
Policy Targeting under Network Interference∗

Davide Viviano †

This Version: November 27, 2024

Abstract

This paper studies the problem of optimally allocating treatments in the presence of
spillover effects, using information from a (quasi-)experiment. I introduce a method
that maximizes the sample analog of average social welfare when spillovers occur. I
construct semi-parametric welfare estimators with known and unknown propensity
scores and cast the optimization problem into a mixed-integer linear program, which
can be solved using off-the-shelf algorithms. I derive a strong set of guarantees on
regret, i.e., the difference between the maximum attainable welfare and the welfare
evaluated at the estimated policy. The proposed method presents attractive features for
applications: (i) it does not require network information of the target population; (ii) it
exploits heterogeneity in treatment effects for targeting individuals; (iii) it does not rely
on the correct specification of a particular structural model; and (iv) it accommodates
constraints on the policy function. An application for targeting information on social
networks illustrates the advantages of the method.
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for advice and support, and Isaiah Andrews, Brendan Beare, Jelena Bradic, Guido Imbens, Toru Kitagawa,
Michal Kolesar, Craig Mcintosh, Karthik Muralidharan, James Rauch, Fredrick Savje, Jesse Shapiro, Elie
Tamer, Alex Tetenov, Ye Wang, the editor and anonymous referees for comments and discussion. I partic-
ularly thank Vikram Jambulapati for invaluable discussions at the beginning of this project. I also thank
participants at numerous seminars and conferences. Jake Carlson provided excellent research assistance. The
method is implemeted in the R package NetworkTargeting available on the author’s website. All mistakes
are my own.

†Department of Economics, Harvard University. Correspondence: dviviano@fas.harvard.edu.

1

ar
X

iv
:1

90
6.

10
25

8v
14

  [
ec

on
.E

M
] 

 6
 A

pr
 2

02
4



1 Introduction

Consider a policymaker who must use a quasi-experiment, such as an existing experiment or

observational study, to design a decision rule (policy) that assigns treatments based on ob-

servable characteristics. The main challenge is treating an individual may generate spillovers

on her friends or neighbors. Spillovers may, in turn, affect the design of the optimal policy.

This paper studies the problem of allocating treatments in the presence of spillover effects

to maximize welfare, using information from a quasi-experiment. Applications include cash-

transfer programs, education programs, and information campaigns, among others (e.g.,

Egger et al., 2019; Opper, 2016; Bond et al., 2012).

A (large) population of n individuals is connected in a single network. Treatments gener-

ate spillovers to neighbors in the network (i.e., network interference). Researchers randomly

sample ne ≪ n units in a (quasi)experiment and randomize treatments among sampled in-

dividuals and their neighbors (the remaining units are not necessarily in the experiment).

They then collect sampled individuals’ covariates, treatment assignments, outcomes, neigh-

bors’ covariates, and assignments. The population network is not necessarily observed. The

goal is to estimate a treatment rule to deploy on the entire population. Consider the example

of targeting information to increase insurance take-up in a region subject to environmental

disasters (Cai et al., 2015). Using variation from experiment participants sampled from a

random subset of villages in this region, we estimate whom to target in the entire region.

The first challenge is that the population network may be unobserved due to the cost

of collecting network data on large populations. Researchers may only observe neighbors’

information about the experiment participants. Collecting network information from the

individuals in the entire population, such as a region or country, is often costly or infeasi-

ble (see Breza et al., 2020, for a discussion). Motivated by this, I develop a method that

does not require we observe the population network. I allow for arbitrary constraints on

the policy space, such as informational constraints. A second challenge is treatment effects

heterogeneity. I leverage the assumption that spillovers occur through the number of treated

neighbors, as is often documented in applications, and allow for treatment effects hetero-

geneity in arbitrary individual characteristics (e.g., covariates and number of neighbors).1

The proposed method, which I call Network Empirical Welfare Maximization (NEWM),

1Models consistent with this restriction are models of exogenous and anonymous spillover effects; see, e.g.,
Manski (2013). For instance, Cai et al. (2015) leverage a two-stage experimental design to show “the network
effect is driven by the diffusion of insurance knowledge” (i.e., treatment) “rather than purchase decisions”
(i.e., outcome) (Cai et al., 2015, abstract), consistent with the model proposed in this paper. Other examples
of empirical applications using models consistent with our model include Sinclair et al. (2012); Duflo et al.
(2011); Muralidharan et al. (2017), where for the second reference, networks can be considered groups of
classrooms with units within each classroom being fully connected.
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estimates the welfare as a function of the policy using arbitrary estimators (e.g., based on

machine learning). It then solves an exact optimization procedure over the policy space.

I interpret policy targeting as a treatment choice problem (Manski, 2004; Kitagawa and

Tetenov, 2018; Athey and Wager, 2021), here studied in the context of network interference.

I evaluate the method’s performance based on its maximum regret, that is, the difference

between the largest achievable welfare and the welfare from deploying the estimated policy.

From a theoretical perspective, this paper makes three contributions: (i) it derives the

first set of guarantees on the regret for treatment rules with spillovers; (ii) it introduces

an estimation procedure with fast convergence rates of regret with machine-learning (non-

parametric) estimators and networked units; and (iii) it shows that for a large class of policy

functions, the optimization problem can be written as a mixed-integer linear program, solved

using off-the-shelf optimization routines.

The analysis proceeds as follows. First, I discuss the identification of social welfare under

interference. Identification relies on the unconfoundedness of treatment assignments and of

the sampling indicators. I then study semi-parametric estimators for the welfare and analyze

the performance of the estimated policy. I show that under regularity conditions, the regret

of the estimated policy scales at the rate 1/
√
ne, whenever the maximum degree (i.e., the

number of neighbors) is uniformly bounded (e.g., De Paula et al., 2018). If the maximum

degree grows with the population size, the rate depends on the degree, and converges to zero

when the degree grows at an appropriate slower rate than n. Finally, I derive lower bounds

that guarantee a maximin convergence rate of the regret with a bounded degree. Throughout

the analysis, I do not impose assumptions on the (joint) distribution of characteristics used

for targeting and on the network other than restrictions on the maximum degree.

A condition for these results to hold is that the optimization procedure achieves the in-

sample optimum. I guarantee it by showing that we can cast the problem in a mixed-integer

linear program.

The derivations present several challenges: (i) individuals depend on neighbors’ assign-

ments that I control through contraction inequalities; (ii) statistical dependence invalidates

standard symmetrization arguments (Wainwright, 2019); and (iii) in the presence of obser-

vational studies with networks, machine-learning estimators may present non-vanishing bias

even when using existing methods (e.g., Athey and Wager, 2021). For (iii), I introduce a

novel cross-fitting algorithm for networked observations and characterize its properties.

I study the numerical properties of the method using data from Cai et al. (2015). I design

a policy that informs farmers about insurance benefits to increase insurance take-up. The

NEWM method leads to (out-of-sample) improvements in insurance take-up up to thirty

percentage points compared to methods that ignore network effects (Kitagawa and Tetenov,

3



2018; Athey and Wager, 2021). I obtain these improvements despite not using network

information for the design of the policy. Finally, I present several extensions, including

trimming when individuals present poor overlap due to a large maximum degree, different

target, and sampled populations, and spillovers over non-compliance (in the Appendix).

