 Introduction

Consider a policymaker who must use a quasi-experiment, such as an existing experiment or
observational study, to design a decision rule (policy) that assigns treatments based on ob-
servable characteristics. The main challenge is treating an individual may generate spillovers
on her friends or neighbors. Spillovers may, in turn, affect the design of the optimal policy.
This paper studies the problem of allocating treatments in the presence of spillover effects
to maximize welfare, using information from a quasi-experiment. Applications include cash-
transfer programs, education programs, and information campaigns, among others (e.g.,
Egger et al., 2019; Opper, 2016; Bond et al., 2012).

A (large) population of n individuals is connected in a single network. Treatments gener-
ate spillovers to neighbors in the network (i.e., network interference). Researchers randomly
sample n, < n units in a (quasi)experiment and randomize treatments among sampled in-
dividuals and their neighbors (the remaining units are not necessarily in the experiment).
They then collect sampled individuals’ covariates, treatment assignments, outcomes, neigh-
bors’ covariates, and assignments. The population network is not necessarily observed. The
goal is to estimate a treatment rule to deploy on the entire population. Consider the example
of targeting information to increase insurance take-up in a region subject to environmental
disasters (Cai et al., 2015). Using variation from experiment participants sampled from a
random subset of villages in this region, we estimate whom to target in the entire region.

The first challenge is that the population network may be unobserved due to the cost
of collecting network data on large populations. Researchers may only observe neighbors’
information about the experiment participants. Collecting network information from the
individuals in the entire population, such as a region or country, is often costly or infeasi-
ble (see Breza et al., 2020, for a discussion). Motivated by this, I develop a method that
does not require we observe the population network. I allow for arbitrary constraints on
the policy space, such as informational constraints. A second challenge is treatment effects
heterogeneity. I leverage the assumption that spillovers occur through the number of treated
neighbors, as is often documented in applications, and allow for treatment effects hetero-
geneity in arbitrary individual characteristics (e.g., covariates and number of neighbors).!

The proposed method, which I call Network Empirical Welfare Maximization (NEWM),

'Models consistent with this restriction are models of exogenous and anonymous spillover effects; see, e.g.,
Manski (2013). For instance, Cai et al. (2015) leverage a two-stage experimental design to show “the network
effect is driven by the diffusion of insurance knowledge” (i.e., treatment) “rather than purchase decisions”
(i.e., outcome) (Cai et al., 2015, abstract), consistent with the model proposed in this paper. Other examples
of empirical applications using models consistent with our model include Sinclair et al. (2012); Duflo et al.
(2011); Muralidharan et al. (2017), where for the second reference, networks can be considered groups of
classrooms with units within each classroom being fully connected.



estimates the welfare as a function of the policy using arbitrary estimators (e.g., based on
machine learning). It then solves an exact optimization procedure over the policy space.
[ interpret policy targeting as a treatment choice problem (Manski, 2004; Kitagawa and
Tetenov, 2018; Athey and Wager, 2021), here studied in the context of network interference.
I evaluate the method’s performance based on its maximum regret, that is, the difference
between the largest achievable welfare and the welfare from deploying the estimated policy.

From a theoretical perspective, this paper makes three contributions: (i) it derives the
first set of guarantees on the regret for treatment rules with spillovers; (ii) it introduces
an estimation procedure with fast convergence rates of regret with machine-learning (non-
parametric) estimators and networked units; and (iii) it shows that for a large class of policy
functions, the optimization problem can be written as a mixed-integer linear program, solved
using off-the-shelf optimization routines.

The analysis proceeds as follows. First, I discuss the identification of social welfare under
interference. Identification relies on the unconfoundedness of treatment assignments and of
the sampling indicators. I then study semi-parametric estimators for the welfare and analyze
the performance of the estimated policy. I show that under regularity conditions, the regret
of the estimated policy scales at the rate 1/,/n., whenever the maximum degree (i.e., the
number of neighbors) is uniformly bounded (e.g., De Paula et al., 2018). If the maximum
degree grows with the population size, the rate depends on the degree, and converges to zero
when the degree grows at an appropriate slower rate than n. Finally, I derive lower bounds
that guarantee a maximin convergence rate of the regret with a bounded degree. Throughout
the analysis, I do not impose assumptions on the (joint) distribution of characteristics used
for targeting and on the network other than restrictions on the maximum degree.

A condition for these results to hold is that the optimization procedure achieves the in-
sample optimum. I guarantee it by showing that we can cast the problem in a mixed-integer
linear program.

The derivations present several challenges: (i) individuals depend on neighbors’ assign-
ments that I control through contraction inequalities; (ii) statistical dependence invalidates
standard symmetrization arguments (Wainwright, 2019); and (iii) in the presence of obser-
vational studies with networks, machine-learning estimators may present non-vanishing bias
even when using existing methods (e.g., Athey and Wager, 2021). For (iii), I introduce a
novel cross-fitting algorithm for networked observations and characterize its properties.

I study the numerical properties of the method using data from Cai et al. (2015). I design
a policy that informs farmers about insurance benefits to increase insurance take-up. The
NEWM method leads to (out-of-sample) improvements in insurance take-up up to thirty

percentage points compared to methods that ignore network effects (Kitagawa and Tetenov,



2018; Athey and Wager, 2021). I obtain these improvements despite not using network
information for the design of the policy. Finally, I present several extensions, including
trimming when individuals present poor overlap due to a large maximum degree, different
target, and sampled populations, and spillovers over non-compliance (in the Appendix).

This paper builds on the growing literature on statistical treatment choice (Kitagawa and
Tetenov, 2018, 2019; Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2016; Armstrong
and Shen, 2015; Bhattacharya and Dupas, 2012; Hirano and Porter, 2009; Stoye, 2009, 2012;
Tetenov, 2012; Zhou et al., 2018), and classification (Elliott and Lieli, 2013; Boucheron et al.,
2005, among others). Unlike previous references, I estimate the policy when treatments
generate spillovers here. This paper is the first to study the properties of targeting on
networks in the context of the empirical welfare maximization literature.

A conceptual difference from the 7.i.d. setting with single and multi-valued treatments
as in Kitagawa and Tetenov (2018), Zhou et al. (2018) is that here individuals depend on
neighbors’ assignments, whereas treatments are individual-specific. This structure permits
the population network to be unobserved. In addition, I can bound the complexity of the
function class using properties of the maximum degree. The second difference is that indi-
viduals exhibit dependence and arguments based on ¢.i.d. sampling, such as symmetrization,
fail here. Optimization differs because individuals depend on neighbors’ treatments.

This paper connects the literature on treatment choice with the one on targeting and
networks. I provide an overview below and an extensive discussion in Section 2.5.

The influence-maximization literature mostly focuses on detecting the most influential
“seeds” based on centrality measures. These measures are often motivated by a particular
model. See Bloch et al. (2017) for a review. Recent advances include Jackson and Storms
(2018), Akbarpour et al. (2018), Banerjee et al. (2019), Banerjee et al. (2014), Galeotti
et al. (2020) in economics, and Kempe et al. (2003), Eckles et al. (2019), among others in
computer science. This paper differs in (i) its approach because I leverage experimental
variation to construct policies that maximize the empirical welfare (instead of policies jus-
tified by game theoretic structures); (ii) setup because I allow for constraints on the policy
class and heterogeneity in treatment effects. These differences leverage the assumption that
spillovers propagate locally in the network, which differs from some of the models in the
influence maximization literature. Su et al. (2019) study first-best policies for linear models
without policy constraints. I do not impose such structural assumptions. The presence of
constraints (and infeasibility of the first-best policy) justifies the regret analysis in the cur-
rent paper. Laber et al. (2018) consider a Bayesian model whose estimation relies on Monte
Carlo methods and the correct model specification.

This paper also connects to the literature on social interaction (Manski, 2013; Manresa,



2013; Auerbach, 2019), and causal inference under interference or dependence (Liu et al.,
2019; Li et al., 2019; Hudgens and Halloran, 2008; Goldsmith-Pinkham and Imbens, 2013;
Sobel, 2006; Sévje et al., 2021; Aronow and Samii, 2017; Chiang et al., 2019). The exogenous
and anonymous interference condition is closely related to Leung (2020). However, knowl-
edge of treatment effects is insufficient to construct welfare-optimal treatment rules in the
presence of either (or both) constraints on the policy functions or treatment effects hetero-
geneity. Additional references include Bhattacharya et al. (2019) and Wager and Xu (2021),
who study pricing with social interactions through partial identification and sequential exper-
iments, respectively. Here, instead, I study empirical welfare maximization for individualized
treatment rules. Li et al. (2019), Graham et al. (2010), and Bhattacharya (2009) study op-
timal configurations of individuals into small groups, such as assigning students to classes,
which differs from here where policies denote (constrained) treatment assignments. See Kline
and Tamer (2020) and Graham and De Paula (2020) for further references.

Finally, more recent works that study targeting in new directions include Kitagawa and
Wang (2020) in the context of a parametric model of disease diffusion, Ananth (2021) in
settings with an observed network of the target population, and Viviano (2020) in the context
of experimental design and sequential experiments.

The paper is organized as follows. Section 2 presents the problem setup and main condi-
tions. Estimation and theoretical analysis are contained in Section 3. Section 4 and online
Appendix B present extensions. Section 5 contains an application. Section 6 concludes. Ap-
pendix A (at the end of the main text) presents a practical guide to implement the algorithm,

online Appendix C a numerical study and online Appendix D theoretical derivations.

2 Problem description

In this section, I introduce the notation and problem setup. I first introduce the outcome
model in Section 2.1. Section 2.2 formalizes the sampling and design in the experiment.
The policy targeting exercise is discussed in Section 2.3, and restrictions on the network in

Section 2.4. Algorithm 2 in Appendix A presents a user-friendly description of the procedure.

2.1 Outcome model with interference

Consider a population of n individuals connected under an adjacency matrix A. Each indi-
vidual is associated with an arbitrary vector of characteristics Z; € Z and a binary indicator
D; € {0,1}, with D; = 1, indicating that individual i was assigned the treatment in the



experiment, and D; = 0 if no treatment was assigned. Define
Ac A c{oy ™, No={je (L (i} Ay =1}, Z=(Z)L, D=(D)L,

where A, is the set of symmetric and unweighted adjacency matrices, N; denotes the friends
of i, and |N;| the degree. Let Y; denote the i’s post-treatment outcome in the experiment.
Here, Z can be arbitrary and I impose no restriction on its (joint) distribution.

With interference, unit ¢’s outcome depends on its own and other units’ treatment. In
full generality, I can write Y; = 7,(i, D, A, Z,¢;) for some unobserved random variables &;

capturing uncertainty in potential outcomes, and unknown 7,,(-).?

Assumption 2.1 (Interference). For ¢ € {1,--- ,n}, let

Ve r(DuT ZulNe). T= o Y Dz ) 1)

kEN;

for some function r(-) unknown to the researcher, and function ¢, (-) : Zx Z x Z — T, C Z,

known to the researcher, with g,(0, Z;, |N;|) = 0 almost surely, and unobservables ¢;.

Under Assumption 2.1, outcomes depend on (i) the number of first-degree neighbors
(IN;]), (ii) the number of first-degree treated neighbors (or a function of this, 7;), and (iii)
individual’s treatment status (D;), observables (Z;), and unobservables (g;). Assumption 2.1
states that interactions are anonymous (Manski, 2013), and spillovers occur within neighbors.
Heterogeneity occurs through the dependence with Z; and |N;|. The model relates to Leung
(2020), and Athey et al. (2018) provide methods to test anonymous and local interference.

Here, r(-) is unknown and g,(-) is known and characterizes how individuals depend on
neighbors’ treatments — that is, the exposure mapping (Aronow and Samii, 2017); g,(0,-) =0
is without loss of generality, because () also depends on (Z;, | N;|). The function g,, depends
on n because its support 7, can vary with n. For example, g, can be equal to the number
of treated neighbors T; =, ~, Dk, and the degree can grow with n. This scenario is the
most agnostic one because r is unknown and therefore equivalent to g,(-) being unknown.
Alternatively, g,(-) can be equal to a step function of the share of treated neighbors (Sinclair

et al., 2012). The size of T, affects treatments’ overlap discussed in Assumption 2.3.
Assumption 2.2 (Unobservables ¢;). For all ¢ € {1,--- ,n},

(A) €|A, Z ~ Uy, N, for unknown distributions U.;, 2 € Z,1 € Z;

2We consider ¢; as a random variable to capture uncertainty in the realization of the outcomes once the
policy discussed in Section 2.3 is implemented at scale. It is possible to extend our results if we condition
on g; as in Leung (2022) (and therefore without imposing assumptions on €; other than uniformly bounded
outcomes as in Leung (2022)) only in settings where the treatment probabilities are known (see Remark 9).



(B) & L (g5)jgnuni keniy | A, Z;

(C) E[Supde{o,l},tel r(d, t, Z;, |Ni|,5i)]3‘A, Z] < T2, almost surely, for unknown I' < oco.

Condition (A) states that unobservables are identically distributed, conditional on the
same individual covariates and number of friends, and conditionally independent of A and
other units’ characteristics. Condition (A) implies network exogeneity, attained if, for exam-
ple, two individuals form a link based on observable characteristics and exogenous unobserv-
ables. Condition (A) guarantees that the individual conditional mean function in Equation
(3) below is the same across units. Condition (B) states that unobservables are independent
across individuals who do not share a common neighbor (see Example 2.1). Condition (C)
is a bounded moment assumption.

Our method can accommodate scenarios where (A) and (B) fail. I will not assume
Condition (A) in settings where the individual treatment probabilities are either known or

estimated parametrically (in Lemma 2.1, and Theorems 3.1, 4.2). I relax (B) in Section 4.2.

Example 2.1 (Two-degree dependence). Suppose that each individual is associated with

1.1.d. unobservables 7; and Y; = f(DZ-, Tiy Ziy INily i D e, 77k> for some unknown function

7(-). Then Assumptions 2.1 and 2.2 hold with &; = (77@-, ZkeNi 77k>-

2.2 Sampling and experiment

Next, I formalize the sampling mechanism and experiment.

In the spirit of Abadie et al. (2020), I define R; € {0,1} a random variable indicating
whether individual ¢’s post-treatment outcome is observed by the researchers. Researchers
do not necessarily observe the adjacency matrix A. However, researchers observe i’s relevant
characteristics and treatment as well as ¢’s neighbors’ characteristics and treatments if R; = 1
(i.e., researchers only observe the friends of the sampled individuals but not necessarily A).
In addition, sampled units and their neighbors (but not necessarily the other units in the
population) are assigned treatments in the experiment (D; = 1) with positive probability.

I formalize these conditions below. Define sz = 1{ >k i Ai kR > O} the indicator
of whether individual ¢ has at least one neighbor who is sampled, and n. = Y | E[R/]
the expected number of sampled individuals. I consider n. < n, and assume that n. is

proportional to n for expositional convenience.?

Assumption 2.3 ((Quasi)experiment). For i € {1,--- ,n}, the following holds:

3If n, = n”, p < 1 all our results hold if we replace the right-hand side in Assumption 2.5 with O(n(l/zfg)”).



(i) Researchers observe the vector

(Ri(Yi, Zi, Diy Niy Ziews Diens ) i, R,

i=1

A, Z,(gj)i=1 ~iia Berm(neg/n),  (2)

with ne/n =a € (0,1).

(11) Dz = fD <Zza Ria (1 - Rl)R{a EDi>7 for 5D¢|A7 Za (Ej)?:lv (Rj)?:l ~ii.d. ,C, for some fD()

and distribution £ (known in an experiment and to be estimated in a quasi-experiment);

(iii) P(D; = 1|Z;,R; = 1), P(D; = 1|Z;,R; = 0,R! = 1) € (4,1 — ~) almost surely, for
some v € (0,1), and for all t € T, P(Ti = t|Zken,, | Ni|, Rren,, Ri = 1) > 0,, almost
surely, for some 6, € (0, 1);

Condition (i) states that researchers observe the post-treatment outcomes of sampled
units, the covariates and treatment of sampled units, and the covariates and treatments of
the friends of the sampled units. I do not assume that A (the connections of the entire target
population) is observed, while T assume that relevant information about the friends of the
sampled individuals (R; = 1) is observed. Condition (i) also postulates that the indicators
R; are exogenous with respect to the network A, characteristics Z and unobservables ¢;.

Finally, Condition (i) states that the expected number of sampled individuals n, is pro-
portional to n, which is assumed for expositional convenience. We can allow R; to depend
on Z; (see Remark 3) and n. not to be proportional to n.

Condition (ii) states the treatment is randomized in the experiment on observables Z;,
which can be arbitrary and may also contain network information, and possibly also on the
indicator R;. If individuals are not sampled in the experiment (R; = 0), D; can also depend
on whether at least one friend is sampled (e.g., researchers collect neighbors’ information
and then randomize treatments across participants and their neighbors).

Condition (iii) imposes positive overlap for sampled units and their friends but not nec-
essarily for the remaining units who are not sampled and are not friends of sampled units.
For example, the treatment of those units who do not participate in the experiment and
whose friends do not participate in the experiment can be equal to the baseline value D; = 0
almost surely, whereas it is randomized with positive probability for the experiment partic-
ipants and their friends. Here, d,, denotes the overlap constant of the neighbors’ treatments
of the sampled individuals. It depends on n, because the support of the exposure mapping
T; may vary with n. We defer to Section 2.4 restrictions on ¢,, and on the network.

Figure 1 (left-hand-side panel) presents an illustration. In an experiment, Assumption

2.3 entails: randomizing participants R;; collecting the covariates Z; and their neighbors’



D;|Z;, Ry, R ~ P(Z;, R, R)) m(X;)

(Yi, Zi, Znc, Dy, D) Ra, Ry (X, C 2
=1

Figure 1: Example of the experiment (left-hand-side figure) and policy targeting exercise in Section
2.3 (right-hand-side figure). Green dots denote treated units, and pink dots denote untreated ones.
In the first step, researchers run (or observe data from) an experiment on a (small) subset of indi-
viduals, here the black-tick unit. The treatment of such a unit and her friends is randomized with
some positive probability, whereas the treatment of the other units can have arbitrary distributions
(e.g., equal to the baseline value D; = 0 almost surely if such units are not in the experiment).
Researchers observe the vector of outcome, treatment, neighbors, treatments, and covariates of
sampled units ((Y;, Zi, Zn;,, Di, Dar,)R;), as well as the the identity of whom they sample (R;).
Researchers then design a treatment allocation 7(X;) for the entire population using information
X, a subset of Z;.

covariates Zy,; randomizing treatments among participants and their friends (observed by
the researchers); observing the post-treatment outcomes Y; of the sampled units (R; = 1).
Under Assumptions 2.2, and 2.3 define

m(d,t,2,0) = E[r(d,t, 2,1,5,)

Zi =2, |Ni| =1, T, = t,D; = d|
(3)

e(d, t,x,u,2,1) = P(Di —d,T, = t’ZkeNi = x,Ryen, =0, Z; = 2, R; = 1, |Ni| = z)
the conditional mean and propensity score for sampled units (R; = 1), respectively, where we
suppressed the dependence of e with n for expositional convenience. Note that Assumption
2.2 (A) guarantees that m(-) does not depend on the index i. When the propensity score
is known, Assumption 2.2 (A) is not necessary for our results to hold, because we can use

information about e(-) for identification and estimation.

2.3 Policy targeting

Once the experiment is concluded, a policymaker will design a treatment mechanism with
the goal of maximizing average social welfare in the entire population i € {1,--- ,n}, with
adjacency matrix and covariates (A, Z) as in Figure 1. Partition Z; = [XZ-,XZ}, for two
vectors (Xi,f(i), X; € X C Z. The policymaker observes from the entire population

=1



a subset of individuals’ characteristics. Here, X; denotes individual information observed by
a policymaker for all n units in the population. Information X; can be arbitrary. Examples
include census data or network statistics when observed by the policymaker.* Researchers
observe an arbitrary function b,(Xy,---,X,) of X. For instance, b,(:) can be a constant
function if X; for all n units is only observed by the policymaker but not by the researchers,
as in Kitagawa and Tetenov (2018), or can denote the empirical distribution of X if also

observed by the researchers. Researchers design a policy such that:

(1) Individuals may be treated differently, depending on observable characteristics;

(2) The assignment mechanism must be easy to implement without requiring knowledge

of the population network A;

(3) The assignment mechanism can be subject to (economic or ethical) constraints.

I therefore consider an individualized treatment assignment 7 : X +— {0, 1}, 7 € I1,, (b, (X)) C
I1, where I1,,(b, (X)) denotes the set of constraints on 7, a subset of a given function class
I1. Here, the constraints may also depend on researchers’ arbitrary information b,,(X).> The
policy m € 1I,, satisfies (1), (2), and (3). The policy can be implemented in an online fashion,
and it does not require observing the population network. However, because I impose no
restrictions on X, individual covariates can contain network statistics if available.

Finally, note that the individualized treatment rules differs from global treatment rules
that depend on the population adjacency matrix A. Global treatment rules are more flexible,
but require observing the network data of the entire target population and therefore are
applicable in contexts complementary to ours. See Remark 4 for a comprehensive discussion.