This paper builds on the growing literature on statistical treatment choice (Kitagawa and

Tetenov, 2018, 2019; Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2016; Armstrong

and Shen, 2015; Bhattacharya and Dupas, 2012; Hirano and Porter, 2009; Stoye, 2009, 2012;

Tetenov, 2012; Zhou et al., 2018), and classification (Elliott and Lieli, 2013; Boucheron et al.,

2005, among others). Unlike previous references, I estimate the policy when treatments

generate spillovers here. This paper is the first to study the properties of targeting on

networks in the context of the empirical welfare maximization literature.

A conceptual difference from the i.i.d. setting with single and multi-valued treatments

as in Kitagawa and Tetenov (2018), Zhou et al. (2018) is that here individuals depend on

neighbors’ assignments, whereas treatments are individual-specific. This structure permits

the population network to be unobserved. In addition, I can bound the complexity of the

function class using properties of the maximum degree. The second difference is that indi-

viduals exhibit dependence and arguments based on i.i.d. sampling, such as symmetrization,

fail here. Optimization differs because individuals depend on neighbors’ treatments.

This paper connects the literature on treatment choice with the one on targeting and

networks. I provide an overview below and an extensive discussion in Section 2.5.

The influence-maximization literature mostly focuses on detecting the most influential

“seeds” based on centrality measures. These measures are often motivated by a particular

model. See Bloch et al. (2017) for a review. Recent advances include Jackson and Storms

(2018), Akbarpour et al. (2018), Banerjee et al. (2019), Banerjee et al. (2014), Galeotti

et al. (2020) in economics, and Kempe et al. (2003), Eckles et al. (2019), among others in

computer science. This paper differs in (i) its approach because I leverage experimental

variation to construct policies that maximize the empirical welfare (instead of policies jus-

tified by game theoretic structures); (ii) setup because I allow for constraints on the policy

class and heterogeneity in treatment effects. These differences leverage the assumption that

spillovers propagate locally in the network, which differs from some of the models in the

influence maximization literature. Su et al. (2019) study first-best policies for linear models

without policy constraints. I do not impose such structural assumptions. The presence of

constraints (and infeasibility of the first-best policy) justifies the regret analysis in the cur-

rent paper. Laber et al. (2018) consider a Bayesian model whose estimation relies on Monte

Carlo methods and the correct model specification.

This paper also connects to the literature on social interaction (Manski, 2013; Manresa,
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2013; Auerbach, 2019), and causal inference under interference or dependence (Liu et al.,

2019; Li et al., 2019; Hudgens and Halloran, 2008; Goldsmith-Pinkham and Imbens, 2013;

Sobel, 2006; Sävje et al., 2021; Aronow and Samii, 2017; Chiang et al., 2019). The exogenous

and anonymous interference condition is closely related to Leung (2020). However, knowl-

edge of treatment effects is insufficient to construct welfare-optimal treatment rules in the

presence of either (or both) constraints on the policy functions or treatment effects hetero-

geneity. Additional references include Bhattacharya et al. (2019) and Wager and Xu (2021),

who study pricing with social interactions through partial identification and sequential exper-

iments, respectively. Here, instead, I study empirical welfare maximization for individualized

treatment rules. Li et al. (2019), Graham et al. (2010), and Bhattacharya (2009) study op-

timal configurations of individuals into small groups, such as assigning students to classes,

which differs from here where policies denote (constrained) treatment assignments. See Kline

and Tamer (2020) and Graham and De Paula (2020) for further references.

Finally, more recent works that study targeting in new directions include Kitagawa and

Wang (2020) in the context of a parametric model of disease diffusion, Ananth (2021) in

settings with an observed network of the target population, and Viviano (2020) in the context

of experimental design and sequential experiments.

The paper is organized as follows. Section 2 presents the problem setup and main condi-

tions. Estimation and theoretical analysis are contained in Section 3. Section 4 and online

Appendix B present extensions. Section 5 contains an application. Section 6 concludes. Ap-

pendix A (at the end of the main text) presents a practical guide to implement the algorithm,

online Appendix C a numerical study and online Appendix D theoretical derivations.

2 Problem description

In this section, I introduce the notation and problem setup. I first introduce the outcome

model in Section 2.1. Section 2.2 formalizes the sampling and design in the experiment.

The policy targeting exercise is discussed in Section 2.3, and restrictions on the network in

Section 2.4. Algorithm 2 in Appendix A presents a user-friendly description of the procedure.

2.1 Outcome model with interference

Consider a population of n individuals connected under an adjacency matrix A. Each indi-

vidual is associated with an arbitrary vector of characteristics Zi ∈ Z and a binary indicator

Di ∈ {0, 1}, with Di = 1, indicating that individual i was assigned the treatment in the
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experiment, and Di = 0 if no treatment was assigned. Define

A ∈ An ⊆ {0, 1}n×n, Ni =
{
j ∈ {1, · · · , n}\{i} : Ai,j = 1

}
, Z = (Zi)

n
i=1, D = (Di)

n
i=1,

where An is the set of symmetric and unweighted adjacency matrices, Ni denotes the friends

of i, and |Ni| the degree. Let Yi denote the i’s post-treatment outcome in the experiment.

Here, Z can be arbitrary and I impose no restriction on its (joint) distribution.

With interference, unit i’s outcome depends on its own and other units’ treatment. In

full generality, I can write Yi = r̃n(i,D,A, Z, εi) for some unobserved random variables εi

capturing uncertainty in potential outcomes, and unknown r̃n(·).2

Assumption 2.1 (Interference). For i ∈ {1, · · · , n}, let

Yi = r
(
Di, Ti, Zi, |Ni|, εi

)
, Ti = gn

(∑
k∈Ni

Dk, Zi, |Ni|
)
, (1)

for some function r(·) unknown to the researcher, and function gn(·) : Z×Z ×Z 7→ Tn ⊆ Z,
known to the researcher, with gn(0, Zi, |Ni|) = 0 almost surely, and unobservables εi.

Under Assumption 2.1, outcomes depend on (i) the number of first-degree neighbors

(|Ni|), (ii) the number of first-degree treated neighbors (or a function of this, Ti), and (iii)

individual’s treatment status (Di), observables (Zi), and unobservables (εi). Assumption 2.1

states that interactions are anonymous (Manski, 2013), and spillovers occur within neighbors.

Heterogeneity occurs through the dependence with Zi and |Ni|. The model relates to Leung

(2020), and Athey et al. (2018) provide methods to test anonymous and local interference.

Here, r(·) is unknown and gn(·) is known and characterizes how individuals depend on

neighbors’ treatments – that is, the exposure mapping (Aronow and Samii, 2017); gn(0, ·) = 0

is without loss of generality, because r(·) also depends on (Zi, |Ni|). The function gn depends

on n because its support Tn can vary with n. For example, gn can be equal to the number

of treated neighbors Ti =
∑

k∈Ni
Dk, and the degree can grow with n. This scenario is the

most agnostic one because r is unknown and therefore equivalent to gn(·) being unknown.

Alternatively, gn(·) can be equal to a step function of the share of treated neighbors (Sinclair

et al., 2012). The size of Tn affects treatments’ overlap discussed in Assumption 2.3.

Assumption 2.2 (Unobservables εi). For all i ∈ {1, · · · , n},

(A) εi

∣∣∣A,Z ∼ UZi,|Ni| for unknown distributions Uz,l, z ∈ Z, l ∈ Z;

2We consider εi as a random variable to capture uncertainty in the realization of the outcomes once the
policy discussed in Section 2.3 is implemented at scale. It is possible to extend our results if we condition
on εi as in Leung (2022) (and therefore without imposing assumptions on εi other than uniformly bounded
outcomes as in Leung (2022)) only in settings where the treatment probabilities are known (see Remark 9).
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(B) εi ⊥ (εj)j ̸∈Ni∪{Nk,k∈Ni}

∣∣∣A,Z;
(C) E

[
supd∈{0,1},t∈Z |r(d, t, Zi, |Ni|, εi)|3

∣∣∣A,Z] ≤ Γ2, almost surely, for unknown Γ < ∞.

Condition (A) states that unobservables are identically distributed, conditional on the

same individual covariates and number of friends, and conditionally independent of A and

other units’ characteristics. Condition (A) implies network exogeneity, attained if, for exam-

ple, two individuals form a link based on observable characteristics and exogenous unobserv-

ables. Condition (A) guarantees that the individual conditional mean function in Equation

(3) below is the same across units. Condition (B) states that unobservables are independent

across individuals who do not share a common neighbor (see Example 2.1). Condition (C)

is a bounded moment assumption.

Our method can accommodate scenarios where (A) and (B) fail. I will not assume

Condition (A) in settings where the individual treatment probabilities are either known or

estimated parametrically (in Lemma 2.1, and Theorems 3.1, 4.2). I relax (B) in Section 4.2.

Example 2.1 (Two-degree dependence). Suppose that each individual is associated with

i.i.d. unobservables ηi and Yi = r̃
(
Di, Ti, Zi, |Ni|, ηi,

∑
k∈Ni

ηk

)
for some unknown function

r̃(·). Then Assumptions 2.1 and 2.2 hold with εi =
(
ηi,
∑

k∈Ni
ηk

)
.

2.2 Sampling and experiment

Next, I formalize the sampling mechanism and experiment.

In the spirit of Abadie et al. (2020), I define Ri ∈ {0, 1} a random variable indicating

whether individual i’s post-treatment outcome is observed by the researchers. Researchers

do not necessarily observe the adjacency matrix A. However, researchers observe i’s relevant

characteristics and treatment as well as i’s neighbors’ characteristics and treatments if Ri = 1

(i.e., researchers only observe the friends of the sampled individuals but not necessarily A).

In addition, sampled units and their neighbors (but not necessarily the other units in the

population) are assigned treatments in the experiment (Di = 1) with positive probability.

I formalize these conditions below. Define Rf
i = 1

{∑
k ̸=iAi,kRk > 0

}
the indicator

of whether individual i has at least one neighbor who is sampled, and ne =
∑n

i=1 E[Ri]

the expected number of sampled individuals. I consider ne < n, and assume that ne is

proportional to n for expositional convenience.3

Assumption 2.3 ((Quasi)experiment). For i ∈ {1, · · · , n}, the following holds:

3If ne = nρ, ρ < 1 all our results hold if we replace the right-hand side in Assumption 2.5 withO(n(1/2−ξ)ρ).
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(i) Researchers observe the vector[
Ri

(
Yi, Zi, Di, Ni, Zk∈Ni

, Dk∈Ni

)
, Ri

]n
i=1

, Ri

∣∣∣A,Z, (εj)nj=1 ∼i.i.d. Bern(ne/n), (2)

with ne/n = α ∈ (0, 1).

(ii) Di = fD

(
Zi, Ri, (1−Ri)R

f
i , εDi

)
, for εDi

|A,Z, (εj)nj=1, (Rj)
n
j=1 ∼i.i.d. L, for some fD(·)

and distribution L (known in an experiment and to be estimated in a quasi-experiment);

(iii) P (Di = 1|Zi, Ri = 1), P (Di = 1|Zi, Ri = 0, Rf
i = 1) ∈ (γ, 1 − γ) almost surely, for

some γ ∈ (0, 1), and for all t ∈ Tn, P
(
Ti = t|Zk∈Ni

, |Ni|, Rk∈Ni
, Ri = 1

)
≥ δn almost

surely, for some δn ∈ (0, 1);

Condition (i) states that researchers observe the post-treatment outcomes of sampled

units, the covariates and treatment of sampled units, and the covariates and treatments of

the friends of the sampled units. I do not assume that A (the connections of the entire target

population) is observed, while I assume that relevant information about the friends of the

sampled individuals (Ri = 1) is observed. Condition (i) also postulates that the indicators

Ri are exogenous with respect to the network A, characteristics Z and unobservables εi.

Finally, Condition (i) states that the expected number of sampled individuals ne is pro-

portional to n, which is assumed for expositional convenience. We can allow Ri to depend

on Zi (see Remark 3) and ne not to be proportional to n.

Condition (ii) states the treatment is randomized in the experiment on observables Zi,

which can be arbitrary and may also contain network information, and possibly also on the

indicator Ri. If individuals are not sampled in the experiment (Ri = 0), Di can also depend

on whether at least one friend is sampled (e.g., researchers collect neighbors’ information

and then randomize treatments across participants and their neighbors).

Condition (iii) imposes positive overlap for sampled units and their friends but not nec-

essarily for the remaining units who are not sampled and are not friends of sampled units.

For example, the treatment of those units who do not participate in the experiment and

whose friends do not participate in the experiment can be equal to the baseline value Di = 0

almost surely, whereas it is randomized with positive probability for the experiment partic-

ipants and their friends. Here, δn denotes the overlap constant of the neighbors’ treatments

of the sampled individuals. It depends on n, because the support of the exposure mapping

Ti may vary with n. We defer to Section 2.4 restrictions on δn and on the network.

Figure 1 (left-hand-side panel) presents an illustration. In an experiment, Assumption

2.3 entails: randomizing participants Ri; collecting the covariates Zi and their neighbors’
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π(Xi)

(Xi)
n
i=1 ⊆ Z

Di|Zi, Ri, R
f
i ∼ P(Zi, Ri, R

f
i )

[
(Yi, Zi, ZNi

, Di, DNi
)Ri, Ri

]n
i=1

Figure 1: Example of the experiment (left-hand-side figure) and policy targeting exercise in Section
2.3 (right-hand-side figure). Green dots denote treated units, and pink dots denote untreated ones.
In the first step, researchers run (or observe data from) an experiment on a (small) subset of indi-
viduals, here the black-tick unit. The treatment of such a unit and her friends is randomized with
some positive probability, whereas the treatment of the other units can have arbitrary distributions
(e.g., equal to the baseline value Di = 0 almost surely if such units are not in the experiment).
Researchers observe the vector of outcome, treatment, neighbors, treatments, and covariates of
sampled units ((Yi, Zi, ZNi , Di, DNi)Ri), as well as the the identity of whom they sample (Ri).
Researchers then design a treatment allocation π(Xi) for the entire population using information
Xi, a subset of Zi.

covariates ZNi
; randomizing treatments among participants and their friends (observed by

the researchers); observing the post-treatment outcomes Yi of the sampled units (Ri = 1).