I define utilitarian welfare as the expected outcome once I assign treatments with policy

7(X;) in the entire population of n units. Under Assumption 2.1, welfare is defined as

Waz(n) = izn:E (X0, Ti(m), 26, INiL )| A4, 2] . T(m) = ga (D0 7(Xk), 26 [N (4)
i=1 k

7
The definition of welfare implies no carryovers occur from the previous experimental inter-

vention once we deploy policy 7 on the population.® I collect the assumptions below.

Assumption 2.4 (Observable characteristics and targeting). The researchers observe

[Ri (Y;, D;, Z;, Dy, ZNZ) , Ri] from an experiment as in Equation (2), and b, (X1, -+, X},)

=1

4Although we write Z;,|N;| separately for expositional convenience, Z; (and X;) can also contain the
degree and other network statistics if observed by the researcher, given that we impose no assumption on Z.

For example, II,, may require m € II, and the capacity constraint % Yo m(X;) < K for a constant K.

6In practice, carryovers do not occur if either the policy 7 is deployed sufficiently far in time from
the experimental intervention or if the experiment run by researchers has a neglible effect on the entire
population. See Athey and Imbens (2018) for a discussion on the no carryovers assumption.

10



from the entire population for some arbitrary function b,(), and arbitrary X; € X C Z.
They then constructs a (data-dependent) policy 7, : X — {0,1}, 7, € IL,(b,(X)) C II.

The policymaker observe X = (X;), from the population, and deploy 7, on the entire

C
C

population ¢ € {1,--- ,n}. Here, Il is a class of pointwise measurable functions with finite
VC dimension VC(IT).” Each 7 € II, generates welfare W4 z(7) in Equation (4).

I refer to I1,,(b,(X)) as II,,. Assumption 2.4 formalizes the policy targeting exercise and
imposes restrictions on the complexity of the function class I as in previous literature (e.g.,
Kitagawa and Tetenov, 2018; Zhou et al., 2018). Ideally, one would like to learn

m, € argmax Wy z (7). (5)

TI'EHn

However, 7} depends on m(-) and A, both unobserved. I replace the oracle problem in

*

Equation (5) with its sample analog, and compare the estimated policy to 7. I discuss

identification below and defer estimation to the following section. Define (with T;(7) in (4))
Ii(m) = 1{Ti(m) = T, w(X) = Dy, eilm) = e(n(X0), Ti(x). Zueni, Ruenis Zis ING]). (6)
Lemma 2.1 (Identification). Let Assumptions 2.1, 2.3 hold. For any m € 11,

]i(ﬂ'

ei(m

Was(r) = niilﬂz: [Rm ;‘A, Z} . (7)

Proof of Lemma 2.1. The proof is in Appendix D.3.1. O

Lemma 2.1 shows that we can identify welfare using information from the propensity
score under exogeneity of R;. It does not impose conditions on (A, Z) or €; (Assumption 2.2
is not required), other than independence with (R;, D;) (Assumption 2.3).

Lemma 2.1 identifies welfare effects on the entire population of n individuals, condi-
tional on A (and therefore also unconditional on A), without requiring observing A. The
key intuition is to leverage the randomization induced by the sampling indicators R; and use
their independence with the adjacency matrix A and unobservables ¢;. Incorporating sam-
pling uncertainty for policy targeting (without imposing assumptions on the observables and

unobservables) is a contribution of independent interest in the context of policy targeting.

"The VC dimension denotes the cardinality of the largest set of points that the function 7 can shatter.
The VC dimension is a common measure of complexity (Devroye et al., 2013).

11



Remark 1 (Identification of the propensity score). Here, () can be identified because

P(Di=d.} Di= t‘ZkeNi — X, Rien, = W, Zi = 2 Ry = 1,|Ni| = 1)
kEN;

l
:P<Dz‘:d’Zz‘:2’7Rz’:1> Z HP(DNZ_(IC) :’wk)ZNi(k) :X(k),RNi(k) Zu(k),Ri: )
w e wpy, W=t k=1
(8)

for d € {0,1},s € Z,t < [, where x® indicates the k' entry of x, and similarly for
u®. The expression only depends on marginal treatment probabilities, identified from the
experiment. e(-) can then be written as a sum of probabilities in Equation (8), for any
gn(+) in Assumption 2.1. Also, if the treatments of the participants’ neighbors is assigned
differently than treatment to participants, P(D; = 1|Z;, R; = 0, le = 1) is identified from

the neighbors’ assignments. O]

Remark 2 (Non-reversible treatments). The policy function class II,, does not depends on
the treatments randomized in the experiment. Assumption 2.4 rules out policies that force
policy-makers not to change the treatment status of those units treated in the experiment.
Appendix B.4 extends our results to non-reversible policies, i.e., of the form 7(X;)(1 —
D;)+ D;, 7 € 11, (treatment is one if D; = 1 and is 7(X;) otherwise), where the policymaker
cannot change the treatment status of individuals treated in the experiment. Our theoretical

guarantees (and estimation strategies) also apply to non-reversible treatments. O

Remark 3 (Different populations). An interesting scenario is when individuals treated by
the policymakers are drawn from a population different from the one eligible for the ex-
periment (e.g., we sample individuals from a country to implement the policy in a different

country). We study this scenario in Section 4.3 and Appendix B.3. O]

Remark 4 (Comparison with global treatment rules). Whenever the network from the
entire population A is observed, policymakers may consider a global policy 7;(X;, A) that
also depends on A € A,,. This differs from our case, where network statistics can only be
included in X; when observed (e.g., X; contains measures of centrality as in Bloch et al.,
2017), and treatments are assigned with policies 7(X;) instead of 7;(X;, A). In either case
(global or individualized rules), optimization takes into account spillovers for policy design.
These two approaches are complementary. Individualized assignments considered here
do not require collecting network data from the entire population and accommodate settings
where the target population is large (and larger than the sample size). However, estimation
of individualized rules only use (local) network information available from the experiment.
Global assignments can be more flexible: a global assignment rule uses information from

the target population adjacency matrix A to optimize over a large policy space. However,
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global assignments require observing the population adjacency matrix A and they require
that the size of the target population is small (finite) to control the complexity of the policy
function class.® These distinctions highlight the complementarity of the two approaches.
Global policy rules are best suited in settings where the adjacency matrix A is observed,
and the target population is constituted by networks of small (finite) size, as discussed in
Ananth (2021). Individualized rules instead are best suited in settings where network data

can be difficult to collect from a (large) target population. O

Remark 5 (Additional extensions). Extending our framework to settings where R; depends
on Z; is possible. Identification follows similarly, after dividing each summand in Lemma
2.1 by P(R; = 1|Z;), assuming P(R; = 1|Z;) = a(Z;)n./n, for a(z) € (0,1). A different
extension is when spillovers over compliance occur. This is discussed in Appendix B.2.
Finally, a third extension is when higher-order interference occurs. This follows similarly to

what is discussed here once we control for (and observe) higher-order neighbors. ]

2.4 Network topology and overlap

I conclude the description of the setup with a set of assumptions on the network topology

and overlap that control the degree of dependence. Define N, = max;e(i,... ny |Ni| + 2.

Assumption 2.5 (Maximum degree). Assume N2 log(N,,) /6, = (’)(nl/z’ﬁ), almost surely
for some (unknown) ¢ € (0,1/2].

Assumption 2.5 bounds the ratio of the maximum degree and the overlap constant and

trivially holds in networks with bounded degree described below.

Example 2.2 (Bounded degree). Suppose that N, < ¢y almost surely for a constant ¢,
independent of n. Then Assumption 2.5 holds with £ = 1/2 almost surely.

Example 2.2 holds for many economic models, for instance, the ones in De Paula et al.
(2018). Economic applications with a bounded degree include the Add Health Study, and
Jackson et al. (2012) among others.” Assumption 2.5 allows for unbounded degree, in which

case properties of the estimators in Section 3 will depend on N, and §,,.

8For instance, for a global function class obtained via unions and the intersection of k, half-planes, the
VC dimension of the function class is of order k,log(k,) (Csikds et al., 2019). For a global policy, k,, can
grow with n requiring a finite target population. In the absence of policy constraints, an alternative approach
is to impose modeling assumptions as in Kitagawa and Wang (2020), different from here, where we allow for
policy constraints and semi-parametric identification.

9In the Add Health Study researchers elicited up to five names of friends of each sex. The number of
reciprocated friends have median one and less than five percent of individuals have more than three of such
links (Footnote 7 in De Paula et al., 2018). In Jackson et al. (2012) fewer than 1 per 1,000 respondents
reached the caps of 5 or 8 nominations (Footnote 37, p. 1879).
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Example 2.3 (Unbounded degree). Suppose N, = O(n'/?), and for any n,
T, = 1{ S en. Di/INi| > 1/2}, such that P(ﬂ — 1| Zyen,, Reen., |Ni|, Ri = 1) e (1,1 —0),
for some ¢ € (0,1). Then Assumption 2.5 holds for £ < 1/2.

Restrictions on the degree interact with the choice of the exposure mapping ¢,(-) and

the overlap constant d,,. I provide two examples below.

Example 2.4 (Overlap as a function of the number of treated units). Suppose that for
arbitrary A\,

t ift < A\,

gn(ta 2 [ ) =

A, otherwise.
This specification states that if individuals have less than A, treated neighbors, spillover
effects exhibit arbitrary heterogeneity in the number of treated friends. Spillovers are con-
stant if the number of treated neighbors exceed a certain threshold A,. In this example, the

overlap constant is of order min{y*», (1 — v)*} with v as defined in Assumption 2.3.

Example 2.5 (Improving overlap via model restrictions). Additional restrictions on g, ()

(and T;) can improve overlap. Suppose that for some ordered 71, 72, 73,

m(d, z,le)if t/l <m
r(dt.zle) =4 To(d,zle) if 7 <t/l <7 9)

r3(d, z,le) if o <t/l <73

for some possibly unknown functions 7,79, 73. In this setting, the exposure mapping is a

step-function in the share of treated neighbors with a finite support. ]

In summary, Assumption 2.5 requires that the overlap constant 6, — 0 at a slower rate
than 1/4/n, that can hold under restrictions of either the exposure mapping or on the degree.
Section 4.1 presents theoretical results when Assumption 2.5 fails — that is, J,, — 0 at a faster

rate in n, using a trimming strategy.

2.5 Spillovers in the related literature

I pause here to compare our framework and assumptions with existing models of spillovers.

The framework I present most closely connects to the literature on causal inference under
interference, including, among others, Hudgens and Halloran (2008), Manski (1993), Aronow
and Samii (2017) and the model in Leung (2020) in particular. The model in this paper allows

for arbitrary heterogeneity in the number of friends, |NV;|, observables Z;, and the exposure
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mapping 7; as a function of the number of treated friends. We can therefore achieve semi-
parametric identification of policy effects in the spirit of the literature on (augmented) inverse
probability weights (e.g., Tchetgen and VanderWeele, 2012; Aronow and Samii, 2017).

I do not require restrictions on observables Z;, which can be arbitrarily dependent, and
on A, other than restrictions on the maximum degree. This approach is possible once I
explicitly incorporate sampling uncertainty as in Abadie et al. (2020) for policy learning.
Similar restrictions on the degree are often imposed to obtain concentration of the estimated
causal effects (e.g., Sdvje et al., 2021). Here, the maximum degree restrictions together
with the local interference assumption allow me also to control the complexity of the policy
function class, characterized by the direct and spillover effects (W(Xi), > e, T(X k)) ,m eIl

I draw connections to the literature on information diffusion and optimal seeding. This
literature mostly studies models where informed individuals transmit information to neigh-
bors sequentially over multiple periods (Banerjee et al., 2013, 2014; Akbarpour et al., 2018;
Kempe et al., 2003). These references do not take into account heterogeneity as in this
paper (e.g., through Z;), and study centrality measures motivated by the diffusion model
considered. This paper studies a static model with heterogeneity, with spillovers occurring
through the number of treated friends.

In particular, as noted by Banerjee et al. (2013), models of information diffusion focus on
either what Banerjee et al. (2013) defines as “information effects” (people become aware of
certain opportunities or technologies) or “endorsement effects” (people’s behavior may affect
others’ behavior), but not necessarily both (similar to what Manski 1993 defines exogenous
and endogenous spillovers). Once we interpret the outcome Y; as technology adoption,
this paper mostly focuses on information effects through the dependence of the outcome
on neighbors’ treatments (information). It can accommodate endorsement effects in those
settings where the function r(-) captures endorsement effects in a reduced form.!°

Finally, a further distinction from the literature on seeding (Kempe et al., 2003; Kitagawa
and Wang, 2020; Galeotti et al., 2020) is that the current paper focuses on constrained poli-
cies, motivated by the cost of collecting network data, instead of first-best (unconstrained)

policies which would require information on the population network.

10An example is having two periods ¢ € {1,2}, where the treatment consists of providing information at
time ¢t = 1 to some individuals. At ¢ = 1, outcomes only depend on individual treatments D;, whereas at
t = 2 outcomes depend on the average number of friends who adopted the technology. Let Y; 1 = D;7+¢;1
the outcome at time ¢t = 1, and Y; 2 = f(DiaYi,theN,; Y1, |Nil,€i2), for some function f(-) and ii.d.
€;.1,€i2. This model satisfy our assumptions for Y; o, with &; = (ZkeNi €k1,€i1,E,2) in Assumption 2.2.
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3 Network Empirical Welfare Maximization

Next, I introduce our procedure and its properties. I estimate a policy with guarantees valid
for finite (possibly large) n and characterize convergence rates as n,n, — oo. Convergence
rates are with respect to a sequence of data-generating processes indexed by n, each with a
single network A € A, where I explicitly condition on A € A,,,Z € Z™ unless otherwise
specified. Conditional statements that I provide below do not subsume that (A, Z) are
observed. Instead, they establish stronger guarantees than unconditional statements by
leveraging the independence of the sampling R; with the network A and the assumption

that the sampled units are drawn from the (larger) target population (see Lemma 4.3).

3.1 Known propensity score

Suppose first researchers know the propensity score. Consider the double robust estimator
(AIPW):

Wn(ﬂ,mc,e) ::eZRi {Iz(ﬂ'g

i=1 ei(m

(¥ = mim) + i) | (10

where m§(7) = m¢ <7T(Xi), T;(m), Z;, |NZ|> The function m¢ denotes an arbitrary regression
adjustment, possibly different from the population conditional mean function. Note that
m* can be arbitrary. Therefore, it does not require that the conditional mean functions are
identical across units (Assumption 2.2 (A)). The estimated welfare inherits double-robust
properties in the spirit of Robins et al. (1994), and Tchetgen and VanderWeele (2012),
Aronow and Samii (2017), Liu et al. (2019) with spillovers. For known propensity scores and

any m¢, the estimator is unbiased for W, z(7) (see Appendix D.3.1).

Assumption 3.1 (Regression adjustment: oracle setup). For each d € {0,1},t € T,, let
|me(d,t, Z;, |N;|)| < T, almost surely, for a finite constant I' < oo, and for z € Z,1 € Z,
me(d,t, z,1) L (YZ-,RZ-,DZ) ‘A, .

i=1

Assumption 3.1 states that the regression adjustment is (i) uniformly bounded and (ii)
independent of experiment participants. An example is m{ = 0, or m{ estimated on an
independent population. The use of mg(-) in this section is not necessary for our results
to hold. However, even with a known propensity score, using a regression adjustment can
improve the stability of the estimator when poor overlap occurs. Sections 3.2 and 4.2 provide
details where m{ is estimated in-sample. With known propensity score and a parametric

regression adjustment (ii) is not necessary, as shown in Section 4.2. Let

Time,e € argmax W, (m, m e).
’ ﬂ'EHn
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Theorem 3.1 (Oracle Regret). Let Assumptions 2.1, 2.3, 2.4, 3.1, and (B), (C) in 2.2 hold.

For a universal constant C' < 0o, the following holds almost surely:

E[ sup Wa z(m) — Wa z(Tme.e)

7T€Hn

3/2
47 < AT \/log(Nn)VC(H)'

YOy Ne

Proof of Theorem 3.1. The proof consists of three steps. First, I extend symmetrization
arguments — widely studied for independent observations (e.g., Devroye et al., 2013) — for
network data. To obtain symmetrization, I group units into groups of conditionally inde-
pendent observations. Within each group, I provide bounds in terms of the Rademacher
complexity of the function class obtained from the composition of direct and spillover effects
(see Definition D.5). As a second step, I bound the Rademacher complexity in each group (i)
by deriving an extension of Ledoux and Talagrand (2011)’s contraction inequality (Lemma
D.6), using (ii) Dudley’s entropy integral bound (Wainwright, 2019, Theorem 5.22), and (iii)
providing an upper bound on the covering number of the product of the number of treated
neighbors and individual treatment (Lemmas D.5, D.7).!* As the last step, I invoke Brooks
(1941)’s theorem to control the number of groups containing conditionally independent units.

Section 3.4 presents a proof sketch, and Appendix D.2 the complete proof. O]

Theorem 3.1 provides a non-asymptotic upper bound on the regret, and it is the first
result of this type under network interference.

The regret bound depends on the network topology through the maximum degree N,,,
the overlap constant d,, and the (expected) sample size n.. The degree affects the regret
bound through two channels: (i) dependence between outcomes conditional on the network
and covariates and (ii) the complexity of the function class obtained by the composition of
direct and spillover effects. For (i), I leverage Assumptions 2.1, 2.3 (i, ii), and 2.2 (B), to
show each individual observation is dependent with at most 2N many other units. For (ii),
[ leverage instead Assumptions 2.1 and 2.4, to bound (ii) as a function of the VC dimension
of IT and N,,. The bound also depends on d,,, which can vary with n. Intuitively, for larger
networks (and larger degrees), the probability that individuals exhibit strict overlap may get
smaller, depending on the exposure mapping considered. The bound is independent of « in
Equation (2). Theorem 3.1 does not assume Assumption 2.2 (A).

The bound shrinks to zero as n, increases, only if the maximum degree and the overlap

constant grows at an appropriate slower rate than the sample size. We formalize this below.

Corollary 1 (Convergence rate with a possibly unbounded degree). Let the Assumptions

HSee Wainwright (2019) for definitions of covering numbers.
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in Theorem 3.1 hold. Suppose in addition that Assumption 2.5 holds. Then

E| sup Waz(m) — Wa z(Tme )

WEHn

A, Z} = O(nj)

almost surely, for & € (0,1/2] as defined in Assumption 2.5.

The corollary shows that the regret converges to zero at a rate that depends on the
convergence rate of the maximum degree and the number of experiment participants. For
bounded degree, the regret scales at rate 1/,/ne.

Corollary 2 (Example 2.2 cont’d). Let the Assumptions in Theorem 3.1 hold, and N,, < ¢}

almost surely, for a constant ¢, independent of n. Then almost surely,

E| sup Wa z(m) = Waz(fmee)

mell,

A, Z} - o(n;1/2>.

In the following theorem, I provide a lower bound for any data-dependent policy. Con-

sistently with the previous theorems, I provide the lower bound conditional on (A, 7).

Theorem 3.2 (Minimax lower bound on the rescaled regret). Let I be the class of policies
7 X — {0,1}, with finite VC dimension VC(II), X = R? C Z, for some finite d < oo.
Let P, (A, Z) the set of conditional distributions D,(A,Z) of (Y, D;, R;)™,|A, Z satisfying
Assumptions 2.1, 2.2, 2.3. Then for any g,() in Assumption 2.1, for anyn. > 16VC(II), and
for any data-dependent 7, € 11, which depends on [Ri(YZ-, Ziy Zyen,, Diy Dien,, N;), Rz]n ,

=1

on
sup sup Ep, sup Wy z(m) — Wa z(7n ‘Aaz
AEAY,ZEZM D,y (A, Z)EPn(A,Z) Nf’;ﬁ logl/z(/\fn) P (A’Z)[(wen (™) ( )> }

(11)
exp(—2v2)  [vo()

~ 25/210g2(2) || me

)

where A% C A, denotes the space of symmetric unweighted adjacency matrices satisfying

Assumption 2.5, and Ep, [-] denotes the expectation with respect to D,,.

Proof of 3.2. The proof follows similar steps of Devroye et al. (2013); Kitagawa and Tetenov
(2018), once I construct a sufficiently sparse adjacency matrix for the worst-case lower bound,
with two distinctions that, to my knowledge, are novel in the literature: I condition on

covariates and consider random sampling indicators. See Appendix D.2 for details. O]

Theorem 3.2 provides a worst-case lower bound to any data-dependent policy, holding

uniformly for any n, > 16VC(II). Similar to lower bounds in the literature (Kitagawa and
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Tetenov, 2018), the bound is maximin over the data-generating process, including any adja-
cency matrix A satisfying Assumption 2.5. However, different from Kitagawa and Tetenov

(2018), Theorem 3.2 establishes the minimax convergence rate of 7, . for the rescaled regret

on
J\/}?L’/2 logl/z(Nn)

Ep,(4.2) [( sup W 7 () - WAZ(ﬁn)) ’A, Z} (12)
TE

after we divide by the factor (NV:/?log(N;,))/6, appearing in Theorem 3.1. The rescaling

factor differs from lower bounds on the (non-rescaled) regret in the literature, and it is mo-

tivated by the dependence of N, with the adjacency matrix and §,, with the data-generating

process. We discuss implications for the regret without rescaling below.