Under Assumptions 2.2, and 2.3 define

m(d, t, z, l) = E
[
r(d, t, z, l, εi)

∣∣∣Zi = z, |Ni| = l, Ti = t,Di = d
]

e(d, t,x,u, z, l) = P
(
Di = d, Ti = t

∣∣∣Zk∈Ni
= x, Rk∈Ni

= u, Zi = z,Ri = 1, |Ni| = l
) (3)

the conditional mean and propensity score for sampled units (Ri = 1), respectively, where we

suppressed the dependence of e with n for expositional convenience. Note that Assumption

2.2 (A) guarantees that m(·) does not depend on the index i. When the propensity score

is known, Assumption 2.2 (A) is not necessary for our results to hold, because we can use

information about e(·) for identification and estimation.

2.3 Policy targeting

Once the experiment is concluded, a policymaker will design a treatment mechanism with

the goal of maximizing average social welfare in the entire population i ∈ {1, · · · , n}, with
adjacency matrix and covariates (A,Z) as in Figure 1. Partition Zi =

[
Xi, X̃i

]
, for two

vectors (Xi, X̃i), Xi ∈ X ⊆ Z. The policymaker observes from the entire population

X = (Xi)
n
i=1, Xi ∈ X ,
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a subset of individuals’ characteristics. Here, Xi denotes individual information observed by

a policymaker for all n units in the population. Information Xi can be arbitrary. Examples

include census data or network statistics when observed by the policymaker.4 Researchers

observe an arbitrary function bn(X1, · · · , Xn) of X. For instance, bn(·) can be a constant

function if Xi for all n units is only observed by the policymaker but not by the researchers,

as in Kitagawa and Tetenov (2018), or can denote the empirical distribution of X if also

observed by the researchers. Researchers design a policy such that:

(1) Individuals may be treated differently, depending on observable characteristics;

(2) The assignment mechanism must be easy to implement without requiring knowledge

of the population network A;

(3) The assignment mechanism can be subject to (economic or ethical) constraints.

I therefore consider an individualized treatment assignment π : X 7→ {0, 1}, π ∈ Πn(bn(X)) ⊆
Π, where Πn(bn(X)) denotes the set of constraints on π, a subset of a given function class

Π. Here, the constraints may also depend on researchers’ arbitrary information bn(X).5 The

policy π ∈ Πn satisfies (1), (2), and (3). The policy can be implemented in an online fashion,

and it does not require observing the population network. However, because I impose no

restrictions on Xi, individual covariates can contain network statistics if available.

Finally, note that the individualized treatment rules differs from global treatment rules

that depend on the population adjacency matrix A. Global treatment rules are more flexible,

but require observing the network data of the entire target population and therefore are

applicable in contexts complementary to ours. See Remark 4 for a comprehensive discussion.

I define utilitarian welfare as the expected outcome once I assign treatments with policy

π(Xi) in the entire population of n units. Under Assumption 2.1, welfare is defined as

WA,Z(π) =
1

n

n∑
i=1

E
[
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z] , Ti(π) = gn

( ∑
k∈Ni

π(Xk), Zi, |Ni|
)
. (4)

The definition of welfare implies no carryovers occur from the previous experimental inter-

vention once we deploy policy π on the population.6 I collect the assumptions below.

Assumption 2.4 (Observable characteristics and targeting). The researchers observe[
Ri

(
Yi, Di, Zi, DNi

, ZNi

)
, Ri

]n
i=1

from an experiment as in Equation (2), and bn(X1, · · · , Xn)

4Although we write Zi, |Ni| separately for expositional convenience, Zi (and Xi) can also contain the
degree and other network statistics if observed by the researcher, given that we impose no assumption on Z.

5For example, Πn may require π ∈ Π, and the capacity constraint 1
n

∑n
i=1 π(Xi) ≤ K for a constant K.

6In practice, carryovers do not occur if either the policy π is deployed sufficiently far in time from
the experimental intervention or if the experiment run by researchers has a neglible effect on the entire
population. See Athey and Imbens (2018) for a discussion on the no carryovers assumption.
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from the entire population for some arbitrary function bn(·), and arbitrary Xi ∈ X ⊆ Z.

They then constructs a (data-dependent) policy π̂n : X 7→ {0, 1}, π̂n ∈ Πn(bn(X)) ⊆ Π.

The policymaker observe X = (Xi)
n
i=1 from the population, and deploy π̂n on the entire

population i ∈ {1, · · · , n}. Here, Π is a class of pointwise measurable functions with finite

VC dimension VC(Π).7 Each π ∈ Π, generates welfare WA,Z(π) in Equation (4).

I refer to Πn(bn(X)) as Πn. Assumption 2.4 formalizes the policy targeting exercise and

imposes restrictions on the complexity of the function class Π as in previous literature (e.g.,

Kitagawa and Tetenov, 2018; Zhou et al., 2018). Ideally, one would like to learn

π∗
n ∈ arg max

π∈Πn

WA,Z(π). (5)

However, π∗
n depends on m(·) and A, both unobserved. I replace the oracle problem in

Equation (5) with its sample analog, and compare the estimated policy to π∗
n. I discuss

identification below and defer estimation to the following section. Define (with Ti(π) in (4))

Ii(π) = 1
{
Ti(π) = Ti, π(Xi) = Di

}
, ei(π) = e

(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
. (6)

Lemma 2.1 (Identification). Let Assumptions 2.1, 2.3 hold. For any π ∈ Πn

WA,Z(π) =
1

ne

n∑
i=1

E
[
RiYi

Ii(π)

ei(π)

∣∣∣A,Z] . (7)

Proof of Lemma 2.1. The proof is in Appendix D.3.1.

Lemma 2.1 shows that we can identify welfare using information from the propensity

score under exogeneity of Ri. It does not impose conditions on (A,Z) or εi (Assumption 2.2

is not required), other than independence with (Ri, Di) (Assumption 2.3).

Lemma 2.1 identifies welfare effects on the entire population of n individuals, condi-

tional on A (and therefore also unconditional on A), without requiring observing A. The

key intuition is to leverage the randomization induced by the sampling indicators Ri and use

their independence with the adjacency matrix A and unobservables εi. Incorporating sam-

pling uncertainty for policy targeting (without imposing assumptions on the observables and

unobservables) is a contribution of independent interest in the context of policy targeting.

7The VC dimension denotes the cardinality of the largest set of points that the function π can shatter.
The VC dimension is a common measure of complexity (Devroye et al., 2013).
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Remark 1 (Identification of the propensity score). Here, e(·) can be identified because

P
(
Di = d,

∑
k∈Ni

Dk = t
∣∣∣Zk∈Ni

= x, Rk∈Ni
= u, Zi = z,Ri = 1, |Ni| = l

)

= P
(
Di = d|Zi = z,Ri = 1

) ∑
w1,··· ,wl:

∑
v wv=t

l∏
k=1

P
(
D

N
(k)
i

= wk

∣∣∣Z
N

(k)
i

= x(k), R
N

(k)
i

= u(k), Ri = 1
)
.

(8)

for d ∈ {0, 1}, s ∈ Z, t ≤ l, where x(k) indicates the kth entry of x, and similarly for

u(k). The expression only depends on marginal treatment probabilities, identified from the

experiment. e(·) can then be written as a sum of probabilities in Equation (8), for any

gn(·) in Assumption 2.1. Also, if the treatments of the participants’ neighbors is assigned

differently than treatment to participants, P (Di = 1|Zi, Ri = 0, Rf
i = 1) is identified from

the neighbors’ assignments.

Remark 2 (Non-reversible treatments). The policy function class Πn does not depends on

the treatments randomized in the experiment. Assumption 2.4 rules out policies that force

policy-makers not to change the treatment status of those units treated in the experiment.

Appendix B.4 extends our results to non-reversible policies, i.e., of the form π(Xi)(1 −
Di)+Di, π ∈ Πn (treatment is one if Di = 1 and is π(Xi) otherwise), where the policymaker

cannot change the treatment status of individuals treated in the experiment. Our theoretical

guarantees (and estimation strategies) also apply to non-reversible treatments.

Remark 3 (Different populations). An interesting scenario is when individuals treated by

the policymakers are drawn from a population different from the one eligible for the ex-

periment (e.g., we sample individuals from a country to implement the policy in a different

country). We study this scenario in Section 4.3 and Appendix B.3.

Remark 4 (Comparison with global treatment rules). Whenever the network from the

entire population A is observed, policymakers may consider a global policy π̃i(Xi, A) that

also depends on A ∈ An. This differs from our case, where network statistics can only be

included in Xi when observed (e.g., Xi contains measures of centrality as in Bloch et al.,

2017), and treatments are assigned with policies π(Xi) instead of π̃i(Xi, A). In either case

(global or individualized rules), optimization takes into account spillovers for policy design.

These two approaches are complementary. Individualized assignments considered here

do not require collecting network data from the entire population and accommodate settings

where the target population is large (and larger than the sample size). However, estimation

of individualized rules only use (local) network information available from the experiment.

Global assignments can be more flexible: a global assignment rule uses information from

the target population adjacency matrix A to optimize over a large policy space. However,

12



global assignments require observing the population adjacency matrix A and they require

that the size of the target population is small (finite) to control the complexity of the policy

function class.8 These distinctions highlight the complementarity of the two approaches.

Global policy rules are best suited in settings where the adjacency matrix A is observed,

and the target population is constituted by networks of small (finite) size, as discussed in

Ananth (2021). Individualized rules instead are best suited in settings where network data

can be difficult to collect from a (large) target population.

Remark 5 (Additional extensions). Extending our framework to settings where Ri depends

on Zi is possible. Identification follows similarly, after dividing each summand in Lemma

2.1 by P (Ri = 1|Zi), assuming P (Ri = 1|Zi) = α(Zi)ne/n, for α(z) ∈ (0, 1). A different

extension is when spillovers over compliance occur. This is discussed in Appendix B.2.

Finally, a third extension is when higher-order interference occurs. This follows similarly to

what is discussed here once we control for (and observe) higher-order neighbors.

2.4 Network topology and overlap

I conclude the description of the setup with a set of assumptions on the network topology

and overlap that control the degree of dependence. Define Nn = maxi∈{1,··· ,n} |Ni|+ 2.

Assumption 2.5 (Maximum degree). Assume N 3/2
n log(Nn)/δn = O

(
n1/2−ξ

)
, almost surely

for some (unknown) ξ ∈ (0, 1/2].

Assumption 2.5 bounds the ratio of the maximum degree and the overlap constant and

trivially holds in networks with bounded degree described below.

Example 2.2 (Bounded degree). Suppose that Nn ≤ c0 almost surely for a constant c0

independent of n. Then Assumption 2.5 holds with ξ = 1/2 almost surely.

Example 2.2 holds for many economic models, for instance, the ones in De Paula et al.

(2018). Economic applications with a bounded degree include the Add Health Study, and

Jackson et al. (2012) among others.9 Assumption 2.5 allows for unbounded degree, in which

case properties of the estimators in Section 3 will depend on Nn and δn.

8For instance, for a global function class obtained via unions and the intersection of kn half-planes, the
VC dimension of the function class is of order kn log(kn) (Csikós et al., 2019). For a global policy, kn can
grow with n requiring a finite target population. In the absence of policy constraints, an alternative approach
is to impose modeling assumptions as in Kitagawa and Wang (2020), different from here, where we allow for
policy constraints and semi-parametric identification.

9In the Add Health Study researchers elicited up to five names of friends of each sex. The number of
reciprocated friends have median one and less than five percent of individuals have more than three of such
links (Footnote 7 in De Paula et al., 2018). In Jackson et al. (2012) fewer than 1 per 1,000 respondents
reached the caps of 5 or 8 nominations (Footnote 37, p. 1879).
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Example 2.3 (Unbounded degree). Suppose Nn = O(n1/3), and for any n,

Ti = 1
{∑

k∈Ni
Dk/|Ni| > 1/2

}
, such that P

(
Ti = 1|Zk∈Ni

, Rk∈Ni
, |Ni|, Ri = 1

)
∈ (ι, 1− ι),

for some ι ∈ (0, 1). Then Assumption 2.5 holds for ξ < 1/2.

Restrictions on the degree interact with the choice of the exposure mapping gn(·) and

the overlap constant δn. I provide two examples below.

Example 2.4 (Overlap as a function of the number of treated units). Suppose that for

arbitrary λn

gn(t, z, l) =

t if t < λn

λn otherwise.

This specification states that if individuals have less than λn treated neighbors, spillover

effects exhibit arbitrary heterogeneity in the number of treated friends. Spillovers are con-

stant if the number of treated neighbors exceed a certain threshold λn. In this example, the

overlap constant is of order min{γλn , (1− γ)λn} with γ as defined in Assumption 2.3.

Example 2.5 (Improving overlap via model restrictions). Additional restrictions on gn(·)
(and Ti) can improve overlap. Suppose that for some ordered τ1, τ2, τ3,

r(d, t, z, l, e) =


r̄1(d, z, l, e) if t/l ≤ τ1

r̄2(d, z, l, e) if τ1 < t/l ≤ τ2

r̄3(d, z, l, e) if τ2 < t/l ≤ τ3

(9)

for some possibly unknown functions r̄1, r̄2, r̄3. In this setting, the exposure mapping is a

step-function in the share of treated neighbors with a finite support.

In summary, Assumption 2.5 requires that the overlap constant δn → 0 at a slower rate

than 1/
√
n, that can hold under restrictions of either the exposure mapping or on the degree.

Section 4.1 presents theoretical results when Assumption 2.5 fails – that is, δn → 0 at a faster

rate in n, using a trimming strategy.

2.5 Spillovers in the related literature

I pause here to compare our framework and assumptions with existing models of spillovers.

The framework I present most closely connects to the literature on causal inference under

interference, including, among others, Hudgens and Halloran (2008), Manski (1993), Aronow

and Samii (2017) and the model in Leung (2020) in particular. The model in this paper allows

for arbitrary heterogeneity in the number of friends, |Ni|, observables Zi, and the exposure
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mapping Ti as a function of the number of treated friends. We can therefore achieve semi-

parametric identification of policy effects in the spirit of the literature on (augmented) inverse

probability weights (e.g., Tchetgen and VanderWeele, 2012; Aronow and Samii, 2017).

I do not require restrictions on observables Zi, which can be arbitrarily dependent, and

on A, other than restrictions on the maximum degree. This approach is possible once I

explicitly incorporate sampling uncertainty as in Abadie et al. (2020) for policy learning.