Corollary 3. For any data dependent 7, € I1, satisfying the conditions in Theorem 3.2,

exp(=2v2) [VC(IT)

sup sup Ep,(4,2) [( sup Wa z(m) — WA,Z(frn)> ’A, Z} > 5572 e

A€AS,ZeZ" Dy (A, Z)EPR(A,Z) mell
Corollary 3 follows from the fact that &,/Na'*log"/?(N,) < 1/log"/?(2). It states that
the lower bound for the rescaled regret implies a lower bound for the regret. Therefore,
Theorem 3.2 establishes a minimax rate of convergence of 7 for the regret without rescaling
under the additional assumption that N, < ¢y is uniformly bounded for a constant ¢y < oo.
In summary, the bound in Theorem 3.1 converges to zero as n,n. — 0o, in settings with

a sufficiently small degree (see Corollary 1). The bound in Theorem 3.1 does not converge to
zero if the degree N, grows at an arbitrary rate with n. Therefore our bounds are informative
(converge to zero), only in settings with a sufficiently sparse graph. These settings include
bounded degree as a special case, but also allows for unbounded degree with rate satisfying
Assumption 2.5. For example, with an exposure mapping such that ¢, € (4,1 — J) for a
constant d independent of n (for instance, the exposure mapping is as in Example 2.4 with
A, independent of n), the bound converge to zero only if N3 log(N,,)/n — 0. In addition,
the bound in Theorem 3.1 also provides a minimax rate of convergence of the regret (without

rescaling) in settings where the degree is uniformly bounded (but not necessarily otherwise).

Remark 6 (Expected regret). Theorem 3.1 provides guarantees on the regret conditional
on (A, Z), assuming that the experiment participants are drawn from the target population.
Section 4.3 shows that such guarantees are sufficient to also bound the regret with respect
to the expected welfare (expected over the distribution of (A, 7)) if the sample units are
drawn from the target population. When sampled units are not drawn from the (larger)
target population, regret bounds depend on additional terms that characterize the “cost” of

drawing a sample from a population different from the target one (see Section 4.3). O
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3.2 Estimated nuisance functions

Next, I derive regret guarantees when estimating the conditional mean m(-) and/or propen-
sity score e(-), as defined in Equation (3) under Assumptions 2.2, and 2.3. Define m, and
¢ the estimated conditional mean and propensity score as in Algorithm 3 (Appendix A),

W, (m,m, é) as the welfare with the estimated nuisance functions as in Equation (15), and

e € arg max W, (7, m, é). (13)

I propose a modification of the cross-fitting algorithm — see Chernozhukov et al. (2018),
and Athey and Wager (2021) in particular — here studied in the context of interference. I
describe the algorithm in Algorithm 3 and provide a sketch in Algorithm 1.

First, I find the smallest partition of sampled individuals such that two individuals as-
signed to the same group are neither friends nor share a common friend. This information is
available under the sampling mechanism in Section 2.2, because researchers observe the set
of friends of each sampled individual. The solution to this problem is obtained by solving a
sequence of mixed-integer linear programs. Each program fixes the number of groups (start-
ing from one). For a given number of groups, it checks whether a feasible partition exists.
If no feasible partition exists, it increases by one the number of groups and iterates.

Once I obtain such groups, I estimate the conditional mean function using standard
cross-fitting within each group of individuals as in Athey and Wager (2021). Specifically,
I partition each group g into K equally sized folds; for individual ¢ in group g, fold k,
I estimate her conditional mean function using information from all units in each fold in
group ¢ except fold k. I repeat the same algorithm for the propensity score, where I first
estimate the individual treatment probability and then aggregate such probabilities as in
Remark 1. Algorithm 3 presents the details and Algorithm 1 a summary.

As in Athey and Wager (2021), the regret bound is increasing in the number of folds,
while the estimation error of the nuisance functions is decreasing in the number of folds (see
Appendix D.2.3). Therefore, we must choose a sufficiently large K to control the estimation
error of the nuisance functions. However, the choice of K must also guarantee that each fold
contains a non-negligible proportion of observations. In practice, I recommend K between
five and ten.

To my knowledge, Algorithm 3 is novel to the literature on interference. Its main in-
novation with respect to existing cross-fitting methods is the partitioning approach (Part 1
in Algorithm 1), here required due to interference. For settings where the network presents
approximately independent components (e.g., regions), I also present a computational re-

laxation in Algorithm 4. Algorithm 4 constructs subgraphs of the network recursively to
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Algorithm 1 Sketch of Network Cross-Fitting (see Algorithm 3 for details)

1: Partition sampled individuals:
a: Fix K =1
b: Check whether a feasible partition of sampled individuals with K groups exists. The
partition must be such that two individuals in the same group are neither friends nor
share a common friend.
c: If such a partition does not exist, set K = K + 1 and iterate.

2: For each i, estimate the conditional mean function and propensity score for individual
i, m@, e" via cross-fitting using the units in 4’s group returned by the partition in 1.
Define

mz(ﬂ-) = m(l) (W(Xi)7ﬂ(7r)7 Zi7 |N’L‘>7 é’L(ﬂ-) = é(l) (T‘-(Xi)vﬂ(ﬂ-); ZkGNiv RkENﬂ Ziu Ri7 |NZ‘>
(14)

W, (i, &) = %ZR {8 (v i) = i | (15)

return W, (7, m, é).

and

minimize the number of individuals with shared friends between different subgraphs. It es-
timates nuisance functions for unit ¢ using information from units in the subgraphs different
from the one of unit 7. With multiple disconnected regions, Algorithm 4 estimates the nui-
sance functions using information from all regions except the one containing . See Appendix
A for details.

To study properties of the algorithm, I assume that the estimated nuisance functions
satisfy the same bounded and overlap conditions as their population counterparts (this can

be relaxed by assuming uniform convergence as in Athey and Wager, 2021).

Assumption 3.2 (Estimated nuisances). Assume that for each d € {0,1},t € T,,i €
{1,...,n}, and m®(.), é(i)(-) as in Algorithm 3, |/ (d,t, Z;, |Ny|)| < T almost surely, for a
finite constant T' and 9 (d, t, Zyen,, Rien,, Zi, Ri, [Ni|]) € (70,1 — ~8,), almost surely, for
v, 0, as defined in Assumption 2.3.

The rate of convergence here also depends on the product of the mean-squared error of
the estimated conditional mean function and propensity score, averaged over the population
covariates and number of neighbors:

ZE

2
sup( (d,t, Z;, | Ni|) — m(d, 1, Z,-,]Ni|)> ‘A, 7R =1

1 1 2
E |sup (5 ) |4z =1
Z [ ,p )(d, t, Zrens, Rrenss Zis |Nil) — e(d,t, Zyen,, Rien,, Zi, |Ni))
(16)
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where (), é® are the estimated functions for unit i, as defined in Algorithms 1, 3.

Theorem 3.3. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.2 hold. Suppose that m,é are
estimated as in Algorithm 3. Then

]E[ sup Wa z(m) — Wa z(Tm.e)

7T€Hn

A, Z] - o(ngf + VRA(A, Z) % By (A, Z)).

1

almost surely, for & € (0, 3] as defined in Assumption 2.5.

Proof of Theorem 3.3. The proof leverages the network cross-fitting argument (Algorithm
3) combined with similar techniques used to derive Theorem 3.1. The rate n_* follows from

Assumption 2.5. See Appendix D.2.3 for the complete derivation. n

Theorem 3.3 states that the regret bound depends on two components. The first com-
ponent depends on the convergence rate of the maximum degree, overlap constant, and
experiment size, similar to what was discussed in the presence of a known propensity score
(e.g., Corollary 1). For a bounded degree as in Example 2.2, £ = 1/2, and £ < 1/2 oth-
erwise. The second component depends on the estimation error of the nuisance functions,
and in particular, it depends on the product of their convergence rates, in the same spirit of

standard conditions in the i.i.d. setting (e.g., Farrell, 2015).

Remark 7 (Convergence rate of nuisance functions). Appendix B.1 shows that using Algo-
rithm 3, \/R.(4,2) x B,(A,Z) = ON2ng ) /5.), where nZ%m and nZ% /82 are the
rate of convergence of the mean squared error of the conditional mean and propensity score,

respectively, on a sample of independent observations. As a result, whenever Nﬁ/ “ne (Gmtce) _

ne/? (e.g., n tm = n % = /\/’{1/4716_1/4), it follows that \/R,(4,2) x B,(A,Z) = O(n_¢).

Convergence rates for the estimation error of order Ny 2= (GntGe) = 712 imply that the

estimation error of the nuisance functions does not affect the rate of the regret bound in

Theorem 3.1 in the absence of estimation error. Appendix B.1 presents formal results. [J

3.3 Optimization

Next, I discuss the optimization procedure. For simplicity, consider the most agnostic case
where T; = >, ~, Dk denotes the sum of treated neighbors. Similar reasoning applies to
T; being a known function of the sum of treated neighbors. Define the estimated effect of

assigning to unit ¢ treatment d, after treating ¢ neighbors:

1S e, Di =1, D; = d}
qi (dv t) = { REN:
e

(1/1 _mc<d7t7 Zza|NZ|>> +mc<d7ta Zz>|N’L|> ) (17)
(d7 tv ZkGNia RkGNiv Zi? ’NZ|>
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where I omit the dependence of ¢;(-) with m® and e for the sake of brevity. Second, let
Bi(m, h) = 1{ > ken, T(Xk) = h} be the indicator of whether h neighbors of individual i
have been treated under policy m. We have the following:

||

>~ {(a(1, ) = a0, ) ) w(X) By, ) + Bl Wau(0, ) } = i (n(X0), Y (X)), (18)

h=0 kEN;

Namely, each element in the sum is weighted by the indicator B;(m, h), and only one of
these indicators is equal to one. I can then define variables p;, p; = 7(X;), 7 € I1,, that denote
the treatment assignment of each unit ¢ either sampled (R; = 1) or friend of a sampled unit
(R! = 1). For example, for 7(X;) = 1{X; 8 > 0}, 8 € B, (Florios and Skouras, 2008),

x.I x.I
Zﬁ<pi§ Zﬁ+1, C; >sup|X; |, pi€{0,1},
|Cs] |Cs] BeB

where p; is equal to one if X' is positive, and zero otherwise. The key intuition is to

introduce additional variables to write B; (7, h) using mixed-integer linear constraints. Define
ting = 1{2]% > h}, tina =1 {Zpk < h}, h e {0, -, |N;|}.
keNi kJGNZ

It follows that ¢; 51 + t;n2 — 1 = B;(m, h), and that such variables admit a mixed-integer

linear program characterization. Formally, the optimization program is

n Nl
max R; i(1,h) —q;(0,h) Ju; p + q;(0, h)(¢; +t; -1 (19)
{ui,h},{pi},{ti,l,h,ti,z,h};hzo {0 a0 Juan 0. Bt +tinz =1}

under the following constraints:

(4) pi=n(X;), mell,, W:Rizlorlezl
Di+tin1 +tine Di +tin1 +tine

(B) ; 1< u < ; Juin € 10,1} Vhe {0, |Ni|},¥i: R = 1
>k Aigpr — h) >k Aikpr — h) .
5 tz < ) 17t2 ’1 , h 7”'7N’i ,v : Z:l
() PGB <y < ST 1 € (01), Ve {0, N} Vi R
(h — > Aikpr) (h — > 5 Ai kD) .
D ’ ting < ’ 1,4 0,1}, Yh e {0,--- , [Ni|},¥i: B, = 1.
D) Vvl e S Ty btz €401 Vhed [Nif}, e

(20)
The first constraint can be replaced by methods discussed in previous literature, such as
maximum scores (Florios and Skouras, 2008). By contrast, the additional constraints are
due to interference. In practice, including additional (superfluous) constraints stabilizes the
optimization problem. These are Y, (t;n1+tin2—1) = 1 foreach i and Y. >, uip = >, pi-
Whenever units have no neighbors, the objective function is proportional to the one discussed
in Kitagawa and Tetenov (2018) under no interference. Therefore, the formulation generalizes

the MILP formulation to the case of interference.
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Theorem 3.4. Let T; = ), Dy. Then ©# € argmaz, ey, Wn(m,m®, e), if and only if it

mazimizes Equation (19) with constraints in Equation (20).

The proof of Theorem 3.4 follows directly from the argument in the current section.

3.4 Derivation of Theorem 3.1: main steps

This section includes a sketch of the proof of Theorem 3.1, whereas Appendix D.2 presents
formal definitions and derivations. Readers not interested in the proof of Theorem 3.1 can
skip to Section 4 (or 5). For brevity, in the argument below, I further assume Y; € [-1", 1"
for a finite constant IV < oo; that is, the outcome is uniformly bounded. Appendix D.2

presents derivations for unbounded outcomes. Because II,, C II, it follows that

E | sup Wa z(m) — Wa z(Tmee)
welly,

Aa Z:| <2E |: sup ‘Wn(ﬂ-7mca 6) - WA,Z(W)MA’ Z:|
well,
(21)
<2E [sup Wi (m,m e) — WA,Z(W)‘]A, Z} ,
mell
our focus will be bounding the right-hand side of Equation (21). Define

I;(m)
ei(m)
where the dependence with e, m® is suppressed for convenience. Define Q,(mw, A, Z) as the
joint distribution, of );, namely (Qi(ﬂ', A, Z)>j—1 A, Z ~ Qu(m, A, Z), for given 7, A, Z.

Define (0;), i.i.d. Rademacher random variables independent of observables and un-
observables (P(o; = 1) = P(o; = —1) = 1/2) and E,[-] denotes the expectation only
with respect to (o;)7;, conditional on observables and unobservables. By Lemma 2.1
E[W,(7)|A, Z] = W4 z(7) for all m € II.

Qi 4.2) = R | 2T (¥ — (o) + i)

Symmetrization with network data Next, I extend the symmetrization argument (e.g.,
Lemma 6.4.2 in Vershynin, 2018) to the context of this paper. Define

<Q§(W,A, Z)>j:1)A, Z ~ Q,(m, A, Z), an independent copy of (Qi(ﬂ',A, Z)):;l, conditional
on (A, 7). It follows

L3 [0r4.2) - @im. 4.2 4.2

n
€ =1

(21) <E [sup (".- Jensen’s inequality). (22)

mell

Ideally, using standard symmetrization arguments, I would like to bound the right-hand
side in Equation (22). Unfortunately, this is not possible because of dependence. I instead
partition observations into groups of conditionally independent random variables. I then

obtain bounds that depend on the number of such groups. Let A% be the adjacency matrix
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obtained by connecting neighbors and two-degree neighbors under A. Let y,(A?) be the
smallest number of groups such that each group does not contain two units that either are
neighbors or share a common neighbor under A, and C? = {C3(g )};‘l(lAz), C3(g) C{1,--- ,n},

the smallest set of such groups. Then

(" triangular inequality)

E LEH nlz:; [Qi(r, A, 2) - Qi(m, A,2)| |14, 2

< Y Elw|- Y (@A) -Qmaz)|az

n
ge{l, - xn(a2)} [T dec2(g)

(I1)

Note that @; equals zero if R; = 0. Therefore, under Assumption 2.3 (ii), it follows that
QQ; can be written as a function of [Ri (ei,Ri,sDL,R Rjen, ,RJGN +EDjen, s Zis INil, Zren, ﬂ
where R/ = 1{>", Ai xRy > 0}. For each j € N, Rj equals one almost surely conditional on
R, =1. le is instead a deterministic function of Rjcy,. As aresult, because Q; = 0if R; =0
almost surely, one can write (); only as a function of [Ri (a, Ri,ep, Rjen,, €pjen. » Zis [Nl ZkeN,-)} :
its dependence with R! ien, can be dropped.

Under the distributional assumptions of each of these components, it follows that (); are
jointly independent if they are not neighbors and do not share a common neighbor conditional

on A, Z.'? Because Q;, Qi|A, Z have the same marginal distribution by construction,

(I1) < ZE[EG[

O_iQi(ﬂ—7A>Z)‘ ‘AaZ .
mell | Te ieé:(g) :| i|

(I11)

Bound on the function class complexity I control (//I) with Lemma D.7. The
idea of the lemma is the following. First, note that here Q;(w,-) depends on 7 through
(W(Xi),zkeNiﬂ'(Xk)>. I show that Q;(m, A, Z) is Lipschitz in <ZkeNi7T(Xk>> with the
Lipschitz contant proportional to %. I then leverage extensions of the Ledoux-Talagrand
contraction inequality (Lemma D.6, which extends Theorem 4.12 in Ledoux and Talagrand,
2011) to show

1
Ey |sup |— Z 0:iQi(m, A, Z)

n
“iec2(g)

Z Riaz-( Z W(Xk))W(XZ')

©iec2(g) kEN;

cr’ 1
‘ < E, — (24)
'7571 el ' M

for a universal constant C' < co. Using Theorem 5.22 in Wainwright (2019), I can bound

the right-hand side in Equation (24), by an integral of the covering number of a function

12Tn particular, we leverage here Assumption 2.1 (interference is local); Assumption 2.3 (ii) (treatments
are conditionally independent); Assumption 2.2 (B) (unobservables are conditionally independent if two
individuals do not share a common neighbor). I relax Assumption 2.2 (B) in Section 4.
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class obtained from <Zk€ N, W(xk)>7r(a;i), 7 € II — which we can bound by a function of the
d /X Ril{ieC2(g)}

Ne

maximum degree and the VC dimension of II (Lemma D.5) — an

Conclusions Collecting terms, for a universal constant C' < oo, I show

(A2)
i VI R €G]
<O x §:: —x\/log YN VC(ID) x E - ’A Z
s I’ > i R :
< C x v/xn(A2) x 5. x v/log(N, )N, VC(II) x ni (.- concavity of \/x).

The first term /x,,(A2) captures the dependence structure. By Brooks (1941)’s theorem,
xn(A%) < 2N? (see Lemma D.5). The second term captures Lipschitz-continuity of the
objective function and depends on the overlap 1/§,,. The third term captures the complexity
of the function class of interest, increasing in the maximum degree. The last term captures

V Zj:lRi:| S 1/né/2

Theorem 3.1, I" replaces IV under bounded moments, instead of bounded outcomes.

concentration in the sample size. Using Jensen’s inequality, E[ In

Remark 8 (Independence of sampling indicators). My results extend to settings where
sampling indicators are locally dependent. For instance, if indicators are dependent between
two-degree neighbors, the proof above follows verbatim, because the sampling indicators in
the set C2(g),g € {1,---, x(A2%)} are independent. O

Remark 9 (Regret conditional on ;). For known propensity score and uniformly bounded
outcome, the proof technique follows verbatim conditional on g;, once I define welfare as
LS (W(Xi), > ken, T(Xk), Zi, [ Nil, 5i) , conditional on (g;) ,, as in a design-based frame-
work (e.g. Leung, 2021). In particular, we can invoke verbatim the symmetrization argument
in Equation (22) and follow the same steps, providing stronger guarantees that hold condi-
tional on (g;)?, (without assumptions on (g;)"_,). However, with an unknown propensity
score, convergence rates of the estimators in Section 3.2 depend on the distribution of &;:
regret guarantees can only be obtained in expectation, after integrating welfare over ¢; as in
Kitagawa and Tetenov (2018), Athey and Wager (2021). O

4 Main extensions

I discuss here trimming with poor overlap, higher-order dependence, different target and

sample units, and non-reversible treatments. Appendix B contains additional extensions.
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4.1 Trimming to control overlap

In this subsection, I provide regret bounds whenever a few units may present a large degree.
I consider the setting where T; = ), ~, Di. To guarantee overlap, I introduce the following

trimming estimator:

Wi (e, e ) = %Z R {45 (v i) 1 {10 < o s} i | (29

with e;(7), m§(7), [i(7) as in Equation (10). Here, log, (x,) defines the trimming constant,
as the logarithm in scale v of a user-specific k,, (with v in Assumption 2.3).

The trimming estimator builds on the following idea: it excludes the direct effect on the
largely connected nodes (with more than log, (#,) neighbors) but keeps information from the
spillovers that such nodes generate. This is because nodes with most connections are those

for which overlap restrictions are more likely to fail. Define

n

T T c 1
7 € argmax W, (m,m°, e; ky), Pn<|Ni| > log,y(ffn)> = EZ 1{|Ni| > log,y(/{n)}.

TI'GHn
i=1
Theorem 4.1. Suppose that Pn(|NZ»| > logv(/fn)) < ¢, for a constant ¢ < 1. Let T; =
ZkeNi Dy, and let Assumptions 2.1, 2.2, 2.3, 2.4, 3.1 hold. Then

E[ sup Wa z(m) —Wa (7))

TI'EHn

Al Z} _ 0 N2 \/log(./\fn)VC(H) N Prz(’Ni’ > 10g7(/€n)>

Rn Te

Proof of Theorem 4.1. See Appendix D.2. O

Theorem 4.1 shows we can improve the regret bound for a suitable choice of k, under
restrictions on the degree distribution. For instance, suppose y/n-many individuals have
a degree that can grow in n, whereas all other units have a degree bounded by at most

log, (), for a constant  independent of n. In this case, F,(|N;| > log, (r)) = O(,/;-), and

the regret is of order O (N in log(Nn)VC(H)> , independent of 9,,. Theorem 4.1 illustrates how

Ne

information can be leveraged from the degree distribution to improve convergence rates.