Similar restrictions on the degree are often imposed to obtain concentration of the estimated

causal effects (e.g., Sävje et al., 2021). Here, the maximum degree restrictions together

with the local interference assumption allow me also to control the complexity of the policy

function class, characterized by the direct and spillover effects
(
π(Xi),

∑
k∈Ni

π(Xk)
)
, π ∈ Π.

I draw connections to the literature on information diffusion and optimal seeding. This

literature mostly studies models where informed individuals transmit information to neigh-

bors sequentially over multiple periods (Banerjee et al., 2013, 2014; Akbarpour et al., 2018;

Kempe et al., 2003). These references do not take into account heterogeneity as in this

paper (e.g., through Zi), and study centrality measures motivated by the diffusion model

considered. This paper studies a static model with heterogeneity, with spillovers occurring

through the number of treated friends.

In particular, as noted by Banerjee et al. (2013), models of information diffusion focus on

either what Banerjee et al. (2013) defines as “information effects” (people become aware of

certain opportunities or technologies) or “endorsement effects” (people’s behavior may affect

others’ behavior), but not necessarily both (similar to what Manski 1993 defines exogenous

and endogenous spillovers). Once we interpret the outcome Yi as technology adoption,

this paper mostly focuses on information effects through the dependence of the outcome

on neighbors’ treatments (information). It can accommodate endorsement effects in those

settings where the function r(·) captures endorsement effects in a reduced form.10

Finally, a further distinction from the literature on seeding (Kempe et al., 2003; Kitagawa

and Wang, 2020; Galeotti et al., 2020) is that the current paper focuses on constrained poli-

cies, motivated by the cost of collecting network data, instead of first-best (unconstrained)

policies which would require information on the population network.
10An example is having two periods t ∈ {1, 2}, where the treatment consists of providing information at

time t = 1 to some individuals. At t = 1, outcomes only depend on individual treatments Di, whereas at
t = 2 outcomes depend on the average number of friends who adopted the technology. Let Yi,1 = Diτ + εi,1
the outcome at time t = 1, and Yi,2 = f(Di, Yi,1,

∑
k∈Ni

Yk,1, |Ni|, εi,2), for some function f(·) and i.i.d.
εi,1, εi,2. This model satisfy our assumptions for Yi,2, with εi = (

∑
k∈Ni

εk,1, εi,1, εi,2) in Assumption 2.2.
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3 Network Empirical Welfare Maximization

Next, I introduce our procedure and its properties. I estimate a policy with guarantees valid

for finite (possibly large) n and characterize convergence rates as n, ne → ∞. Convergence

rates are with respect to a sequence of data-generating processes indexed by n, each with a

single network A ∈ An, where I explicitly condition on A ∈ An, Z ∈ Zn unless otherwise

specified. Conditional statements that I provide below do not subsume that (A,Z) are

observed. Instead, they establish stronger guarantees than unconditional statements by

leveraging the independence of the sampling Ri with the network A and the assumption

that the sampled units are drawn from the (larger) target population (see Lemma 4.3).

3.1 Known propensity score

Suppose first researchers know the propensity score. Consider the double robust estimator

(AIPW):

Wn(π,m
c, e) =

1

ne

n∑
i=1

Ri

{
Ii(π)

ei(π)

(
Yi −mc

i (π)
)
+mc

i (π)

}
, (10)

where mc
i(π) = mc

(
π(Xi), Ti(π), Zi, |Ni|

)
. The function mc denotes an arbitrary regression

adjustment, possibly different from the population conditional mean function. Note that

mc can be arbitrary. Therefore, it does not require that the conditional mean functions are

identical across units (Assumption 2.2 (A)). The estimated welfare inherits double-robust

properties in the spirit of Robins et al. (1994), and Tchetgen and VanderWeele (2012),

Aronow and Samii (2017), Liu et al. (2019) with spillovers. For known propensity scores and

any mc, the estimator is unbiased for WA,Z(π) (see Appendix D.3.1).

Assumption 3.1 (Regression adjustment: oracle setup). For each d ∈ {0, 1}, t ∈ Tn, let

|mc(d, t, Zi, |Ni|)| < Γ, almost surely, for a finite constant Γ < ∞, and for z ∈ Z, l ∈ Z,
mc(d, t, z, l) ⊥

(
Yi, Ri, Di

)n
i=1

∣∣∣A,Z.
Assumption 3.1 states that the regression adjustment is (i) uniformly bounded and (ii)

independent of experiment participants. An example is mc
i = 0, or mc

i estimated on an

independent population. The use of mc
i(·) in this section is not necessary for our results

to hold. However, even with a known propensity score, using a regression adjustment can

improve the stability of the estimator when poor overlap occurs. Sections 3.2 and 4.2 provide

details where mc
i is estimated in-sample. With known propensity score and a parametric

regression adjustment (ii) is not necessary, as shown in Section 4.2. Let

π̂mc,e ∈ arg max
π∈Πn

Wn(π,m
c, e).
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Theorem 3.1 (Oracle Regret). Let Assumptions 2.1, 2.3, 2.4, 3.1, and (B), (C) in 2.2 hold.

For a universal constant C̄ < ∞, the following holds almost surely:

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] ≤ C̄

ΓN 3/2
n

γδn

√
log(Nn)VC(Π)

ne

.

Proof of Theorem 3.1. The proof consists of three steps. First, I extend symmetrization

arguments – widely studied for independent observations (e.g., Devroye et al., 2013) – for

network data. To obtain symmetrization, I group units into groups of conditionally inde-

pendent observations. Within each group, I provide bounds in terms of the Rademacher

complexity of the function class obtained from the composition of direct and spillover effects

(see Definition D.5). As a second step, I bound the Rademacher complexity in each group (i)

by deriving an extension of Ledoux and Talagrand (2011)’s contraction inequality (Lemma

D.6), using (ii) Dudley’s entropy integral bound (Wainwright, 2019, Theorem 5.22), and (iii)

providing an upper bound on the covering number of the product of the number of treated

neighbors and individual treatment (Lemmas D.5, D.7).11 As the last step, I invoke Brooks

(1941)’s theorem to control the number of groups containing conditionally independent units.

Section 3.4 presents a proof sketch, and Appendix D.2 the complete proof.

Theorem 3.1 provides a non-asymptotic upper bound on the regret, and it is the first

result of this type under network interference.

The regret bound depends on the network topology through the maximum degree Nn,

the overlap constant δn, and the (expected) sample size ne. The degree affects the regret

bound through two channels: (i) dependence between outcomes conditional on the network

and covariates and (ii) the complexity of the function class obtained by the composition of

direct and spillover effects. For (i), I leverage Assumptions 2.1, 2.3 (i, ii), and 2.2 (B), to

show each individual observation is dependent with at most 2N 2
n many other units. For (ii),

I leverage instead Assumptions 2.1 and 2.4, to bound (ii) as a function of the VC dimension

of Π and Nn. The bound also depends on δn, which can vary with n. Intuitively, for larger

networks (and larger degrees), the probability that individuals exhibit strict overlap may get

smaller, depending on the exposure mapping considered. The bound is independent of α in

Equation (2). Theorem 3.1 does not assume Assumption 2.2 (A).

The bound shrinks to zero as ne increases, only if the maximum degree and the overlap

constant grows at an appropriate slower rate than the sample size. We formalize this below.

Corollary 1 (Convergence rate with a possibly unbounded degree). Let the Assumptions

11See Wainwright (2019) for definitions of covering numbers.
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in Theorem 3.1 hold. Suppose in addition that Assumption 2.5 holds. Then

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] = O

(
n−ξ
e

)
almost surely, for ξ ∈ (0, 1/2] as defined in Assumption 2.5.

The corollary shows that the regret converges to zero at a rate that depends on the

convergence rate of the maximum degree and the number of experiment participants. For

bounded degree, the regret scales at rate 1/
√
ne.

Corollary 2 (Example 2.2 cont’d). Let the Assumptions in Theorem 3.1 hold, and Nn < c′0

almost surely, for a constant c′0 independent of n. Then almost surely,

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] = O

(
n−1/2
e

)
.

In the following theorem, I provide a lower bound for any data-dependent policy. Con-

sistently with the previous theorems, I provide the lower bound conditional on (A,Z).

Theorem 3.2 (Minimax lower bound on the rescaled regret). Let Π be the class of policies

π : X 7→ {0, 1}, with finite VC dimension VC(Π), X = Rd ⊆ Z, for some finite d < ∞.

Let Pn(A,Z) the set of conditional distributions Dn(A,Z) of (Yi, Di, Ri)
n
i=1|A,Z satisfying

Assumptions 2.1, 2.2, 2.3. Then for any gn(·) in Assumption 2.1, for any ne ≥ 16VC(Π), and

for any data-dependent π̂n ∈ Π, which depends on
[
Ri(Yi, Zi, Zk∈Ni

, Di, Dk∈Ni
, Ni), Ri

]n
i=1

,

sup
A∈Ao

n,Z∈Zn
sup

Dn(A,Z)∈Pn(A,Z)

δn

N 3/2
n log1/2(Nn)

EDn(A,Z)

[(
sup
π∈Π

WA,Z(π)−WA,Z(π̂n)
)∣∣∣A,Z]

≥ exp(−2
√
2)

25/2 log1/2(2)

√
VC(Π)

ne
,

(11)

where Ao
n ⊂ An denotes the space of symmetric unweighted adjacency matrices satisfying

Assumption 2.5, and EDn [·] denotes the expectation with respect to Dn.

Proof of 3.2. The proof follows similar steps of Devroye et al. (2013); Kitagawa and Tetenov

(2018), once I construct a sufficiently sparse adjacency matrix for the worst-case lower bound,

with two distinctions that, to my knowledge, are novel in the literature: I condition on

covariates and consider random sampling indicators. See Appendix D.2 for details.

Theorem 3.2 provides a worst-case lower bound to any data-dependent policy, holding

uniformly for any ne ≥ 16VC(Π). Similar to lower bounds in the literature (Kitagawa and
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Tetenov, 2018), the bound is maximin over the data-generating process, including any adja-

cency matrix A satisfying Assumption 2.5. However, different from Kitagawa and Tetenov

(2018), Theorem 3.2 establishes the minimax convergence rate of π̂mc,e for the rescaled regret

δn

N 3/2
n log1/2(Nn)

EDn(A,Z)

[(
sup
π∈Π

WA,Z(π)−WA,Z(π̂n)
)∣∣∣A,Z] (12)

after we divide by the factor (N 3/2
n log(Nn))/δn appearing in Theorem 3.1. The rescaling

factor differs from lower bounds on the (non-rescaled) regret in the literature, and it is mo-

tivated by the dependence of Nn with the adjacency matrix and δn with the data-generating

process. We discuss implications for the regret without rescaling below.

Corollary 3. For any data dependent π̂n ∈ Π, satisfying the conditions in Theorem 3.2,

sup
A∈Ao

n,Z∈Zn
sup

Dn(A,Z)∈Pn(A,Z)
EDn(A,Z)

[(
sup
π∈Π

WA,Z(π)−WA,Z(π̂n)
)∣∣∣A,Z] ≥ exp(−2

√
2)

25/2

√
VC(Π)

ne
.

Corollary 3 follows from the fact that δn/N 3/2
n log1/2(Nn) ≤ 1/ log1/2(2). It states that

the lower bound for the rescaled regret implies a lower bound for the regret. Therefore,

Theorem 3.2 establishes a minimax rate of convergence of π̂ for the regret without rescaling

under the additional assumption that Nn < c0 is uniformly bounded for a constant c0 < ∞.

In summary, the bound in Theorem 3.1 converges to zero as n, ne → ∞, in settings with

a sufficiently small degree (see Corollary 1). The bound in Theorem 3.1 does not converge to

zero if the degreeNn grows at an arbitrary rate with n. Therefore our bounds are informative

(converge to zero), only in settings with a sufficiently sparse graph. These settings include

bounded degree as a special case, but also allows for unbounded degree with rate satisfying

Assumption 2.5. For example, with an exposure mapping such that δn ∈ (δ, 1 − δ) for a

constant δ independent of n (for instance, the exposure mapping is as in Example 2.4 with

λn independent of n), the bound converge to zero only if N 3
n log(Nn)/n → 0. In addition,

the bound in Theorem 3.1 also provides a minimax rate of convergence of the regret (without

rescaling) in settings where the degree is uniformly bounded (but not necessarily otherwise).

Remark 6 (Expected regret). Theorem 3.1 provides guarantees on the regret conditional

on (A,Z), assuming that the experiment participants are drawn from the target population.

Section 4.3 shows that such guarantees are sufficient to also bound the regret with respect

to the expected welfare (expected over the distribution of (A,Z)) if the sample units are

drawn from the target population. When sampled units are not drawn from the (larger)

target population, regret bounds depend on additional terms that characterize the “cost” of

drawing a sample from a population different from the target one (see Section 4.3).
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3.2 Estimated nuisance functions

Next, I derive regret guarantees when estimating the conditional mean m(·) and/or propen-
sity score e(·), as defined in Equation (3) under Assumptions 2.2, and 2.3. Define m̂, and

ê the estimated conditional mean and propensity score as in Algorithm 3 (Appendix A),

Wn(π, m̂, ê) as the welfare with the estimated nuisance functions as in Equation (15), and

π̂m̂,ê ∈ arg max
π∈Πn

Wn(π, m̂, ê). (13)

I propose a modification of the cross-fitting algorithm – see Chernozhukov et al. (2018),

and Athey and Wager (2021) in particular – here studied in the context of interference. I

describe the algorithm in Algorithm 3 and provide a sketch in Algorithm 1.

First, I find the smallest partition of sampled individuals such that two individuals as-

signed to the same group are neither friends nor share a common friend. This information is

available under the sampling mechanism in Section 2.2, because researchers observe the set

of friends of each sampled individual. The solution to this problem is obtained by solving a

sequence of mixed-integer linear programs. Each program fixes the number of groups (start-

ing from one). For a given number of groups, it checks whether a feasible partition exists.

If no feasible partition exists, it increases by one the number of groups and iterates.

Once I obtain such groups, I estimate the conditional mean function using standard

cross-fitting within each group of individuals as in Athey and Wager (2021). Specifically,

I partition each group g into K equally sized folds; for individual i in group g, fold k,

I estimate her conditional mean function using information from all units in each fold in

group g except fold k. I repeat the same algorithm for the propensity score, where I first

estimate the individual treatment probability and then aggregate such probabilities as in

Remark 1. Algorithm 3 presents the details and Algorithm 1 a summary.