4.2 Regret with higher-order dependence

Next, I characterize regret bounds in settings where individuals can depend on friends up to
the degree of order M, where M is a finite number and unknown. To simplify exposition, I

assume the outcome is uniformly bounded.
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Assumption 4.1 (Higher-order dependence and bounded outcome). Suppose that for some
unknown M > 2, (A) & L (&;)jeunm n,, |4, Z, where N; denotes the set of connection of ¢
of degree k. Suppose in addition that (B) Y; € [-I",1"], for a positive constant [ < co.

Under Assumption 4.1, unobservables can depend on individuals of at most degree M.
Suppose M is unknown and researchers do not have information from higher-order neighbors.
Define m® : {0, 1} xZx Zx7Z + [—I",T"] for some finite IV < oo, e(+; |N;]) : ZNilx {0, 1} 1Nl x
Z = (70n, 1 —79,), the pseudo-true conditional mean function and propensity score, and
m, é their corresponding estimators constructed arbitrarly (e.g., pooling information from

all sampled units). Let

2
sup (m(d)tu Zi) |NZ|) - mc(d7t7 Zia |NZ|)> |A7 Z
d,t

(26)

~ 1 1 1 2
Bu(A,Z) =-S5 E ( - ) A Z
n( ) n ZZ [S;JJF ec(d7 t, Zk’ENia RkGNiv Zl) €(d, t, ZkeNm RkEN-n Zl) |

denote the mean-squared errors of the estimators obtained from all sampled units, averaged
over the population covariates and number of neighbors. Different from Theorem 3.3, we do
not need to condition on R; = 1 in Equation (26) because no cross-fitting is used, and the

estimated nuisance function is independent of i’s index.

Theorem 4.2. Let Assumptions 2.1, 2.3 hold, and Condition (C) in 2.2, Assumptions 2./,
2.5, 8.1, 8.2, 4.1 hold. Assume either (or both) (i) e°(-) = e(-), or (ii) Assumption 2.2 (A)
holds and m® = m. Then, for M > 2, & € (0,1/2] as in Assumption 2.5:

IE[ sup Wa,z(m) — Wa, z(7tpm.e)
well,

ol e o)

Proof of Theorem 4.2. See Appendix D.2.1 n

Theorem 4.2 provides a uniform bound on the regret, and it is double robust to correct
specification of the conditional mean and the propensity score. The theorem’s result depends
on the convergence rate of ¢ and m to their pseudo-true value. For parametric estimators of
the conditional mean and the propensity score and bounded degree, the regret bounds scale
at rate 1/,/n., divided by the overlap parameter. For general machine-learning estimators,
the rate can be slower than the parametric one, reflecting the “cost” of the lack of knowledge
of the degree of dependence M. Here, NM2 captures higher-order dependence. Theorem
4.2 does not require that Assumption 2.2 (A) holds in settings with a correctly specified

propensity score, assuming m¢ converges to some pseudo-true value me.
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4.3 Expected regret with a different target population

This subsection compares regret guarantees when units are either drawn from the (larger)
target population as described in Section 2, or units are drawn from a different population
from the target population. Following Kitagawa and Tetenov (2018), and to simplify expo-
sition in this subsection, we consider a policy function class II,, = Il where II is not data
dependent.'® Consider a population with n individuals, connected under adjacency matrix

A" and with covariates matrix Z’. For given (A, Z’), welfare is defined as

Waz(m) =+ 3 m(w(X0), 3 Alr(X0), 2.3 AL). X[ € 2L (27)
k k

n“
=1

Consider two notions of regret, the conditional and expected regret, defined respectively as

RCHOfA(%yZI =E |:Sup WA’,Z’ (71') — WA’,Z’ (ﬁ'mcﬁ)

mell

A Z’} ,
(28)
Ri? = SupE Wy z0(7)| = E|Warz0(Fime)|.
rell
The conditional regret is a function of the target population adjacency matrix and covariates
Z', whereas the expected regret takes expectation over (A’,Z’). The expected regret is
(implicitly) a function of the joint distribution of (A’, Z’, A, Z), since it integrates over the
distribution of (A’, Z') and 7 estimated on the sampled units.
When the target population differs from the population from which we sample experiment
participants, we can only hope to control the expected, but not the conditional regret. When
instead the target population is the one from which we sample the experiment participants,

we can control both notions of regret as shown in the following lemma.

Lemma 4.3 (Expected and conditional regret). Suppose that (A’', Z") = (A, Z) almost surely,
i.e., for any realization of (A, Z), experiment participants are always drawn from the (larger)

target population as in Section 2. Then
Ri” <E[Ri%Z]
where Rfffjﬂz s bounded as in Theorem 3.1 for II,, = II.

Lemma 4.3 shows that the regret guarantees in Section 3 are valid bounds on the expected
(and conditional) regret. The proof of Lemma 4.3 follows directly from Jensen’s inequality

and the law of iterated expectations. The main assumption of Lemma 4.3 is that the sampled

13We assume that II,, = IT not to define the joint distribution of (X, A’, Z’) in the definition below.
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=1

Sample from target pop Sample not from target pop

Figure 2: Example of the experiment (picture at the center) and policy targeting exercise when
the sample is drawn from the target population as in Section 2.3 (left-hand side) or the sample
is not drawn from the target population (right-hand side). Green dots denote treated units, and
pink dots denote untreated ones. The experiment runs as described in Section 2. Researchers
observe the vector of outcome, treatment, neighbors, treatments, and covariates of sampled units
((Yi, Zi, Zn,, Di, Dar,)R;), as well as the the identity of whom they sample (R;). When the ex-
periment participants are drawn from the target population, researchers then design a treatment
allocation 7(X;) for the entire population using information X;, a subset of Z; available to policy-
makers for all n units. When instead the target population is different from the population from
which the sample is drawn, policymakers only observe covariates (X)) ; from the target sample,
and the experiment did not use a sample drawn from the target population.

units are drawn from the (larger) target population, which is the main case of interest in
this paper. This is a common feature in applications where researchers sample (small groups
of) individuals at random from a large region or country (e.g., Cai et al., 2015; Egger et al.,
2019), and are interested in scaling the policy up in such a region or country.

Suppose, however, we are interested in implementing the policy on a population different
from the one from which we have drawn our sample (e.g., in a different country). In the

following theorem, we study guarantees of the proposed procedure for this setting.

Theorem 4.4 (Sampled units not drawn from the target population). Suppose that the
conditions in Theorem 3.1 hold, with (A',Z") L [A, Z, (Yi,Ri,Di)?:l] For a universal

constant C' < 00,

TR [N 1og 2N [yem
75n e

Ry <C +2E4z [SUP Waz(m) = Ea z/[Warz (W)]” ’

mell

where B4 z[-] is the expectation operator with respect to the distribution of (A, Z).

The proof is in Appendix D.2.5. Theorem 4.4 provides a bound on the expected (instead

of conditional) regret, allowing the sampled units to be drawn from a population different
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from the target population. The bound depends on two components. The first mimics the

component in Theorem 3.1 and depends on the expected maximum degree and the expected

size of the sampled population n.. The second component instead captures the discrepancy

between the population from which the sample is drawn (A, Z) and the target population.
Suppose that (A, Z), (A’, Z') have the same distribution. It follows

E [sug Waz(m) —Ea z [WA’,Z’(W)]”
mTE

n (29)
sup L > m(r(X0), > Aipm(Xi), Zi, INi]) — E [m(W(Xi)’ > Aipr(Xi), Ziy |Ni|)} ‘] ’
=1 k k

rell 11 2

=E

which is independent of the sample size n.. Equation (29) depends on how fast the condi-
tional mean functions of all units n concentrate around their expectation uniformly over II.
Equation (29) captures the expected “cost” of targeting treatments on a population different

from the one from which the sample was drawn.

Remark 10 (Trade-offs of collecting network data). In settings where the target population
is different from the population from which the sample is drawn, it is possible to obtain
faster regret bounds if researchers observe network data from the entire target population.
I show this in Appendix B.3, where regret guarantees do not depend on the additional
component E4 » [supﬂen ‘WA,Z(W) —Eu 7 [WA/7Z/(7T)]‘:|. Therefore, Appendix B.3, together
with Theorem 4.4, illustrates trade-offs between collecting and not collecting network data

from the target sample when sampled units are not drawn from the target population. [

5 Empirical application

I now illustrate the proposed method using data originating from Cai et al. (2015). The
authors study the effect of an information session on farmers’ weather insurance adoption.
Individuals are grouped into 185 addresses (villages) grouped into approximately 50 larger
areas. According to the authors, “All rice-producing households were invited to one of the
sessions, and almost 90% of them attended. Consequently, this provided us (the authors)
with a census of the population of these 185 villages. In total, 5,335 households were sur-
veyed” (Cai et al., 2015). Before conducting the experiment, researchers collected network
data by asking each individual to indicate at most five friends (who can be in the same
or different village). On average, 50% of the connections of sampled units have a different
village. More than 90% of the connections are within the same area.

In this application, I use information collected from those units for which information

about their post-treatment outcome and their friend’s identity is available; in total, 4511,
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a subset of the population. The experiment consists of two rounds of information sessions
three days apart, each round containing two types of information sessions (simple and in-
tensive). Households are randomized to each round and within each round to each type of
information session. By using time variation over the two rounds, Cai et al. (2015) show
the existence of significant neighbors’ spillover effects of an intensive information session on
second-round participants’ outcomes and no endogenous spillover effects, consistently with
the model presented in this paper. I defer a discussion on how the model and assumptions

of this paper connect to Cai et al. (2015) to Section 5.3.

5.1 Experimental setup and estimation

In the experiment, “the effect of social networks on insurance take-up is identified by look-
ing at whether second round participants are more likely to buy insurance if they have more
friends who were invited to first round intensive sessions” (Cai et al., 2015). Specifically,
each round consists of two sessions held simultaneously. In the first round, households are
assigned to either a 20-minute session during which researchers offer details about the insur-
ance contract only (control arm, “simple” information session) or a 45-minute session that
also provides details about the expected benefits of insurance (treatment arm, “intensive”
information session). In the second round, farmers are assigned similarly to either inten-
sive or simple information sessions. Treatment denotes whether individuals were assigned
to an intensive information session (either in the first or second round), whereas, by design,
spillovers occurs from the first to second round, as described in Cai et al. (2015).1% Re-
searchers also considered additional arms where they provided information about purchase
decisions of other participants (“More info” in Figure 3). Here, I follow the main analysis in
Cai et al. (2015) (Table 2), and focus on providing information on insurance benefits only.
I follow Cai et al. (2015) in the model specification. I estimate a model using all first-
round participants and those second-round participants either in the control arm or in the
main (intensive) treatment arm.'® T estimate 7 using the linear probability model for the
outcome as in Cai et al. (2015) (Table 2, Col (4)), controlling for area fixed effects, a large

set of covariates, the average number of treated neighbors, individual treatment, and the

MFor estimation, I follow Cai et al. (2015) and consider the general network matrix where spillovers only
occur from individuals participating in the first information session to individuals in the second session.
When evaluating the out-of-sample performance of the policy, I use the original “general network” as an
adjacency matrix because out-of-sample evaluations may not have the sequential structure of the experiment
(i.e., some individuals may be treated and asked to make purchase decisions some time after treatment occurs,
possibly generating spillovers also on the treated units participating in the same information session).

5Namely, I follow Column (2)-(5) in Table 2 in Cai et al. (2015). As discussed in Cai et al. (2015), I can
drop observations in the “More info” treatment arms for estimating the conditional mean function because
individuals in the second-round of information sessions do not generate spillover effects by design.
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First + 3 days Second
round round
Simple Intensive Simple Intensive More
session session session session Info

Figure 3: Design in Cai et al. (2015) with household-level treatment randomization. Participants
are assigned at random to first and second rounds, and within each round, to different information
sessions. Simple session denotes the control arm, where researchers provided information about the
insurance contract only. Intensive session is the main treatment arm, where individuals are also
provided with information about the benefits of insurance. “More info” contains additional arms
with information about purchase decisions, omitted in our analysis and Cai et al. (2015)’s main
analysis. Purchase decisions were made at the end of each information session.

interaction between individual and neighbors’ treatments. The model in Cai et al. (2015)
assumes homogenous treatment effects across covariates and villages. Here, 1 also allow
for some heterogeneity in covariates and control for interaction terms of the rice area, a
coefficient capturing risk aversion and education with individual and neighbors’ treatments.
Following Cai et al. (2015), I consider the “general network” as the main network, that is,
the raw network data obtained from surveys where an individual generates spillover effects
on 7 if she was indicated by 7 as a friend. I then construct welfare using a doubly-robust
estimator, with ten-fold cross-fitting as in Algorithm 4. The conditional mean is estimated
via lasso with a small penalty (e7'?) to increase the stability of the estimator. The individual
propensity score is estimated as in Remark 1 via a penalized logistic regression with a similar

small penalty and 5% trimming.

5.2 Policy evaluation

I “simulate” the following environment: researchers collect information from villages in the
first fifteen areas. They estimate the policy to treat individuals in the remaining villages.
In the remaining villages, I assume the policymaker does not have access to the network
information but only observes the farmer’s education, risk aversion, and rice area. I then
compute welfare effects out-of-sample on the villages outside the training set (first 15 areas).
I repeat the same process via three-fold cross-fitting: I use the second fifteen areas as a
training set and the remaining areas as a test set; similarly, I use the last group of areas as

a training set and the first thirty areas as a test set. Finally, I compute the average out-of-
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sample improvements over the three out-of-sample evaluations. The out-of-sample evaluation
uses the double-robust score, estimated out-of-sample. This exercise mimics settings where
participants are sampled from a random subset of villages, and the treatment assigned to
the experiment participants cannot be changed after the experiment (see Remark 2). In
this exercise, I sample areas instead of villages to guarantee that the welfare estimates are
independent of the training set, a desirable property for out-of-sample comparisons.

I contrast to the empirical welfare-maximization method that ignores welfare effects in
Athey and Wager (2021); Kitagawa and Tetenov (2018) and uses the same policy and models
of the proposed procedure for both the propensity score and conditional mean function
(including that the conditional mean function controls for spillovers).

As a first exercise, I consider simple policies that use information from transformations
of two of the three covariates: education, rice area, and a coefficient capturing risk aversion.
I compute simple classification trees obtained for all possible two-out-of-three combinations
of such variables. The tree finds one optimal split over the first (continuous) variable. The
split for the second variable is constrained to be at the population median value. This pol-
icy is simple to compute and communicate because it assigns treatments based on a few
possible sub-groups. I study out-of-sample improvements while varying the treatment cost
as 1%, 3%, 5% of the insurance take-up benefit. These costs are comparable to the direct
treatment effect that we would estimate once observations from all villages as in Table 2,
Col 2 in Cai et al. (2015) are pooled (approximately equal to 3%). Table 1 provides wel-
fare comparisons. We observe welfare improvements up to approximately thirty percentage
points and positive effects uniformly across the specifications. These economically significant
improvements are obtained despite the network not being observable in the target sample.

As a second exercise, I consider a more complex policy consisting of a maximum score

that controls for education, rice area and risk aversion as follows:
m(X;) = 1{ﬂ0 + Rice area x 31 + Risk aversion x 35 + Education x 33 > O}. (30)

The parameters are estimated using the mixed-integer linear program in Section 3.3. Table
2 reports the average out-of-sample welfare improvement estimated via three-fold cross-
fitting. It shows out-of-sample welfare improvements up to nine percentage points. This
result illustrates the benefits of the procedure for more complex policy functions as well.
The cross-fitting procedure returns three policies estimated on independent samples.
To investigate the properties of the estimated policy, Table 2 reports the coefficients of
the estimated policy (NEWM) leading to the largest out-of-sample welfare. The policy
treats individuals who are more risk-averse, less educated, and with a smaller rice area. I

contrast this policy with the one that ignores network effects (EWM). The two policies are
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substantially different when treating individuals with larger rice areas and risk aversion.
This difference highlights the importance of taking into account spillover effects for policy

targeting because different subgroups should be treated differently with spillover effects.

Table 1: OQut-of-sample welfare improvement for a classification tree upon empirical welfare-
maximization targeting rule in Athey and Wager (2021) that does not account for network effects in
the design of the policy. Different columns denote different X variables considered for the design of
the policy. Here C denotes the cost of the treatment. The policy is a classification tree that allows
for the first covariate to be continuous and finds the best split over the first covariate, whereas the
second covariate is whether such a variable is above or below its median value or missing.

Educ & Rice-ar Educ & Risk-av  Rice-ar & Risk-av

C=1% 0.146 0.084 0.289
C =3% 0.159 0.093 0.201
C=5% 0.093 0.111 0.143

Table 2: Estimated coefficients for 7(X) = 1{X T3 + By > 0}, as a function of the rice area of the
farmer, a coefficient capturing risk aversion and education. NEWM denotes the proposed method
and EWM the double-robust empirical welfare-maximization procedure that ignores network effects.
Coefficients are normalized by [y, with estimated By = 1 for both NEWM and EWM. The right-
hand-side panel reports the average out-of-sample improvement of the NEWM method over policies
that ignore network effects, estimated via three folds cross-fitting. C' denotes the cost of treatment.
The left-hand-side panel reports the estimated coefficients of the policy with the largest out-of-
sample welfare for C' = 5%.

Rice Area  Risk Aversion  Educ Welfare Improvement
C=1% 3% 5%
NEWM -0.068 0.395 -0.397 0.074 0.085 0.093
EWM -0.003 -0.041 -0.473

5.3 Assumptions and applicability of the method

This section concludes with a review of the assumptions required by the proposed procedure
and their applicability in the context of the chosen application. Assumption 2.1 states that
interference occurs through the neighbors’ treatment assignments. In the context of our ap-
plication, treatments denote (intensive) information sessions. This paper assumes potential
outcomes are (possibly heterogeneous) functions of the number of informed neighbors. As a
result, the model is best suited when information effects, as opposed to endorsement effects

(i.e., effects driven by neighbors’ purchase decisions), occur. This restriction is consistent
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with findings in Cai et al. (2015), who, by leveraging the sequential structure of the ex-
periment, illustrate information effects and lack of endorsement effects. Quoting Cai et al.
(2015)’s abstract: “By varying the information available about peers’ decisions and random-
izing default options, we show that the network effect is driven by the diffusion of insurance
knowledge rather than the purchase decisions.” Insurance knowledge denotes the treatments,
and purchase decisions are the outcomes of interest, consistent with our model.

A second restriction this paper imposes is that the maximum degree is sufficiently smaller
than the sample size (Assumption 2.5). This restriction avoids overfitting and controls the
complexity of the function class of interest. Following the specification in Cai et al. (2015),
here individuals generate spillovers on those people indicated as friends, at most five of them
by the design of the survey in Cai et al. (2015). Therefore, we interpret our analysis as
imposing a restriction on the exposure mapping g,(-): only the five “closest” friends (i.e.,
friends indicated in the survey) generate spillover effects, whereas if there are other friends
not indicated in the survey, these generate no or negligible spillovers. This assumption is
mantained in Cai et al. (2015), who state: “The drawback of this specification is that the
network characterization may be incomplete. This concern is mitigated by the experience
of the pilot test in two villages, where most farmers named four or five friends (82% five,
14% four, and 4% others) when the number was not limited.” However, it is important to
acknowledge that this is an assumption, and future research should explore the sensitivity
of the estimated policy to misspecification of the exposure mapping (e.g., Sdvje, 2023).

The model specification of the conditional mean function in Cai et al. (2015) imposes
a lack of heterogeneity in unobserved network statistics. However, because we augment
the estimated conditional mean with the doubly robust score, the estimators also allow for
arbitrary network heterogeneity, even if such heterogeneity is not captured in the estimated
conditional mean function. The reader may refer to Lemma 2.1 and Theorem 3.1 for details.

Finally, the sampling in Cai et al. (2015) guarantees that the welfare estimated using
information from participants is an unbiased estimator of welfare once the policy is deployed
at scale in rural China. The main reason is that Cai et al. (2015) independently sample 185
small villages in rural China, and, among such, they randomize treatments at the individual
level (see Page 7 in Cai et al., 2015). This sampling induces local dependence within small

villages, which is possible to accommodate in our framework (see Remark 8).

6 Conclusions

This paper introduced a method for estimating treatment rules under network interference.

It considers constrained environments, and accommodates policy functions that do not nec-
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essarily depend on network information. The proposed methodology is valid for a large class
of networks and does not impose restrictions on covariates. I cast the optimization problem
into a mixed-integer linear program and derive guarantees on the policy regret.

The proposed method assumes anonymous and exogenous interactions. Future research
can address the case of endogenous interactions by explicitly modeling the endogenous com-
ponent, or considering weak dependence structures as in Leung (2022).

This paper estimates welfare-maximizing policies when the network information on the
target sample is not observed by directly maximizing the empirical welfare. Extending our
method by incorporating partial information on the population network is an interesting
future direction. Combining the high-dimensional estimator of the network as in Alidace
et al. (2020) with the empirical welfare-maximization procedure is a possible approach.

Finally, the literature on influence maximization has often relied on structural models,
whereas the literature on treatment choice has focused on semiparametric estimation. This
paper opens new questions about the trade-off between structural assumptions and model-

robust estimation of policy functions. Exploring this trade-off remains an open question.

Appendix A Practical guide

This section provides details on the implementation. Algorithm 2 presents a summary.
The method is implemented in the R package NetworkTargeting available on the author’s

website.

Algorithm 2 Network Empirical Welfare Maximization

1: Sample individuals in a (quasi)experiment at random from the population of interest
(see Remark 5 for stratified sampling).

2: For each sampled individual (R, = 1) and their friends (R/ = 1) in the experiment
randomize treatment assignments as in Assumption 2.3 (treatments do not need to be

randomized among the remaining units in the population).
n

3: Collect information [Ri (Yi,Di,ﬂ,Ni,Zi,ZkeNi),Ri] , denoting sampling indicators
i=1

(R; = 1), post treatment outcome Y;, treatment assignment D;, neighbors’ treatments
T;, arbitrary individual and neighbors’ observable characteristics Z;, Zyen; .

4: Run Algorithm 3 to estimate m, € the conditional mean and propensity scores for sampled
units (R; = 1) as defined in Equation (3).

5: Run the optimization algorithm in Section 3.3 to estimate 7 using (arbitrary) individual
level information X; C Z,.

6: Implement 7 on the population of interest by collecting individual-level information
(X;)r, for all units in the population.
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A.1 Cross-fitting: exact solution

The cross-fitting algorithm is described in Algorithm 3. It solves a sequence of mixed-integer

linear programs of the form

K

(K*,G") =arg KGZ,G@«{i{Iﬁl}nxK K such that ; ; Rile{j ¢ Ii}GijGin =0

- (31)
Y Gip=1, Vie{l,--- ,n},
k=1
where Z; is defined in Equation (32) as the set of sampled units who are not friends or share a
common friend with ¢. Each program consists of finding a feasible solution to the constraints
in Equation (31) for given K. The program finds the smallest number of groups K* and
groups partition G* such that two sampled individuals who are friends or share a common
friend are not in the same group. Here, G}, = 1 if 4 is assigned to group k.

To estimate the conditional mean, the algorithm performs cross-fitting with J folds within
each group, as in standard cross-fitting algorithms (Athey and Wager, 2021). If some of these
groups are small (with fewer than JP units, for some small finite P), Algorithm 3 does not
use information from such groups. Here, P is a small constant and denotes the minimum
number of observations such that the estimator is well-defined (e.g., the effective degrees of
freedom for linear regression).'® The propensity score is estimated using a similar approach.
To estimate é(%), researchers can also use information about the treatments of the neighbors
of sampled units (R; = 1) who have not been sampled, as described in Algorithm 3.

To gain further intuition on each step, observe that the proposed partition guarantees
that the outcomes of two individuals in the same group are independent conditional on
(A, Z). Therefore, within each group, we can then apply a standard cross-fitting algorithm.
The construction of such groups and the intuition behind the cross-fitting approach is a novel

contribution of this paper.

A.2 (Approximate) network cross-fitting with subgraphs

Algorithm 4 presents a relaxation of network cross-fitting. It fixes K, and creates K groups
recursively. Each iteration, it constructs two groups to mazimize the number of individuals

who are friends or share a common friend and are assigned to the same group. It then

16The presence of groups with a few units does not affect our results in Theorem 3.3, because these
results are directly expressed in terms of average convergence rates of the nuisance functions (see Appendix
D.2.3). It also does not affect the characterization of the convergence rate in Remark 7, and Appendix B.1.
Intuitively, because K* < 2N2 by Brooks (1941)’s theorem, the contribution of groups with few observations
to the average estimation error is at most O(N;?/n.). See Appendix B.1 for details.
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Algorithm 3 Network Cross-Fitting: Exact Optimization

ReqUire: |:R’L <}/;7 Di; 7—%7 N’i? Zi7 ZkENz) ) Rl:|

1: For each i € {1,--- ,n} construct

, finite P, finite J.
=1

1=

Ti={je{l, - np\{i}: Rj=1land j & Ny, N N; =0 }. (32)

2: Solve Equation (31) and return K*, G*.

3: for k€ {1,---,K*} do
a: Partition units {7 : R;G}; = 1}, to J folds (F) )71, equally sized up-to one element.
Define F; ,z @ the fold containing unit 7.
b: For i such that Gj,R; = 1 construct the estimator m(-) of m(-), using
(Yo, Dy, Dienas Zuy Ny) from units v in (F))7_ \ F/¥. Let () = 0if 3, G, Ry < JP.

4: end for

5: Repeat for the propensity score: for ¢ such that G} R; = 1 estimate the individual con-
ditional treatment probabilities using (D,, Z,, Ry, (Dr(1 — Ry), Rk, Zx)ken,) from units
v in folds (F} )/ \ F, 7 @) Aggregate such probabilities to construct an estimator of e(+)
for unit 4, ¥ (-) as in Remark 1. Let 1/60(-) = 0if }°, Gj R; < JP.

6: Define m;(m), é;(m) as in Equation (14) and W, (w,m, é) as in Equation (15).

7. return W, (m,m,é).

repeats the same optimization within each group until we obtain K groups in total. The
algorithm constructs subgraphs by solving recursively max-cut optimization problems (see
Algorithm 5). For each unit ¢, Algorithm 4 then estimates the conditional mean function
using all groups except the group assigned to unit ¢. To estimate the propensity score, I
construct subgraphs where I maximize the number of individuals who are neighbors (but
not necessarily neighbors of neighbors) in each subgraph.!” The slackness parameter s in
Algorithm 5 guarantees subgraphs have approximately the same number of units up to s
units (e.g., five or ten).

The rationale is the following. If the network presents K completely independent and
equally sized clusters, the algorithm will recover such clusters. In this case, unit ’s prediction
would use information from clusters except the one containing ¢; the predicted value for unit
7 would be independent of i’s outcome, avoiding overfitting. The algorithm approximates
this setup by constructing subgraphs that minimize the number of connections between such

subgraphs.'® T recommend choosing K by leveraging prior knowledge of the data, such as

1"The reason is that, due to the independence of treatments in Assumption 2.3 (ii), the estimated propen-
sity score is independent of unit ¢’s outcome if it is estimated using information from treatments different
from (D;, Dien,)-

18 Although optimization for clusterings with networks goes beyond the scope of this paper, we note that
Leung (2021) presents an extensive discussion where clusters are not independent.
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using the number of villages or regions. For example, in the empirical application, units
present almost all the connections within same large areas with 47 total areas; therefore,
any K <47 (e.g., K = 10) guarantees independent subgraphs. Also, note that the effective
sample size only shrinks by a factor (K —1)/K = O(1).

Algorithm 4 Network Cross-Fitting: Approximate Optimization

Require: [Ri (Y;, D;,T;, N;, Z;, ZkeM) , Ri]n , slackness parameter s, K folds.
i=1

1: Assign individuals into K folds by running Recursive Opt in Algorithm 5 with 7 = n,
and slackness s.

2: For i : R; = 1, construct 7 (-), the estimator of m(-) for unit 7, using data in all except
1’s fold.

3: Repeat for the propensity score: run Algorithm 5 with H; = {j € {1,--- ,n} : j &
Ni, Rj + 3", Aj xRy, > 0} in lieu of Z;. For each unit 4, construct é@(-), the estimator of
e(+) for unit ¢ by: (i) estimating individual treatment probabilities with units in all folds
except the one containing i; (ii) aggregating such probabilites as in Remark 1.

4: Construct 69 Mm@ and W, (7,1, é) as in Equation (15). return W,,(w,m, é).

Algorithm 5 Recursive Opt

Require: input size n, (R;,Z;)",, with Z; as in Equation (32), slackness parameter s, K
1: Solve

G* e arg min ZZGl(l — G])l{] € Ii}RiRj G; € {0, 1},i S {1, s ,’fl},
Ge{0,1}nxn =1 iz

1 n
’I’L;GZE

1 & 1 i
%Z;Ri—s/n,%;}%i—i—s/n .
1= 1=

if K =2 then
return G*.
else
return

g K d K
G*,Recursive Opt (Z G}, (Ri, Ti)Gr=1, S’ 2) , Recursive Opt <ﬁ — Z G, (Ri, i) Gz =0, S’ 2)] )

i=1 i=1

6: end if

Appendix B contains additional extensions, Appendix C a numerical study , and Ap-

pendix D derivations. Appendix A at the end of the main text contains the algorithms.
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Appendix B Additional extensions

B.1 Estimation error of nuisance functions with Algorithm 3

This section examines the estimation error \/R,,(4, Z) x B, (A, Z) in Theorem 3.3. Consider
estimating m(-) with Algorithm 3. Algorithm 3 first partitions the units into K* groups.
Within each group, it constructs J equally sized folds. For two units (i,v), define ¢}'(i) €
{0,1} with ¢(i) = 1if all of the following conditions hold unit v is sampled (R, = 1); v is in
the same partition k € {1,--- , K*} of 4; and v is in any fold except the one containing unit
i.19 The effective sample size for estimation of m® is S| R,¢™ (i) because, Algorithm 3
uses sampled units not in the same fold of 7, but in its same partition k. Define ¢¢(i) € {0, 1},
with ¢¢ (i) = 1 if all of the following conditions hold: (a) unit v is sampled or, if not sampled,
one of its friends is sampled (R, = 1 or (1 — R,)R/ = 1); (b) v is in the same partition
ke{l,---,K*} of i; and (c) v is in any fold except the one containing unit ¢, once we run

Algorithm 3 to estimate e(-). Let m € M, e € &, for function classes M, £, and assume

Ro(A, Z) = 0(% Zn: OME[(1+ Zn: Rud7(0) e B =1.4,7])
i:l v:’,ll (33)
Bo(A, Z) = o(% 3 6%0515,[(1 + ZRvgbi(i))_ch‘R,- — 14, Z])
=1 " v=1

for some 1/2 > (,,( > 0, and Cyy, Ce capturing the complexity of the function class.
Here, (,, characterizes the convergence rate of the conditional mean function on a sample
of independent units (by Algorithm 3), with <1 + >0, qub;”(z)) denoting the effective
sample size to estimate m;. Similarly, (. for the propensity score. I rescale the rates for the
propensity score by 1/§2 because the propensity score is bounded from zero by §,,. Equation
(33) also captures the contribution to the estimation error of those units i belonging to

groups with a few (finite number of) observations (see Algorithm 3).°

Proposition B.1. Suppose the conditions in Theorem 3.3 and Equation (33) hold, and
1/2 ~41/2

ne =an,a € (0,1). Then /R,(A,Z) x B,(A,Z) =0 (M . In addition, if

énnngrCe

NAPCXECE? nrts = 0 (n'V2), then B sup,en, W z(m)=Wa 7(Fine)

A, Z} =0 (n;%).

9Following Algorithm 3’s definitions, ¢ (i) = 1{v € (F})7_, \ F{”, k such that i € U; F} }.
20For those units 4 with a finite number of observations in their partition &, >.I'_, R,¢™ (i) = O(1), and

0 (E[(1 Y R )

—2Cm

A, Z R; = 1}) is bounded away from (does not converge to) zero for i.
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See Appendix D.4.1 for the proof. Proposition B.1 characterizes the rate of the estimation
error. Here, N}/ 20/1\420;/ ?Inémtee = O <ne_ Y 2) holds for a large class of estimators under
conditions on the maximum degree. An example is lasso. Under fixed sparsity, bounded
regression matrix, and regularities in Negahban et al. (2012), (,, = 1/2, Cyq = log(p), where
p is the dimension of the regression matrix. To attain N’ 20/1\4202/ ?Inémtee = O (ne_ Y 2),

we only need that ¢, for the propensity score is such that N/ 2Cé/ log!%(p) /ns = O (1).

B.2 Welfare with spillovers on non-compliance

Consider the setting where spillovers also occur over individuals’ compliance. Namely, let
D; € {0,1} denote the assigned treatment and S; € {0,1} denote the selected treatment
from individual . I model non-compliance as follows:

Y = 7"<Si7 > Sk, Zi, ’Nz";&‘), Si = h9<Di7 > D, Zi, \Nz‘\,w)- (34)
keNi kGNl

I let v; be exogenous unobservables, independent from ¢; (see Proposition B.2), and (r(+),0)
unknown, with 6 denoting the set of parameters indexing h. Similarly to what discussed in
Section 2, let Wy z(m) = 25" | E [Yi A, Z, {Di = W(Xi)}' } be the welfare under .

=1

Proposition B.2 (Identification). Let Equation (34) hold withe; L ((yj)” (ep, )?:1> ‘A, Z,

vi|A, Z,(ep, )1 ~iid. Py Let Py(S; = 1|-) denotes the conditional probability of selection
into treatment indexed by the parameters 0. For each i € {1,--- ,n},
E [YZ A Z, {DZ- - W(Xi)}izl} _ 3 IE[Y; ZiINil,Si = d, Y S = s} x Hi(d, s, 7),
de{O,l},se{O,---,|N¢\} keN;
[ V3]

Hi(d,s,7) = Pg(Si —d

Zi,\NiI,Vi(W)) > HP9<SN_(k> :uk‘ZNgk),INN@)I,VN@(w)),

ULy Uiy, Uy =8 k=1

where V() = {Di = m(X;), ZkeNi D, = ZkeNi w(Xx), Z;, ZkeNl}.

See Appendix D.4.2 for the proof. Proposition B.2 is an identification result. The wel-
fare effect of an incentive m depends on conditional means and H;(-). Here H;(-) denotes
the conditional probability of selecting into treatment, conditional on the individual and
neighbors’ incentives. Its expression only depends on the individual probability of selected
treatments P(.S; = 1|-), conditional on individual’s and neighbors’ treatment assignments.
Interestingly, H;(-) also depends on the treatment assigned to the second-degree neighbors;
therefore, information from second-degree neighbors is required for identification. Literature
on non compliance includes Kang and Imbens (2016), Vazquez-Bare (2020). These references

do not study welfare maximization. This motivates a different identification strategy here.

47



B.3 Reweighting with known and different target population

Here, we study settings where the target population differs from the population from which
the sample is drawn and the adjacency matrix of the target population is known.
Consider a population with n individuals, connected under adjacency matrix A" and

with covariates matrix Z', and (A’, Z’) are observed by the researcher. Welfare is as in

Equation (27). Define S,,(A, Z) as the empirical support of Z;, Zxen,,|V;| for given adja-
cency matrix (A, 7), and similarly S,(A’,Z’) for A", Z'. |S,(A, Z)| < n by construction.
Define L(z,x,1) = %Z?:l 1{Zi = 2, Zgen; = X, . Aig = l},L’(z,X, ) = %Z?:l 1{sz =

2, Zye N =X DA =1 }, the number of units in each population with individual covariates

z, neighbors’ observables x, and number of friends [. Estimate the empirical welfare as

n L Z%Z i NZ .
ot = &3 LB %) g1

: (¥ = i) + ) |
e 2 L(ZiquENm |Nz|)

Here, the empirical welfare reweights observations by the ratio of the empirical distributions
in the target population and the sampled units. Importantly, the functions L(-), L'(-) must
be observed by the researcher. L(-) is observed under the sampling assumptions in Section 2,

whereas observing L'(-) assumes that researcher observe (A’, Z’) from the target population.

Proposition B.3. Suppose the conditions in Theorem 3.1 hold conditional also on (A, Z'),

and S,(A', Z') C S,(A, Z) almost surely. Let ' € argmaxer, W (m,m¢,e). Then, for a

AT 3/2
A Z A, Z’} < CTLA, 7N log(/\fn)VC(H)’
Yo Ne

universal constant C' < oo, E[Supﬂenn War z/(m)=War 2 (%)
where I/A,Z,n = MAX(7; Zyen, |Ni|)€Sn(A,Z) L/(Zz‘, ZkeN;, |Nz|>/L (Zi, Zken;, |Nz|>

See Appendix D.4.3 for a proof. Proposition B.3 shows that regret bounds depend on
the largest ratio between the empirical distribution on the target and sampled units over the
empirical support of the individuals, and neighbors’ covariates and of degree. An important

assumption is that the support S, (A, Z’) is contained in the support S, (A, Z).

B.4 Constraints on II,, that depend on D

Following Remark 2, in this subsection, I discuss a policy-function class
I, = {fr X % {0,1} s {0, 1}, 7(z, d) = 7(2)(1 — d) + d, 7 € Hn}, (35)

for TI with finite VC dimension. Here 7(D;, X;) is one almost surely if the treatment in the

experiment is one (D; = 1). I define e, m® as in Equation (10), here functions of 7.
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Proposition B.4. Let Assumptions 2.1, 2.2, 2.3, 2.4, and 3.1 hold. Consider a policy class

#(Xi, Dy), 7 € 11,,, with The o € argmax..n W, (7,m¢, e). For a uniersal constant C' < oo,

3/2
A Z} < C_’FNn \/log(/\/'n)VC(H) .

E[ W W g (7
sup A,Z(Tr) A,Z(Trm ,e) o e

TI'Eﬁn

See Appendix D.2.6 for the proof. Proposition B.4 extends our results for policies con-

strained to always assign treatments to the treated individuals in the experiment.

Appendix C A numerical study

1 _ 1 _ 77i+zk N; Nk
[ simulate data as Y; = max LIN;] (Xzﬁl —|—XZ-52D1-+,LL> ZkENi Dy+Xif3Ditei ei = m’

with 7; ~;;q N(0,1). T simulate covariates as X; € [—1,1]*, with each entry drawn inde-
pendently and uniformly between [—1,1]. T draw 3 € {—1.5,1.5} with equal probabilities.
I consider five versions of NEWM described in the caption of Table 3.

I compare NEWM to methods that ignore network effects from Kitagawa and Tetenov
(2018); Athey and Wager (2021). Each method uses a policy function of the form 7 (X;) =
1{X¢71¢1 + Xioo + ¢p3 > O}, estimated via MILP. First, I consider a geometric network

formation of the form A; ; = 1{|Xi,2—Xj72|/2+]X@-A—XJA\/Q < \/M} In the second set
of simulations, I generate Barabasi-Albert networks. I draw n/5 edges uniformly according to
Erdés-Rényi graph with probabilities 10/n, and second, I draw sequentially connections of the
new nodes to the existing ones with probability equal to the average number of connections of
the existing nodes. I simulate over 200 data sets with n. = n, and evaluate the performance
out-of-sample over 1000 networks, drawn from the same distribution. Results are in Table 3.
For n sufficiently large (n = 200), the five specifications of NEWM yield comparable results.

NEWM outperforms methods that ignore spillovers across all specifications.
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Table 3: Out-of-sample median welfare over 200 replications. DR is the method in Athey and Wager
(2021) with estimated balancing score and EWM PS is the method in Kitagawa and Tetenov (2018)
with known balancing score. NEWM_outl is NEWM with a correctly specified outcome model,
and NEWM _out?2 its equivalent with approximate network cross-fitting. NEWM _dr1 is the doubly
robust equivalent controlling for the number of treated neighbors, and NEWM_dr2, NEWM _dr3
control for a binned version of the number of treated neighbors as in Remark 2.5, with and without
approximate network cross-fitting. GE denotes the geometric network, and AB the Albert-Barabasi.

Welfare n = 50 n="70 n = 100 n = 150 n = 200

GE AB GE AB GE AB GE AB GE AB

DR 1.49 0.94 1.49 1.08 1.38 1.05 1.53 0.95 1.42 0.95
EWM PS 1.21 0.93 1.23 0.92 1.32 0.93 1.38 0.90 1.29 0.95
NEWM outl 1.74 1.31 1.87 1.38 1.93 1.37 1.91 1.40 2.00 1.39
NEWM_ out2 1.77 1.34 1.87 141 1.91 1.37 1.95 1.38 1.98 1.39
NEWM.drl 1.78 1.22 1.89 1.33 1.89 1.37 1.94 1.28 1.95 1.33
NEWM.dr2 1.69 1.21 1.83 1.36 1.84 1.33 1.82 1.31 1.94 1.38
NEWM.dr3 145 1.15 1.75 1.25 1.79 1.28 1.81 1.28 1.88 1.35

Appendix D Derivations

D.1 Notation

Definition D.1 (Proper Cover). Given an adjacency matrix A € A,, with n rows and
columns, a family C,, = {C,(g)} of disjoint subsets C,(1),C,(2),--- of {1,---,n} is a proper
cover of A if U,C,(g9) = {1,--- ,n} and C,(g) C {1,--- ,n} consists of units such that for
any pair of elements {i,k € C,(9),k # i}, A, = 0. O

Definition D.2 (Chromatic number). The chromatic number y,,(A), denotes the size of the

smallest proper cover of A. n

Definition D.3. For a given matrix A € A, I define A? € A, the adjacency matrix such
that A; ; = 1if (¢, j) are either neighbors or they share at least a common neighbor. Similarly
AM(A) is the adjacency matrix obtained after connecting units sharing common neighbors

up to M degree; N; 5 is the set of neighbors of individual i for an adjacency matrix AM. [

The proper cover of A? is defined as C* = {C3(g) ;ﬁf) with chromatic number y(A2).

Similarly CM = {CM(g) ;CSM) with chromatic number ¥, (A2) is the proper cover of AM.
For a given set CM(g), I denote |CM(g)| the number of elements in such a set.

[ will refer to x(A) as x,(A,) whenever clear from the context. Let
e;(m) = ec<7r(Xi>vTi(7r)7ZkeNﬂRkeN“Ziv \Ni!>, mg(m) = mc<7T(Xi)7Ti(7r)72i7 \Ni\),
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for given functions e, m¢, and I;(7) = 1{T;(r) = T;, 7(X;) = D;}, similarly to Equation (6).
In the presence of estimation error, define é;(), 7;(7) their corresponding estimators.

Following Devroye et al. (2013)’s notation, for 2} = (z1, ..., z,,) being arbitrary points in
A™, for a function class F, with f € F, f: X — R, let F(z}) ={f(z1),.... f(z,) : f € F}.

Definition D.4. For a class of functions F, with f : X — R, Vf € F and n data points
Z1,...,t, € X define the [,-covering number M, (n,F(x’f)) to be the cardinality of the

smallest cover {si,...,sy}, with s; € R™, such that for each f € F, there exist an s; €
{s1,...,sn} such that (3" |f(z;) — sgi)|q)1/q < 7. For F the envelope of F, define the

Dudley’s integral as fOQF \/log (./\/11(77, F(x’f)))dn. O

For random variables X = (X1, ..., X,,), denote Ex[.] the expectation with respect to X,

conditional on the other variables inside the expectation operator.

Definition D.5. Let Xi,..., X,, be arbitrary random variables. Let ¢ = {0}, be i.i.d
Rademacher random variables (P(o; = —1) = P(0; = 1) = 1/2), independent of X, ..., X,.
The empirical Rademacher complexity is R,,(F) = E, [Supfef |% Yoy cr,-f(Xi)|‘X1, s Xn} )

D.2 Theorems

I discuss the theorems first. Appendix D.3 presents the lemmas used for these theorems.
The first theorem controls the supremum of the empirical process of interest with respect
to IT D II,, as in Assumption 2.4. Theorem D.1 imposes the same assumptions as Theorem

3.1, except that unobservables can be locally dependent up to the M degree.

Theorem D.1. Let Assumptions 2.1, 2.2 (C), 2.3, 2.4, 3.1, 4.1 (A) hold. Consider functions
me(+),e(+) such that for all d € {0,1},t € T, m°(d,t, Z;,|N;|) € [T, ], for a finite constant
[, and e°(d,t, Zyen,, Rien,, Zi, |Ni|) € (¥0n,1 — v0,) almost surely. Suppose that either
(or both) (i) e¢ = e, or (ii) also Assumption 2.2 (A) hold and m® = m. Then for any

n>1,M > 2, and a universal constant C' < 0o

M+1
E[Sup |Wn(7T7 me, (ZC) _ WA7Z(7T)“A, Z} < C—,L MN; log(Nn)VC(H) . (36)
well Yo, Ne

Proof of Theorem D.1. 1organize the proof as follows. First, I derive a symmetrization argu-
ment to bound the supremum of the empirical process in Equation (36) with the Rademacher
complexity of direct and spillover effects. Second, I bound the Rademacher complexity using
Lemmas D.7, D.8. Section 3.4 provides a proof sketch. Define

Ii(m)
e;(m)
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where I suppressed the dependence with e, m¢. Define Q,(m, A, Z) the distribution such
that (Qi(w,A, Z)) ‘A,Z ~ Qu(m, A, Z). Define (o), i.i.d. Rademacher random vari-
i=1
ables independent of observables and unobservables. Finally, let (Q;(W,A, Z )) ‘A, 7 ~
i=1

n

Qn(m, A, Z), an independent copy of (Qi(ﬂ',A, Z)> , conditional on (A,Z). Note that
1

1=

Qi(m, A, Z) depends on 7 through <7T(Xi), > keN, W(Xk)) by Assumption 2.1.

Conditional expectation By definition of @,

B (r, e, |4, 2] = 1 3 ElQi(m, ¢, m)|A, 2] = S EIQi(m, e m) A, 7. (37)
i=1 i

1=1
It follows:
E[Sup ‘Wn(’n’? mc’ ec) - WA,Z(T‘-)’)Aa Zi|
well

= E|sup |W,(m,m°, e°) — E[W,,(m,m", e°)|A, Z]|‘A, Z} (. Lemma D.10)
-mell
r 1 n

—E|sup |— (. A, Z) — E[Q\(, A, 2)|A, Z]|||A, Z - Eq. (37
sup ne;[m )~ ElQi(r,4,2)|14, 7] |14, 2] CPa B7)
C 1 n

=E[swp |- > Bo|@ir.4.2) - Qi A, 2)[4.2] |14, 2] (2 (@)L L (@Q011A,2)
o =1

<E _su?[ ni Z [Qi(ﬂ',A, Z) — Ql(m, A, Z)} ‘]A, Z} (.- Jensen’s inequality).
-TE e i=1

The second to last equality takes the expectation with respect to Q' (given @, A, 7).

Symmetrization and proper cover Recall now Definitions D.1, D.2; D.3. Construct
an adjacency matrix A with neighbors connected up to the M degree, with smallest
proper cover CM = {C,(j) ;C(:I?M),Cy(g) c{1,---,n},U,CM(g) ={1,--- ,n}, and chromatic
number x(AM). Note that such a cover always exists.?’ By the triangular inequality

n

E[::E nlz; [@itr, A.2) — Qi(r, 4, 2)] |14, 2]
< Y E[mw|- ¥ [@itr, A.2) ~ Qi(x, 4,2)]| 14, 2] (39)
gelp(aryy TELTE ety
=11(g)

Observe first that E[Q;(7, A, Z) — Qli(w, A, Z)| A, Z] = 0 since @, Q) have the same distri-
bution. Also, if R; = 0, then ); = 0. Therefore, by Assumption 2.1, and Assumption 2.3 (ii),

21For example, in a fully connected network, the chromatic number is n, where each group only contains
one unit, while in a network with no connection, the chromatic number is one. The size of such cover
(chromatic number) will affect the bound in the statement of the theorem via the maximum degree.
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for a given 7, Q;(m, A, Z) is a deterministic function of R; (RkeNi, €Dy>EDgen. » LkeN: Lis €i R,’:eNZ) .
Also, note that if R; = 1, then Ri = 1, for k € N; almost surely. Therefore, (); can be written
as a deterministic function of (Rl-, Rien;, €D;5 EDye Ny Zyen;, Zi, 6,-) only, where we can drop

its dependence with Rie ;- The following holds.
e By Assumption 2.3 (ii), ep, are i.i.d. and exogenous with respect to (A, Z,¢);
e By Assumption 2.3 (i) R; are i.i.d. and exogenous;

e Under Assumption 4.1 (A), g;|A, Z are independent for individuals who are not neigh-
bors up to degree M > 2.

As a result, it directly follows that conditional on A, Z, for any M > 2,

(Ri7RkENi)EDngkeN.)ZkENNZiugi) L (RjuRkGNjugD]’vEDkeN,7Zk€Nj7Zjagj) M ’Au Z.
¢ J Jguklei,k
(40)

Equation (40) implies that Q;(7, A, Z) L (Q;(7, A, Z2))jqunm n,,|A, Z. Since (Q;)i_y, (@)1 A, Z

have the same joint distribution and are independent, we also have

(Qi(w, A, Z) — Ql(m, A, Z)) 1 (Qj(n, A7) = Q)(m, A, Z)) A, Z. (41)

jgui\ilNi,k
Note that (Q;)iccr(y) =a (Q})iccrr(y)|A, Z and are independent (since C} is deterministic
conditional on A). Therefore, for each group CM(g), by Equation (41), for i € CM(g)
) — 0 : e
(@il 4,2) ~ Qi(m. 4,2)) L (Qi(m, A, 2) = Qi(m A.2)) A7
We can then bound /I(g) in Equation (39) as follows

I1(g) :E[Slelg

EN > ai[Qi(w,A,Z)—Qg(w,A,Z)]MAz}

e

i€CM (g)
1 1
gE[sup - ¥ aiQi(w,A,Z)‘\A,Z}JFE[sup - ¥ UiQ;(w,A,Z)’]A,Z]
well ' Me iEC,ﬁ”(g) well eiEC,ILV[(g)
1
— 9K ‘7 .0 ,A,Z‘A,Z.
pipls, 20 s@ima2)i47

ieCY (g)

The first equality follows from independence of Q; — Q}|A, Z within the subset CM(g), and
the fact that Q;, @, have the same distribution. The second inequality follows from the

triangular inequality and Q;, Q; having the same joint distribution given A, Z.
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Bound on the Rademacher complexity The following holds

1 [ 1 [z
—_ Z UZQZ(F7A>Z)‘|A>Z:| < E[EY,U sup | — Z oiR; C(ﬂ—)

Y- Lpell ' Me | €; (7r)
1€CM (g) i€CH (g)

=i(g)
+E [Eg [ sup ‘i ieczﬂ;(g) iR iig mé(m) H 1A, Z: +E :]EU [i‘éﬁ

Y;

a7

/

Ly oiRems(m)| 14, 2]

n
© iecM(g)

—ii(g) —iti(g)
(42)
where Ey ,[-] denotes the conditional expectation with respect to (Y, o) only, given all other
observables and unobservables, and similarly E,[-], with respect to o only. Let C' < oo be a

universal constant. I invoke Lemma D.8 for each element in Equation (42) as follows.

e | invoke Lemma D.8 for i(g) with ¥; in lieu of €2; in the statement of Lemma D.8,
with third moment bounded by I'? by Assumption 2.2 (C); and c{l((jr)) in lieu of g;(+) in
Lemma D.8, with upper bound U,, = 1/(vé,) (U, as in the statement of Lemma D.8)
by Assumption 2.3 (iii). Since we sum over elements R;1{i € CM(g)} = 1, by Lemma

D.8

i(9)

IN

c— \l VC(IN, Zn: R;1{i € C}'(g)}log(Nn).

NeYon i1

e [ invoke Lemma D.8 for ii(g) where we have 61((:)) m;(m) in lieu of g;(+) in the statement

of Lemma D.8, with constant U,, = I'/(vd,) by Assumption 2.2 (C) and Assumption
2.3 (iii), and ©; = 1 in the statement of Lemma D.8. Therefore,

NeYon P

ii(g) < C L JVC(H)NH zn:Ril{i € CM(g)} log(Ny).

e [ invoke Lemma D.8 for iii(g) where we have m;() in lieu of g;(-) with constant U,, = T,

and €); = 1 in the statement of Lemma D.8. Therefore,

iii(g) < CFJ VOUDNG Y Rifi € €1 () log(A%).

n,
€ i=1

Summing the terms Collecting the terms together, I obtain

(39) < Z E|:n 55 $Nn 10g(Nn)VC(H) ZRzl{Z S ery(g)}‘Av Zi|7
€ i=1

96{17"' 7X(AM)}
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where the expectation is taken with respect to R = (Ry,--- , R,,). I write

r " ,
3 E[newn Niulog(N)VC(ID) Y~ Ril{i € ci(9)}], 7]
g€{1,+ x(AM)} i=1
< Z nel;én Ny log(N;,) VC(IT) ZE[RZ-|A, Z|1{i € CM(g)} (- Jensen’s inequality)
ge{l,... ,X(AIW)} i=1
=Y Nl VC Y (9)] (. BIRi|A, ) = ne/n).
neYon
g€{1,+ x(AM)} )
We have
r 1
(43) < X(AM)n o N log(Nn)VC(H)neW Z ICM(g)|/n (. concave /)
¢ " 96{1»"' 7X(AM)}
_ my T 1 T [x(AM)N, log(N,)VC(II)
=x(A )nev&1 \/Nn log(Nn)VC(H)neX(AM) = W\/ o .

(44)
In the first inequality in (44) I divided and multiplied by x(A™) and used concavity of the
square-root function. In the second equality T used the fact that {C}(g)} contain disjoint
sets, with ICM(g)| = n. By Lemma D.2 x(AM) < MNM  completing the proof. O

D.2.1 Theorem 3.1 and Theorem 4.2
I state these two theorems as corollaries of Theorem D.1.
Corollary 4. Theorem 5.1 holds.

Proof. Following Kitagawa and Tetenov (2018),

E[ sup Wa,z(m) — Wa,z(fme ) AaZ}

well,

= ]E[ sup Wa z(m) — Wi(fime e, m, €) + Wi (Time e, m©, €) — Wa z(Tome e) | A, Z} (45)
mell,

<E[ sup Waz(r) = Wa(m,m®, €) + Wi (e e, €) = Wa 2 (Fme,ee) |4, 2.
mell,

We have (45) < E[Q SUPrerr, |Wa,z(m) =W, (1, me, e)] ‘A, Z] <E [2 SUPerr |Wa,z(m) =W, (1, m, €)

(" II,, C II). The proof completes by Theorem D.1, with M = 2. ]

Corollary 5. Theorem 4.2 holds.

%)
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Proof. Following the argument of Corollary 4, and using the fact that 11, C II, it follows

E| sup Wa z(m) — Wa z(Tm.e)

A, Z} < QE[sup |Wh, (7, m€, e°) — VVA,Z(7T)|‘A7 Z}

well, mell
(1)
+ QE[sup |Wh,(m,m, &) — Wy (m, mS, ec)|‘A, Z} .
well
(1)

Term (/) is bounded by Theorem D.1. I now study (/I). In particular, (/1) is equal to

ELEH igRi%(m—mi(n))+i§;Ri(mi(w)— o( ) ;ZEZ;RZ :( mf(w))‘\A,Z]
<E[sup|- Z Rg;(y £ mf(m) —mi(m) — () ) — anR 18 (¥ —mi(m) 1. 2]
+E[igg|n—eZR< )—mf(ﬂ)>|‘A,Z]

[sup\—ZR (mz g(w))]’A,Z} —i—E[sup]Zn:Ri(Ii(ﬂ) - I(F))(Y my )\‘A Z}

mell Te [ mell Ne ‘= € (m)  é(m)

+E[sup - ZRZ i(m) (m,-(w) - mf(ﬁ))\‘A,Z].

mell Te © éi(m)
(46)
I inspect each term in Equation (46). Since R; € {0,1}
E[sup| - SR (a(m) — mg(m)) 1|4, 2] <E[ - S sup Rilids 5, 24, |N:l) — e (d, 5, 7, N4, 2].
well Te i—1 e iz s

By Cauchy-Schwarz inequality and the triangular inequality

ZsupR i (d, s, Zi, |Ni|) — C(d,s,Zi,\Ni|)|‘A, Z}
i=1 @S

E[l

e

1 n
7Z]ER2 \l [ Zsup‘m(das)ziv|Ni’)_mc(dvsaZi7|Ni|)’2‘AaZj|
Ne Te i1 ds

<
\ e

1 & X
\ el D sup li(d. s, 2, |INil) = me(d, 5, 2 INiDI2[4,Z] (. EIRY] = B[R] = ne/n).
i=1 %

For the second term we have (let ef(d, t) = e°(d, t, Zren,, Rren;,

; ) and similarly for é;(d, t))

|

Ii(x) _ Li(n)

[sup]—ZR () (F))(Y mg )>|‘A,Z}<2F/E[sup—

well Te i—1 7T 1(71') well M (71') e’i(ﬂ-

1 1 & 1 1
< 2F/E[ ZR sup| (2 d 0 A-(d,t))"A’Z} = 2F/JE[n;S;F(ef(d,t) - éi(d,t))|2’A’Z}
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where in the first inequality I used the fact that Y;, m¢ are uniformly bounded and in the
last inequality I used Cauchy-Schwarz. For the third term in (46), it follows similarly

E[sup ]iRZL(W)<m,(W) —mf(w))\‘A, Z] < —E[sup—ZR |(ml (m) — f(ﬂ))\’A, Z]

mell Me i—1 éz(ﬂ') '7571 mell Ne i—1

J [ Zsup\( (d,t, Z;,|Ni|) — mc(dtZZ,\N])P’AZ}

D.2.2 Proof of Theorem 3.2

The proof constructs an appropriate adjacency matrix, matrix of covariates and distribution
of treatments and unobservables to provide the lower bound, taking into account the selection
indicators. Recall the definition of Ep, 4,z [-] in Theorem 3.2. Let v = VC(II), and recall,
under Assumption 2.3 (i), R; ~;;q4 Bern(a),a = n./n. Let X; = Z; for expositional
convenience not to keep track of both X, Z;. Let A* € A7, such that A7, = 0 for all ¢ # j.
Let z1,--- , 2, be v points shattered by II, which, since X = R? and II has VC dimension v
they must exist. Let Z* such that £ Y% 1{Z; = z;} = 2 for all j € {1,--- ,v}. I write

on
sup sup
A€AG,Z€27 D, (4,2)ePn(A,2) N/? log 2 (N,,)

o, 1) (302 Waz(m) = Was(5)) 4.2]

5

2 Sup n E (A% 7% SupWA*’ « (7 _WA*7 « ,ﬁ-n A:A*,Z:Z* 7

Da(Ar, 29)ePu(ar,2%) NP Log 2 (N, )Kﬂen z-(m) 7)) ]
(47)

where, recall that d,, N, are also a function of A* Z*.

I will focus on Equation (47). I will indicate for |A*, Z* the conditioning set |A = A*, Z =
Z*. Because I consider a fully disconnected network, we have ,, = 1 in Assumption 2.3 (since
individuals have no neighbors), and N,, = 2 for adjacency matrix A*. T follow the proof of
Theorem 14.5 in Devroye et al. (2013), and Theorem 2.2 in Kitagawa and Tetenov (2018),

while T also condition on (A*, Z*), and consider random indicators R;.

Treatment assignments and potential outcomes’ distribution Next, I select the
distribution for treatment assignments and potential outcomes. Let D; be a Bernoulli random
variable, independent of observables and unobservables with P(D; = 1) = 1/2. Let b €
{0,1}" be a bit indicator which indexes a distribution D, p(A*, Z*) € P,(A*, Z*). Namely,
I restrict the class of distributions to a finite number of distributions, indexed by b. Denote
Yi(d) = r(d,0,Z;,0,¢;), the potential outcome function, where spillovers and number of
connections are equal to zero by construction of A*. Let P(Y;(1) = 1/2|Z; = z;) = 1/2 +n,
P(Y;(1) = —1/2|Z; = z;) = 1/2 —n for b; = 1,5 < wv. If b; = 0, instead have P(Y;(1) =
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1/2|1Z; = z;) = 1/2 —n, P(Y;(1) = —=1/2|Z; = z;) = 1/2 +n, where n € [0,1/2] and is
selected at the end of the proof. Consider Y;(0) = 0 almost surely.

Lower bound via Bayes risk I can therefore write the optimal treatment rule as 7} (2;) =
1{b; = 1},j < v, which satisfies the finite VC dimension. I have W4« z-(m,) = 2377 b
under the distribution D,, . Consider b being a random variable with b; ~;; s Bern(1/2)
and independent of observables and unobservables. Denote Ey|-] the expectation with respect

to b (conditional on A*, Z*). For any data-dependent #,,,%?

sup  Ep,(ax 2% [WA*,Z* () — Was z+(n) | A%, Z*}

Dn(A*,Z*)EPn,

> Ep [Ep, (40 7) | Was 2+ (1) = Was 7+ (7)

A*, Z*}

a7, (18)

> i%fnll) Zv:Eb {Epn’b(A*,Z*) [1{bj £ ﬁ'n(zj)}‘A*, Z*} A* Z*] .

We can see the minimization in Equation (48) as a risk-minimization problem with lower

bound provided by the Bayes risk. I construct a Bayes classifier of the form

#ul2j) = 1{P (b = 1/|(¥, Di, Dyen, )RZ,R} A7) 2172} <.
I can then follow the same steps of Kitagawa and Tetenov (2018), Equation (A.12), (A.13),
with k‘;“ :#{z 24y =z, RY,D; = 1/2} #{ Z; = zj, RY,D; = —1/2} for the case

of this paper, and Y;D;R; in lieu of Y;D; in the derivation of Kitagawa and Tetenov (2018).
Following (A.12), (A.13), and the equation below (A.13) in Kitagawa and Tetenov (2018)

inf n— ZEb[ED (A%, 2%) {l{b # n(25) ‘A* Z*}

Tn

A* Z*}

aze|| 1+ 21
a = .
’ 1—2n

S M Z —Ep |:IEDn b(A*,Z*)[‘Zi:Z;:Zj 2Y; DRy
R a 1
— 2v

Lower bound on the Bayes risk The marginal distribution of Y;(1) (once we integrate
over b), is P(Y;(1) = 1/2|Z*, A*) = P(Y;(1) = —1/2|Z*, A*) = 1/2 similarly to Kitagawa
and Tetenov (2018). By independence, P(D;R; = 1) = /2. We have

Eyp EDn,b(A*,Z*) |:‘ ’Z*} =Ey |:EDn,b(A*7Z*) |:’ Z 2Y;| A*,Z*}
iIZ;:Zj ZZ::Z],Rleil
S (7 & yn/o=kE| Bk, 2) — /2
kg( JGra -5 rs] e ) - k2,
(49)

22Gee e.g., Appendix A.2 in Kitagawa and Tetenov (2018), Page 8.
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where B(k,1/2) is a binomial random variable with parameters (k, 1/2). Equation (49) holds

because given Z = Z*, there are n/v many observations with Z* = z;,j < v by construction

of Z*. We can write E‘B(k, - k;/Q’ < \/E(B( k/2> \/7 It follows

(49) < nf:] <"/”> k(1 — g)n/vk\/E:E\/B(nilvag) < \/E[B(nll/v,g)] _ %.

Following Kitagawa and Tetenov (2018), equation (A.14) and below, with an in lieu of n

in Kitagawa and Tetenov (2018), it follows that the Bayes risk is bounded from below by

% = exp(—2v/2) for an > 16v. Since n, = an, N, < 2 for A*, the proof completes.

D.2.3 Proof of Theorem 3.3
For the sake of brevity, I will be using the following notation
fi(d,t) = 1{d:Dl’,t:Ti}, éi(d,t) :€<d,t, ZkeNkaeNiaZi,|Ni|>a Thi(d,t) :m(d,t,Zi,|Ni|>.

Also, let & = Y;—m(D;, T;, Z;, | N;|). With an abuse of notation, I will refer to é;(d, t), 7;(d, t)
as the estimated counterpart of é;(d,t),m;(d,t) from Algorithm 3, with arguments (d,t).
Let I;(m), e;(m), m;(m) be defined as in Equation (6), and the beginning of Section 3.1, and
é;(m), m;(m) be defined as in Algorithm 3 (Equation (14)), as a function of the treatment
assignment rule 7 (therefore é;(mw) := é;(m(X;), T;(7)) and similarly for 7;(7)). Recall the
definitions of K*, F; ,g in Algorithm 3: K™ denotes the number of partitions obtained under
Algorithm 3, where we have k € {1,---, K*} many partitions. Within each partition, we
have j € {1,---,J} folds F}. For each k € {1,---  K*}, szlF,f never contains two units
that are either neighbors or share a common neighbor. Let R = (Ry,- -, R,).

The argument I present in the current proof applies to any K* obtained from Algorithm
3, and any configurations of folds (F,g)jzl,k € {1,---,K*} obtained from Algorithm 3,

including settings with folds F} with one or few units.??

Preliminary decomposition Following the same argument of Corollary 4, since II,, C II,

IE[ Surllo Waz(m) —Wa z(Tme)
TE n

} < QE[sup |[Wh(m,m,e) — Wy z(7 ‘A Z}
mell

()

+ 2E[sup (Wi (10, &) — Wi(m,m, e)\‘A, Z] .
mell

(1)

23 Algorithm 3 estimates (%), 1/é(i) as zero functions for those units 4, assigned to groups k € {1,--- , K*}
with few (a finite) number of units. The estimation error for such units contributes directly to the average
error in Equation (51). Appendix B.1 show how to control the estimation error in (51).
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Term (I) is bounded by Theorem D.1. I now study (/7).

(un =g p nlzn:RCE:; () — 1 (1)) +€§EZ§ +ria(m) — ma(m) ) |14, 7]
e € -1 7 )
=& | L 5" R (20 2O ) o) + e (BT 1) ) 14,7
S € i=1 7 (2 (3
()

The last equality follows after adding and subctracting R; 24T (mi(ﬂ) —m;(m)). It follows

e; ()

O TS ST R AT NP FRES ST TP
() (44)
[igg ne;R Z ‘\A Z]+E[Tsrgg ;; i(igg—1)(mi(7r)—mi(7r))‘|A,Z]

/

(#i1) (iv)
Bounding (i) Consider (i) first. We have

1 Zn: Ri({i(ﬁ) - Ii(”))Ri(mi(w) - mi(w))MA, Z| (- Rie{01})

mell | e = éi(m)  ei(m)

7E{ZR Sulo(ez dt) »(cll,t))Q

n

= E[Ri/ne]E[Zbup< (clz ) <(c1l7t)>2

(50)

(i) =E|

IN

}J *E[ZR sup <ml(d t) — ,-(d,t))Q‘A,Z]

dyt

=1, A, Z} (" Defn of conditional expectation)

i 2
x J E[R: fncJE[ 3 sup (i(d,t) = 1i(d, 1)) [Ri = 1,4, 2] = VRu(4,2) x Ba(4,2).
= di
(51)
Summands in (i7) and (iii), (iv) Next, I show that each summand in (i), (4i7), (v) has
a zero conditional expectation, given R, A, Z, for any ¢ m® in Algorithm 3.
(27) I start from summands in (i7). I write the expectation of each summand as

E[Riéi(ég; ( )’RAZ}

E[Ri (r(x(X,). () zi,|Ni|,si)—mi(w))(If(”> - If(“))

E[E|R: (r(v(X0), Ti(x), 20, |Nil 1) = mi() )
A

RiEKr(W(XZ-),E(ﬂ),Zi,\Ni|,5i)—mi(ﬂ)>| ,Z,R]E[

=0
(. Alg 3 and Assumptions 2.3(i, 1)) =0.
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The last equality follows from the fact that 7;(7) (in Equation (4)) is a deterministic
function of (A, Z), ¢; is independent of é;(m) given (R, Z, A) by Algorithm 3, and ¢; is
conditionally independent of (D;, R;)!, given A, Z, by Assumption 2.3 (i, ii).

(13i) For (iit), E[R;&;1;(m)/ei(m)|R, A, Z] = 0 directly by Assumptions 2.3 (i, ii).

(tv) For summands in (iv), we have:

E{R(Zgg - 1)(7?11'(%) - mi(w)))R, A, z}

(53)

- RiEKIi(W; - 1) ‘R,A,Z} E{(mi(w) . mi(w))‘.&A,Z] ~0.

ei(m

=0

The first equality follows because m;(7) is independent of (D;, Dyen,) conditional on

(R, A, Z) by Algorithm 3 and Assumption 2.3 (ii).

Bounds for (ii) Using the triangular inequality and the law of iterated expectations, I

write (letting é;(-) be the estimated propensity score function for )

*

) <8238 [ | L 3 R (B0 B0 ) ma ] [a7),

h=1j=1 TETe g (54)

=(M})

where here we also condition on R and the estimated functions é; for units in the fold ¢ € F; ,ﬁ )

Next, we bound each component (M) in (54). We make the following observations.
(1) (F}) -1, K™ are deterministic functions of (R, A) by construction of Algorithm 3.

(2) For each i € FJ, E[Rl@(i EZ% g:g) ‘A R, Z, eleF]g(-)} =0 by (52) and independence
24

() with &; (independence follows from Alg 3 and Assumptions 2.3 (i,ii)).

of CicFi

(3) Conditional on (éing(')> R, A, Z), we have that {Riél-({?(”) (-)— Ii(ﬂ)} are mutually

é;(m) ei(m)

independent among units in the same fold (i € F), by 2.3 (i,ii), and Alg 3.

24Independence follows from the fact that U‘jjle ,z does not contain two sampled individuals that are either
neighbors or share a common neighbor. Therefore, we never use information from (D;, Dien,) to estimate
é;(+) for all i : R; = 1. Also, note that the argument holds if, for estimating the propensity score for 7, we also

use information from the neighbors of the units in UJ 1 F; J \ Fj, () which have not been sampled, where I}, (1)

denotes the fold containing i. These units (i.e., non-sampled neighbors of elements in Uj:IF ,f \ F, ,z( )) cannot

be neighbors of ¢ (with R; = 1) since UJJ=1F k] does not contain sampled units with a common neighbor.
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Therefore, by (2), and (3) above I can invoke standard symmetrization arguments for centered

independent random variables (see Lemma 6.4.2 in Vershynin, 2018) to bound

j ) B I;(m)
(My) < QE[ [223 Ne Z:jaz Z Z(el () ei(ﬂ))H|eleFJ() R, 4, Z} (55)
i€k
for (o4, -+ ,0,) bei.i.d. exogenous Radamacher random variables (recall that Ez,[-] indicates

that the inner expectation is conditional on everything else except o, &).

I can now directly use Lemma D.8 to bound the right-hand-side of (55). Namely, I invoke
Lemma D.8 where (2; in the statement of Lemma D.8 is &; in Equation (55), ¢;(-) in Lemma
D.8 is (ig; - igg) in Equation (55); U, in the statement of Lemma D.8 is % in (55).
Therefore, by Lemma D.8, for a universal constant C' < oo

[sup
mell

— > ok 51( i(m) I,(”))H < iw/\/nlog(/\/n)im{i e FJ}vVe(I).

zEF] i=1

It follows
Joc& LOT [ SR N log(Ny) Yoy Ril{i € FYVC(II)
;E[;(M,g)]/x,z} < JE[K n¢ J e ]A,Z}

(. concavity of /)

<E[W2FJNnIOg(Nn)§:RNC(H)A, z} (UK R {1 n))

i=1

[ JX(A2) JN log(N n)zn:RiVC(H)’A, Z} (- K* < x(A2?) by Lem D.9)
=1

< JX(AQ)CF

€

J]\/’n log(Ny) Z E[R;]VC(IT) (. Jensen’s inequality).
i=1

(56)

By Assumption 2.3 ( < /Jx(A2)CT/ Al log ). By construction of Algorithm

3, J=0(1). By Lemma D.5, X(A4?%) < 2N2.

Rademacher complexity bounds for (iii) Since (iii) does not depend on estimators,
the bound for (7i7) follows from the same argument in Theorem D.1. Recall the definitions
of x(A?),C%(g) T used in Theorem D.1. Following the proof of Theorem D.1 (Paragraph

“Symmetrization and proper cover”), I can write

@iy< Y E[ [suanZR }:H]AZ}

96{177X(A2)} mell GCQ
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n% Zzecg(g R, 5]1 H directly with Lemma D.8, with &; in
lieu of ; in Lemma D.8 and I;(7)/e;(m) in heu of g:(+) in Lemma D.8, with upper bound

I can now bound ang[supwen

U, = 2/(7d,). Following the same argument as in Equation (43)

S elafuplt ¥ rali)as < PO ombinem

ge{1, x(A2)} mellTe iec2 ()

By Lemma D.5, yx(A4?%) < 2A?2, for a universal constant ¢ < oo.

Rademacher complexity bounds for (iv) The bound for (iv) follows verbatim as the
bound for (i7), where, here, instead of conditioning on é,. Fy 33 in Equation (54), I condition

on m,,. Fi- This is omitted for space constraints. The proof completes.

D.2.4 Proof of Theorem 4.1
Define W ,(m) = L 5" | m(w(Xi),Ti(ﬂ), Z;, |NZ|> 1{|Nz~| < log,y(/fn)} the trimmed version
of welfare. Following Corollary 4,

E| sup Waz(m) — Waz(75)
7T€Hn

} <2E[sup W z(m) — W;T(W)MA,Z]
mell (57)

< QE[SZE W () — Wff(w))\A, Z} +25up Wi () - WA,Z(W)(.

The bounds for the first component in the right-hand side of Equation (57) follows verbatim
the proof of Theorem D.1, since E[W;"(7)|A, Z] = W} 4(r), with the difference that the
overlap constant is v'°%:(*)+1 under Assumption 2.3 (iii). For the second component,

Wiotm) ~ Was(m)] < 23S om(x(x0. 7, 2 0) (1 - 1N o, (s0)}). (59)

1=

Here, (58) = (’)(% Yoy 1{|NZ~| > 10g7(lin)}>, by 2.2 (C) and Holder’s inequality.
D.2.5 Proof of Theorem 4.4

Define W () = Ea 2/ [War z/(m)] and W(ftpmee) = Ear 2/ [War 2/ (Time )| Tme.e], where fipe o L
(A’, Z") by assumption. We can write, following similar steps as in Equation (45) with W ()
in lieu of Wy z(7), sup,en W(m) — W(ftpme ) < 28upyep |W(m) — Wy (m,m¢, e)|. Therefore,
by taking expectations,

sup W (m) = E[W (. o)) = E[igg W (r) — W(ﬁmge)} < QE[i‘éE W (1) — Wi (mr, mS, e)@

=2FE [Sup Wy (m,mc e) = Wa z(m) + Wa z(m) = E[War z ()] H

well (59)

= 2E [Sup Wi (m, m°, ) - WA,Z(W)” +2E [Sup Wz () — E[Wa z ()] H .
well mell

(4) (B)

(A) can be bounded using directly Theorem D.1 and the law of iterated expectations.
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D.2.6 Proof of Proposition B.4

To show that Proposition B.4 I need to show that (i) the VC dimension of II,, is at most
VC(II) up-to a constant factor; (i) overlap holds for any class of policy m € II,,, namely
ei(m) € (70n, 1 —v0,). The rest of the proof then follows verbatim from Theorem 3.1.
First, for (i), note that by Theorem 13.1 in Devroye et al. (2013), the VC dimension of
the classifier 7(z,d) = 7(z)(1 — d) equals the VC dimension of 7(x), namely VC(II). By
Lemma 29.4 in Devroye et al. (2013) it follows that the VC dimension of II,, equals VC(II).
Second, for (ii), for 7(x,d) = w(x)(1 —d) +d
P(Di = 7(Xi, Di)| Zi, R; = 1) - {P(DZ' =1z fi=1) ifm(X) =1

1 otherwise.
It follows that P(DZ- = #(X,,D)|Z, R = 1) > min{P(D; = 1|Z;,R; = 1),P(D; =

01Z;, Ri = 1)} € (7,1 —~). Similarly, I can show that P(DZ- — #(X,,D;)|Zi, R = 0, R =
1) € (31 —9) and P(T; = t|Z; Ry = 1, Ryen;, Zien,

t € T,, under Assumption 2.3 (ii). Intuitively, because I always treat those units also treated

N;|) > 6, almost surely for any

in the experiment, overlap for # € II, is guaranteed, under overlap in the experiment. It
Ny|), 7 € 11,

satisfies the overlap conditions imposed in Assumption 2.3. Finally, it is easy to show that

follows that the propensity score e;(7) = e(7(X;, D;), T;(7), Zi, Zren,, Rren;,

Lemma 2.1 directly holds also for any # € II,,, following verbatim the proof of Lemma 2.1,
reweighting for e;(7). The rest of the proof follows verbatim the one of Theorem 3.1 once we
define the policy as D; + (1 — D;)7(X;), and the outcomes evaluated at the new policy are
T(Di—i—(l—Di)w(Xi), Ti(x), Zs, | Nil, gi> with T;(7) = gn(zkeNi Dit-(1-D)(X4), Zs, |NZ»|).

D.3 Lemmas

Lemma D.2. The following holds: x(A,) < x(AM) < MNM for alln > 1.

Proof of Lemma D.2. The first inequality follows by Definition D.3. The second inequality

follows by Brook’s Theorem (Brooks, 1941), since the maximum degree under A is bounded

by Ny + Ny x N+ -+ TN, < MM, O

Lemma D.3. Fori € {1, --- ,n} consider functions f; : T, — [—U,,U,| for some U, > 0,
and Tp, C Z. Then for any i € {1,--- ,n},n > 1, f;(t) is 2U,-Lipschitz in t.

fit) = fult))
fit) = f:(t)] < 20, [t — 2. O

Proof of Lemma D.3. For any t,t' € Z,

< 2U, for t # t', by the triangular

inequality. Since 7, C Z is discrete,

64



Lemma D.4. For anyi € {1,--- ,n}, let X; € X be an arbitrary random variable and F a
class of uniformly bounded functions with envelope F. Let ;| X1, -+ , X,, be random variables
independently but not necessarily identically distributed, where €; > 0 is a scalar. Assume
that for some u > 0, E[Q?*"|Z] < B, Vi € {1,---,n}. In addition, assume that for any

fized points xt € X", for some V,, > 0, for alln > 1, fOQF \/log (./\/h (n,f(a:?)))dn <V

Let o; be i.i.d Rademacher random wvariables independent of ()7, (X;)",. Then for a

constant 0 < Cp < oo that only depend on F and u, for alln > 1

BV,
p—

/ [sup —ZO’Z O 1{Q; >w}‘|X17 ,Xn]deC’p

fer'n

Proof of Lemma D.4. The proof follows verbatim the proof of Lemma A.5 in Kitagawa and
Tetenov (2019), with two small differences that do not affect the argument of the proof: I
must control the Rademacher complexity using the Dudley’s entropy integral bound (instead
of the VC dimension), and €2; are independent but not necessarily identically distributed
random variables. Given that the argument follows verbatim the one of Lemma A.5 of

Kitagawa and Tetenov (2019), the proof is omitted for space constraints.?® O

Lemma D.5. Take any k > 2. Let Fy,--- ,Fr be classes of bounded functions with VC

dimension v and envelope F < co. Let

To={filfettf), FieFi j=1 k) Tala}) = {h@1), - h@a)ih e T},

For arbitrary fived points ' € X™, for anyn > 1,k > 2,v > 1, fOQF \/log (M1 (17, j(x?)))dn <
cp/klog(k)v for a constant cp < oo that only depends on F.

Proof of Lemma D.5. Without loss of generality let F' > 1 (since if less than one the envelope
is also uniformly bounded by one). Let F_;,(z7) = {fo(a}) + ... + fu(a}), f; € Fj,j =
2,...,k,}. By Devroye et al. (2013), Theorem 29.6, Ml(n,}"_lyn(x’f)) < H§:2 Ml(n/(k —
1),.5(1;’;)). By Theorem 29.7 in Devroye et al. (2013),

M1(U,Jn(m?)>§1i[2M1<2(]€jDF 5@ M (5 Filed) ). (60)

By standard properties of covering numbers, for a generic set H, Ni(n,H) < No(n, H). Tt
follows (60) < HJ 5 Mo <k—1)ﬁ’ i(z )>M2<2F,]:1(x1)>. I now apply a uniform entropy
bound for the covering number. By Theorem 2.6.7 of Van Der Vaart and Wellner (1996),

25The reader may refer to a technical note that collects lemmas from past literature available at dviviano.
github.io/projects/note_preliminary lemmas.pdf for details or Appendix E below.
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we have that for a universal constant C' < oo (that without loss of generality we can assume

= 2v
c>1), M2<# E(x’f)) < C(v+1)(16e)@+D) (M) which implies that

2(k—1)F> n

o (s (1, 00)) = 3 o (M g 500 ) + o (M 01
j=1

< klog (C(v+1)(16¢)"*) + k20 log(2CF2(k — 1) /1),

Since fOQF \/k: log <C’(v + 1)(16@)v+1> + kn20log(2CF2(k — 1) /n)dn < cpy/klog(k)v for a

constant ¢z < 0o, the proof completes. O]
We discuss the Ledoux and Talagrand (2011)’s inequality for the case of interest here.

Lemma D.6. For alli € {1,--- ,n}, let ¢; : R — R be such that |¢;(a) — ¢:i(b)| < L]a — b
for all a,b € R, with ¢;(0) = 0, and arbitrary L > 0. Then, for any n > 1,L > 0, any
U, CR" K, C{0,1}", with u = (uy, -+ ,up) € Up, a = (a1, ,ap) € Iy,

|

Proof of Lemma D.6. The proof follows closely the one of Theorem 4.12 in Ledoux and

L, | 23" mantuilay
g sup nAIUz i\Ui ) O
1=

1 n
} < LE, { sup ‘— Z QGO
Ueun,CME’Cn n i=1

ueun 7a€’C’l’L

Talagrand (2011) while dealing with the additional a vector. We provide here the main
argument and refer to Ledoux and Talagrand (2011) for additional details. First, note that
if U,, is unbounded, there will be settings such that the right hand side is infinity and the
result trivially holds. Therefore, let U, be bounded. We aim to show that

E[ sup  aquq + O'Q(ZS(’LLQ)OZQ:| < E[ sup  aquq + Laquag}. (61)
uEU2,a €2 uEU2,aEK2

If Equation (61), it follows that

E{ sup  oq¢1(ur)or +02¢(U2)012\01] < E{ sup  a1¢1(ur)or + L02U2042)01]
uEUz , €2 uEU2 €2

Because o1¢(uy) simply transforms Us, and we can iteretively apply this result.

[ first prove Equation (61). Define for a,b € {0,1}%, I(u, s,a,b) := %(ulal + aggb(uQ)) +

%(slbl — b2¢(32)). I want to show that the right hand side in Equation (61) is larger than
I(u,s,a,b) for all u,s € Uy and a,b € {0,1}%. Since I am taking the supremum of I(u, s, a, b)

over u, s,a, b, I can assume without loss of generality (as in Ledoux and Talagrand, 2011)
urar + asp(ug) > s1b1 + bag(s2),  s1b1 — bap(s2) > urar — azp(ug). (62)
I can now define four quantities of interest
q1 = bis1 — bag(s2), @2 =bisi — Lsaby, ¢} = a1uy + Lagua, ¢ = ajuy + aze(uz).
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I consider four different cases, similarly to Ledoux and Talagrand (2011) and argue that for
any value of (a1, as, by, by) € {0,1}4, 2I(u, s,a,b) = ¢1 + ¢ < ¢} + o

Case 1 Start from the case agua, soby > 0. We know that ¢(0) = 0, so that |bap(s9)| < Lbyss.
Now assume that asus > bysy. In this case ¢ — qo = Lbasy — bad(s2) < Lagus — asp(ug) =
¢y — q¢b since |asp(uz) — bap(s9)| < Llagug — basa| = L(agus — byss). To see why this last
claim holds, note that for as,by = 1, then the results hold by the condition asus > bysy
and Lipschitz continuity. If instead as = 1,b, = 0, the claim trivially holds. While the case
as = 0,by = 1, then it must be that s, = 0 since we assumed that asus > 0,by5, > 0 and
aguy > besa. Thus i — qo < ¢) — ¢5. If instead bysy > agug, then use —¢ instead of ¢ and
switch the roles of s, u giving a similar proof.

Case 2 Let agug < 0,b9s2 < 0. The proof is as Case 1, switching the signs where necessary.
Case 8 Let agus > 0,b3s2 < 0. Then asp(us) < Lagus, since ay € {0,1} and by Lipschitz
properties of ¢, —bap(s2) < —byLsa so that asp(ug) — bad(s2) < asLug — baLss.

Case 4 Let asug < 0,b985 > 0. Then the claim follows symmetrically to Case 3.

The conclusion of the proof follows verbatim the one in Ledoux and Talagrand (2011). O

Lemma D.7. Let I1, I be two function classes, each with VC dimension v, and w : X +—
{0,1} for any = € ILII'. Fori € {1,---,n}, take arbitrary (Xyen,, X;), X; € X,Q; €
R, R; € {0,1}, adjacency matrix A, and functions f; : Z — [=U,,U,], for a positive
constant U, > 0. Assume that E[|Q|*|(R)™~,, (X;)",, A] < B, for some B < oo, and
()P (R, (X)), A are independent but not necessarily identically distributed. Let
o1, ,0, beii.d. Rademacher random variables, independent of [(Xi, R;, Qz>n ,A} . Then
for a universal constant cy < oo, for anyn > 1, v =VC(II) = VC(II') -

Eoq| sup (ZR fi( 3 me(X) ) m (X

m €I, €I i—1 kEN;

i } < CoUn\J vBN,, 1og(Ny,) Z R;. (63)
i1

Proof of Lemma D.7. First, note that since R; € {0,1}, and we take the expectation condi-
tional on (R;)?,, we can interpret the sum in Equation (63) as a sum over elements > ;| R

many elements. Also, note that from Lemma D.3, we have that f;(¢) is 2U,,-Lipschitz in t.

First decomposition First, we add and subtract the value of the function f;(0) at zero.

The left hand side in Equation (63) equals

] +EQ,J[ sup ‘ ZR 0 fi(0)Qm (
m €Il

EQJ[ sup
w1 €l maell’

Z Rioi(1:( Z m(X4)) ~ £:(0) + £:(0) ) Quma (X,)

N;

ZR gi (fz( Z 7T2(Xk)) - f(o))Qz‘m(Xi)

kEN;

<Ban
m €Il mwo €Il

Xi)

.

(1) (2)
(64)
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First, I bound (1). I write

(1) =Eq,| suwp )ZRO—Z(]Q(Z@ (Xk)) = £i(0) ) 2 ]sign(2)m (X,)

w1 €Il mo €Il

= Eq sup Rigi( fi m2(Xk) ) — fi(0) ) |€]m1 (X5)
o [ LR (1 X o) ~ s
where 6; = sign(€2;)o; which are i.i.d. Rademacher random variables independent of (;, X;, R;)", A,
since P(6; = 1|Q2) = P(o;sign(§;) = 1|2) = 1/2. Using the fact that |[Q;| > 0, I have

ZR gz<f2< Z WQ(Xk)) — f(O)) /OOO 1{|9Q4] > whdwm (X;) }

|

(65)

(65) = Eq [ sup

m €ll,moell’ N;
<Bos[ s [7 \ZRi&i(fi(Zm(Xk))—fi<o>)1{|fzi|>w}m<xi> | o)
< 70 g 35 35 ) 00> i

Next, I use the law of iterated expectation to first take the expectation over & (conditional

on ) and then take the expectation over €. I also divide and multiplied by U,. I obtain

(66) gUn/O Eq[E Lleﬁuﬁen/ ;Rm (Z<kzi7r2(xk)) — HO) 1] > wim ()] ] de
(67)

Lipschitz property Let ¢;(t) = T L (f:(t)— £:(0)). Here, ¢; is Lipschitz in ¢, with Lipschitz
constant equal to 1. In addition, ¢;(0) = 0. By Lemma D.6%%,

n
B[ sup Z 5 7( (X m(X0) = £i(0) 1] > wim (X)) |
w1 €Il moell’ i=1 kEN;
(68)
< 2F, [ sup )ZR az( 3w Xk))l{]Qi\ > whm (X;) }
1 €Il mo €Il kEN;
I can therefore write
o0
(67) < 2Un/ EQJ sup ‘ZR az( 3 Xk))l{]Qi\ > whm (X;) }dw.
0 m €Il mo eIl kEN;
26Conditional on X, A, Q, I invoke Lemma D.6 with (1 (X;)1{|Q| > w})™; in lieu of (ay, -+ , ) € K, C
{0,1}™ in the statement of Lemma D.6, since 71 (X;)1{[€%| > w} is binary. Here (3_;cn, m2(Xk))7; is in
lieu of (uy,---,uy) € U, in Lemma D.6. The spaces K,,,U,, in Lemma D.6, here are those defined (given

Q, X, A), by m(Xi)1{[€%] > w},m € Mand (3, n, m2(Xk))isy, m2 € I, respectively.
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Function reparametrization I now consider a reparametrization of the function class.
Define X; € XV = (X;, Xpen,, 0, - - -, 0), where for the entries h > |N;|+1, Xi(h) = (), denot-
ing the ™ entry of X;. Without loss of generality, let 7()) = 0. Define 7; € II; a function
class of the form 7;(X;) = W(Xi(j)),ﬂ' e II' for j > 1 and m(X;) = W(Xi(l)),ﬂ' e 11, ie.,
equal to 7 applied to the j* entry of the vector X;. Since this is a trivial reparametrization,
VC(II;) = VC(II) (= VC(IT') by assumption) for all j € {1,--- , N, }.*" I can write

Un/0 EQ,ULIGIS#EEHI ZR al< Z o Xk))1{|QZ\ > whm (X5)
Np—1

keN;
<U, /OOEQU[mgh sup ‘ZR al< Z a1 (X )1{|Q | >w}7r1( i)

ETOINARSI S UV A

—U/ EQO- sup ZR@ ~)1{\Qi|>w}Hdw

[ e

[ e

where II,, = {W1<Z§\Q{1 7Tj+1>,7Tj ellj,j=1,--- ,Nn}. I now apply Lemma D.5, using
the fact that VC(II;) = VC(II) = VC(IT'), for any j € {1,--- ,N,}. By Lemma D.5,
for any n > 1, the Dudley’s integral of the function class II, is uniformly bounded by

C'\/N,, log(N,)VC(II), for a finite universal constant C. By Lemma D.4, since I am summing

over >.i' | R; elements (conditional on (Ry,--- , R,)), for a universal constant ¢ < oo

n

Un/OOOEQ,&[suP(ZRZ-&i (X )1{|Q]>w}Hdw <CU\IBNVC ) log (N, ZR

well, =1

Term (2) Next, I bound the term (2) in Equation (64). Similar to (1),

|

<u, /0 Eos [igg | ;R@-l{\ [0V /U, > whr(Xi)

}gUnEQ,U[sup]Zm 10 0y m(x)

mwell

EQ’J[SUP‘ZRULfl )i (X5)

mell

[ dw.

Since II has finite VC dimension, by Theorem 2.6.7 of Van Der Vaart and Wellner (1996) (the

argument is the same as in Lemma D.5), f02 VM (n, (x7))dn < C'/VC(II) for a universal

constant C, and for any a7 € X". Since Eq[|f;(0)Q/U,|*] < B (f:(0)/U, € [-1,1]) we can
apply Lemma D.4, with |f;(0)€%;|/U,, in lieu of |€};] in Lemma D.4, and obtain

n

}dw <C'U, JBVC(H) YR

i=1

Un/o Ego[sup)ZRo—llﬂfl( YUl /U > whn(Xs)

for a universal constant C’" < oco. The proof completes. O]

27See e.g., Theorem 29.4 in Devroye et al. (2013).
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The following lemma is a direct corollary of Lemma D.7.

Lemma D.8. Let w € 11, be a function class, with w: X + {0,1}. Fori € {1,--- ,n}, take
arbitrary (Xgen,, Xi), Xi € X,Q; € R, R; € {0,1}, adjacency matriz A, and functions g; :
Zx{0,1} — [=U,, Uy], for a positive constant U,, > 0. Assume that E[|Q]3|(R:)™,, (X;)", A] <
B, for some B < oo, and ()" |(R;)", (X;), A are independent but not necessarily
tdentically distributed. Let oq,--- ,0, be i.1.d. Rademacher random variables, independent

of [(Xi, R;, Q,)n 0 A]. Then for a universal constant cy < oo, for anyn > 1

Eq a[sup ’ ZR@( Xk), (Xi)>0i

keN;

] <c0UnJVC( ) BAV,, log (A, ZR (69)

Proof of Lemma D.8. By Lemma D.3, g;(t, 1), g;(t,0) are 2U,-Lipschitz in ¢. It follows

Eq U[sup ‘ ZRzgl( Xk), (Xi))ai i }

<Eq, |:75r1€1§ ‘ ZRzgz< Xk), 1)7T(Xi)ﬁi i } +Eq . [ilelg ‘ ZRzgz( Xk), 0)(1 — 7(X;))oi€Y; }
kEN; kEN; -

It follows

(70) < Eq, [me%u};en ’ ZRzgz(kEN o (Xk), ) 1(X3)o: }

+Eaq[ s | Zm( m(X1).0) (1 = 7 (X))o

i

By Lemma 29.4 in Devroye et al. (2013), the VC dimension of the function class 1 —
m,m € II equals the VC(II). By Lemma D.7 each term in Equation (70) is bounded by
CU,/VC(I) BN, 1og(N,) D7, R, for a universal constant C' < oo. O

’L

Lemma D.9. Let K* be as in Algorithm 3 (Equation 31). Then K* < x(A?) almost surely.

Proof of Lemma D.9. To prove the claim it suffices to show that a partition such that the
constraints in Equation (31) holds exists, and such a partition has size at most y(A?), for all
possible realizations of R = (Ry,---, R,). As a first step, observe that for fixed K, binary
variables G, € {0,1},j € {1,--- ,n},k € {1,--- , K}, with Zle Gjr=1Wje{l,--- ,n},

K n K n

> 3 1{j € Nior NN N; # 0}GxGix = 0 implies » > R;R;1{j ¢ T,}G;jxGix = 0.

k=1 j=1 k=1 j=1
Namely, Zle -1 H{j € Nior Ny Nj # 0}GjxGix = 0 is a stricter constraint than
S S0 RiRj{j € T,}GGiy = 0, in Equation (31), for all Ry, R,, R; € {0,1}
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(because R; is binary). I can therefore bound the solution to the optimization problem in
Equation (31) as follows

K*<argmin min K
KeZ Ge{0,1}nx K

such that Z Z 1{j € N; or N; N N; # 0}G, xG; 1, = 0, and Z G = 1Vi.
k=1 j=1 k=1

The right-hand side in Equation (71) equals x(A?) by definition of smallest proper cover. [J

D.3.1 Identification

PTOOf Of Lemma 2.1. Let 6<7T(Xi>7ﬂ(7r)7Zk‘GNi?RkGNi?Z’L'a |Nz|) - 67;(77)711'(71') - 1{ﬂ(ﬂ) -
T;,7(X;) = D;}. Under Assumption 2.1, I can write

E[RiE:;Y A, Z] - E[Riig;r<7r(Xi),ﬂ(7r),Zi, |N,~\,gi) A,Z}. (72)
Under Assumption 2.3 (i,ii),

(72) = E[}ZIZS)\A,Z} x ]E[T(W(Xi),Ti(ﬂ'),Zi, |N,-\,5i) A, Z]
By Assumption 2.3 (i), E[Rel(g) A, Z} - E[RE[éEZ; A, Z, (Ry);4, Ri = 1” - % O

Lemma D.10. Let Assumptions 2.1, 2.3 hold. Then

1< , HTi(n) = T;,d = D;}
= e (70X, T, Zyenss Rreni Zis [N

) (Y - mc<7r(X,-),Ti(7r), Zi, \NJ)) ’A, Z}

+ ;iE[RimC@(Xi),n(w),zi, \Ni\)(A, z| = iiE[r((w(Xi),Ti(w),Zi, INil, i) |4, 2]
€ =1 i=1

if either e¢ = e or (and) Assumption 2.2 (A) holds with m® = m.

Proof of Lemma D.10. Define e§(m) = €€ <7r(Xi),Ti(7r), Zyen,, Rien,, Zi, |Ni|>,[,-(7r) = H{Ti(r) =
T, 7(X;) = D;},m§ = me(w(X;), Ti(m), Z;, | Ni|). Whenever e¢ = e, the result directly follows
from Lemma 2.1. Let now m¢ = m and Assumption 2.2 (A) hold. Then (since the indicators

R are independent of € by Assumption 2.2)

E[Ref(g) (vi - ms(m)|a, 2] =E[R, i((:?) (r(7(X0), Ti(m), Zi, |Nil ) — ma(m)) |4, 2]
_ E[Ri ic((?) ‘A, Z} x E[(r(w(Xi),Ti(ﬁ), Z, |Ni|,ai> - mi(ﬂ)) ‘A, Z] _o

By Assumption 2.3 (i), £ S0, E[Rimi(r)|A, 2] = 1 X0y m(r(X,), Ti(n), ZoINi). O
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D.4 Proofs for “Additional extensions”

D.4.1 Proof of Proposition B.1

Define k(i) the partition k € {1,--- , K*} associated with unit ¢ under Algorithm 3 and j(7)
the fold j within partition k(i) associated with ¢ under Algorithm 3. Recall the definition
of ¢7(i) = 1{k(s) = k(7),j(s) # j(i)} is Section B.1. Note that ¢7*(i) are random variables
since they depend on sampled indicators Ry, - , R,. By Lemma D.9, K* < y(A?).

For each partition k, Algorithm 3 creates J folds with the same number of units. I can
write Y 0 Ry¢™(i) > L% S R 1{k(s) = k(z)}J where I take the floor function for cases

where J is not a multiple of the number of sampled units in the partition k(7). We have

% Zn:]E [(1 + Xn: qusg@(z'))*QC’"\Ri — 1,4, Z]
=1 s=1

" n (73)
1 J—1 —20m
<= ;E[max {1, ( - ;Rsl{k(s) k;(z)}) }]RZ 1, A, Z}
Worst-case partition Next, I replace the (random) partitions k£ € {1,---, K*} with
worst-case non-random partitions. Denote k(i) € {1,---, x(A%)} the worst-case partition
I J—1¢ ~2m
k() € “NE 1L (2= ST R {k(s) = k(i Ri=1,AZ
( ) arg&(i)e{lv"' 7XI(nAa2)){},i€{lv”' ’n} n =1 |:maX { ( J ; {7(8) 7(Z)}) }’ ]
x(A?)
such that k(z) # k(j),Vj € N; or N; N N; # 0, Z k() =k} =1, VYie{l,---,n}.
k=1
(74)

Here, k™(-) always exists by definition of y(A4?%).%® In addition, k% does not depend on the

realized R by construction. I claim that

(73) < ;;E[max{l, (% ;Rsl{kw(s) - k:w(i)}> _2<m}|Ri — 1,4, Z} -

(1)
Equation (75) holds for two reasons: (i) K* < x(A?) by Lemma D.9; (ii) I can show that

the constraint in Equation (74) is a stricter constraint than the constraint in Equation (31)

for any realization of (Ry,---, R,) (see the proof of Lemma D.9 for details).

28Existence is satisfied if a feasible solution to Equation (74) exists. One example is the smallest proper
cover C,(A2) as in Definition D.1 for the adjacency matrix A2. This satisfies the constraints in Equation
(74) by definition. A proper cover always exists (e.g., if the network is fully connected, x(A?) = n).
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Upper bound on (I) Take any i € {1,--- ,n} such that 1{k"(s) = k*(i)} = 1 for some
s # 1. It follows from Cribari-Neto et al. (2000) (equation at the bottom of Page 274)

(I) < (—J; 1)—2%1@[(1 + 3 RA{K"(s) = kw(i)})72<m|Ri — 1,4, Z} (- Ri=1)
SF1
(J;l)—Q(m

(2 S0 1 (s) = ()}
(" ne/n=ac(0,1),J =0(1)).

<

+o( ! ) (76)

2 O\ 1R (5) = R (i)

In the right-hand-side (first equation) we added one since k" (i) = k*(s) for s = i. If instead
there is no s # ¢, such that 1{k"(s) = k¥ (i)} = 1, then trivially (/) = O(1).

Sum over all partitions Summing over all y(A?) partitions, we obtain

x(42)

Z > i 11{kw = }E[max{ ( ZR Lk (s) = }>—2CmH < OG A )
(4)
(A?) n win - a2
O(X; (Zizl 1{16” (7) —k}>1 2Cm<<‘]_l]1)ne)24m) + ( 2:1 1‘1‘;1{161” _ QCm)

(B)

where (B) correspond to cases where partitions £“ (i) contain at least two elements (and
bounded as in Equation (76))*, and (A) corresponds to partitions with only one element,
whose overall number is at most x(A?) (since there are at most x(A?) many partitions, and
for such partitions w = 1/n). For (B) we write

x(A?) w(i) = -
e

A2) n
+(9(

1{k(7) )i 24’”) (a7 2m < g172m for z > 1, concave z'7%m),
k=1 i=1

2Cm 2 n .
It follows that (B) < XW)(m) + O(x(A?)n=%m) (- Z;‘S} ) Yo HEG) =k} =
n). From D.2, y(A?) < 2N?2, which completes the proof for the conditional mean after simple
rearrangement (since the bound for (A) follows directly from Lemma D.2). The argument

follows verbatim for B, (A4, Z), taking into account 1/§2, and omitted for brevity.

For the first component in (A) we sum over all i € {1,--- ,n} instead of n — 1 elements since the last
term is absorbed in O(1).
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D.4.2 Proof of Proposition B.2

Denote E,[-] the expectation conditional on {DZ- = W(Xz)}n let R = (R;)",. We have
Ex[r(Si, Y Sk ZisINil,i)|A, 2] =E[r(Silx ) 3 Sl ), Zi, INil )

kEN;
where S;(m) = hg (W(Xi), > e, T(Xk), Zi, [ Nil, Vi>. It follows that Equation (77) equals

3 E[r(d s, Zi, INi, &) =d, Y Sp(m) = s,Z,A} xP(Si(w) =d, Y Sp(m) = s‘A,Z,R) .
s€{0,+,|Ni|} kEN; kEN;
(i (i)
Since (&), L (Z, A, (ep,, vy, R;)} ), I can show (i) = E[r(d, 8, Ziy [ Nil, €)|Si = d, ) en, S

j=1
s, Z, A, R} Consider now (ii). Observe that by indepedence and exogeneity of (v;)”

AZR|. ()

j=1

||

(ii)zP(Si(n):d‘A,Z,R)x > IIr(s o uk]A,Z,R).

UL, upty s, Up=8 k=1

Using exogeneity of v;, I have

P(Si(w) - d]A, Z, R) - P(Si —d

Zis INi|, Dy = w(X2), > Di = % (X, Zren,, Z).

kEN; keN;

Similar reasoning also applies to neighbors’ selected treatments, omitted for brevity.

D.4.3 Proof of Proposition B.3

First, we show that E[Wn(w,mc,e)
and similarly L, = L'(Z;, Zxen,,

and number of neighbors of ¢ in the target population. Following Lemma D.10 below, by

AZ, A’,Z’] = Wz (n). Let L; = L(Z, Zren,, |Ni|)
i|). Let T7, Z!,|N;|" be the neighbors’ exposure, covariates

exogeneity of (Ry,---, R,) (Assumption 2.3 (i,ii))
1i(m)

ei(m)

RiE[ ()@—mf(w)) +mf(7r)‘A, Z, Ry, ,Rn} :RiE[r((w(X,-),Ti(rr),Zi,\Ni],si) A,z}

- Rim(W(Xi),Ti(w), 7, |N,-|).

Therefore, it follows that

E[Wa(m,m*,e)|4, 2] = iL m(w(X0), Ti(m), Zi, INi] ) = jLim(mmmmz;,|Ni|'),
=1

The last equality follows by construction of L}, L;. S,(A",Z") C S,(A, Z) guarantees that
there are no individuals in the target population outside the sample population’s support.

Because E[W, (m,m¢,e)|A, Z, A, Z'] = War z(7), the same argument of the proof of
Theorem D.1 holds, with the difference that the Lipschitz constant in the proof of Theorem
D.1 multiplies by [_/A,Z,n-

74



	Introduction
	Problem description
	Outcome model with interference
	Sampling and experiment
	Policy targeting
	Network topology and overlap
	Spillovers in the related literature

	Network Empirical Welfare Maximization
	Known propensity score
	Estimated nuisance functions
	Optimization
	Derivation of Theorem 3.1: main steps

	Main extensions
	Trimming to control overlap
	Regret with higher-order dependence
	Expected regret with a different target population

	Empirical application
	Experimental setup and estimation
	Policy evaluation
	Assumptions and applicability of the method

	Conclusions
	Appendix Practical guide
	Cross-fitting: exact solution
	(Approximate) network cross-fitting with subgraphs

	Appendix Additional extensions
	Estimation error of nuisance functions with Algorithm 3
	Welfare with spillovers on non-compliance
	Reweighting with known and different target population
	Constraints on n that depend on D

	Appendix A numerical study
	Appendix Derivations
	Notation
	Theorems
	Theorem 3.1 and Theorem 4.2
	Proof of Theorem 3.2
	Proof of Theorem 3.3 
	Proof of Theorem 4.1
	Proof of Theorem 4.4
	Proof of Proposition B.4

	Lemmas
	Identification

	Proofs for ``Additional extensions"
	Proof of Proposition B.1
	Proof of Proposition B.2 
	Proof of Proposition B.3