As in Athey and Wager (2021), the regret bound is increasing in the number of folds,

while the estimation error of the nuisance functions is decreasing in the number of folds (see

Appendix D.2.3). Therefore, we must choose a sufficiently large K to control the estimation

error of the nuisance functions. However, the choice of K must also guarantee that each fold

contains a non-negligible proportion of observations. In practice, I recommend K between

five and ten.

To my knowledge, Algorithm 3 is novel to the literature on interference. Its main in-

novation with respect to existing cross-fitting methods is the partitioning approach (Part 1

in Algorithm 1), here required due to interference. For settings where the network presents

approximately independent components (e.g., regions), I also present a computational re-

laxation in Algorithm 4. Algorithm 4 constructs subgraphs of the network recursively to
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Algorithm 1 Sketch of Network Cross-Fitting (see Algorithm 3 for details)

1: Partition sampled individuals:
a: Fix K = 1
b: Check whether a feasible partition of sampled individuals with K groups exists. The
partition must be such that two individuals in the same group are neither friends nor
share a common friend.
c: If such a partition does not exist, set K = K + 1 and iterate.

2: For each i, estimate the conditional mean function and propensity score for individual
i, m̂(i), ê(i) via cross-fitting using the units in i’s group returned by the partition in 1.
Define

m̂i(π) = m̂(i)
(
π(Xi), Ti(π), Zi, |Ni|

)
, êi(π) = ê(i)

(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, Ri, |Ni|

)
(14)

and

Wn(π, m̂, ê) =
1

ne

n∑
i=1

Ri

{
Ii(π)

êi(π)

(
Yi − m̂i(π)

)
− m̂i(π)

}
. (15)

return Wn(π, m̂, ê).

minimize the number of individuals with shared friends between different subgraphs. It es-

timates nuisance functions for unit i using information from units in the subgraphs different

from the one of unit i. With multiple disconnected regions, Algorithm 4 estimates the nui-

sance functions using information from all regions except the one containing i. See Appendix

A for details.

To study properties of the algorithm, I assume that the estimated nuisance functions

satisfy the same bounded and overlap conditions as their population counterparts (this can

be relaxed by assuming uniform convergence as in Athey and Wager, 2021).

Assumption 3.2 (Estimated nuisances). Assume that for each d ∈ {0, 1}, t ∈ Tn, i ∈
{1, . . . , n}, and m̂(i)(·), ê(i)(·) as in Algorithm 3, |m̂(i)(d, t, Zi, |Ni|)| < Γ almost surely, for a

finite constant Γ and ê(i)(d, t, Zk∈Ni
, Rk∈Ni

, Zi, Ri, |Ni|) ∈ (γδn, 1 − γδn), almost surely, for

γ, δn as defined in Assumption 2.3.

The rate of convergence here also depends on the product of the mean-squared error of

the estimated conditional mean function and propensity score, averaged over the population

covariates and number of neighbors:

Rn(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

(
m̂(i)(d, t, Zi, |Ni|)−m(d, t, Zi, |Ni|)

)2∣∣∣A,Z,Ri = 1

]

Bn(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

( 1

ê(i)(d, t, Zk∈Ni
, Rk∈Ni

, Zi, |Ni|)
− 1

e(d, t, Zk∈Ni
, Rk∈Ni

, Zi, |Ni|)

)2∣∣∣A,Z,Ri = 1

]
,

(16)
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where m̂(i), ê(i) are the estimated functions for unit i, as defined in Algorithms 1, 3.

Theorem 3.3. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.2 hold. Suppose that m̂, ê are

estimated as in Algorithm 3. Then

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] = O

(
n−ξ
e +

√
Rn(A,Z)× Bn(A,Z)

)
.

almost surely, for ξ ∈ (0, 1
2
] as defined in Assumption 2.5.

Proof of Theorem 3.3. The proof leverages the network cross-fitting argument (Algorithm

3) combined with similar techniques used to derive Theorem 3.1. The rate n−ξ
e follows from

Assumption 2.5. See Appendix D.2.3 for the complete derivation.

Theorem 3.3 states that the regret bound depends on two components. The first com-

ponent depends on the convergence rate of the maximum degree, overlap constant, and

experiment size, similar to what was discussed in the presence of a known propensity score

(e.g., Corollary 1). For a bounded degree as in Example 2.2, ξ = 1/2, and ξ < 1/2 oth-

erwise. The second component depends on the estimation error of the nuisance functions,

and in particular, it depends on the product of their convergence rates, in the same spirit of

standard conditions in the i.i.d. setting (e.g., Farrell, 2015).

Remark 7 (Convergence rate of nuisance functions). Appendix B.1 shows that using Algo-

rithm 3,
√

Rn(A,Z)× Bn(A,Z) = O(N 2
nn

−(ζm+ζe)
e /δn), where n−2ζm

e , and n−2ζe
e /δ2n are the

rate of convergence of the mean squared error of the conditional mean and propensity score,

respectively, on a sample of independent observations. As a result, wheneverN 1/2
n n

−(ζm+ζe)
e =

n
−1/2
e (e.g., n−ζm

e = n−ζe
e = N−1/4

n n
−1/4
e ), it follows that

√
Rn(A,Z)× Bn(A,Z) = O(n−ξ

e ).

Convergence rates for the estimation error of order N 1/2
n n−(ζm+ζe) = n

−1/2
e imply that the

estimation error of the nuisance functions does not affect the rate of the regret bound in

Theorem 3.1 in the absence of estimation error. Appendix B.1 presents formal results.

3.3 Optimization

Next, I discuss the optimization procedure. For simplicity, consider the most agnostic case

where Ti =
∑

k∈Ni
Dk denotes the sum of treated neighbors. Similar reasoning applies to

Ti being a known function of the sum of treated neighbors. Define the estimated effect of

assigning to unit i treatment d, after treating t neighbors:

qi(d, t) =

 1{
∑

k∈Ni
Dk = t,Di = d}

e
(
d, t, Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)(Yi −mc
(
d, t, Zi, |Ni|

))
+mc

(
d, t, Zi, |Ni|

) , (17)

22



where I omit the dependence of qi(·) with mc and e for the sake of brevity. Second, let

Bi(π, h) = 1
{∑

k∈Ni
π(Xk) = h

}
be the indicator of whether h neighbors of individual i

have been treated under policy π. We have the following:

|Ni|∑
h=0

{(
qi(1, h)− qi(0, h)

)
π(Xi)Bi(π, h) +Bi(π, h)qi(0, h)

}
= qi

(
π(Xi),

∑
k∈Ni

π(Xk)
)
. (18)

Namely, each element in the sum is weighted by the indicator Bi(π, h), and only one of

these indicators is equal to one. I can then define variables pi, pi = π(Xi), π ∈ Πn that denote

the treatment assignment of each unit i either sampled (Ri = 1) or friend of a sampled unit

(Rf
i = 1). For example, for π(Xi) = 1{X⊤

i β ≥ 0}, β ∈ B, (Florios and Skouras, 2008),

X⊤
i β

|Ci|
< pi ≤

X⊤
i β

|Ci|
+ 1, Ci > sup

β∈B
|X⊤

i β|, pi ∈ {0, 1},

where pi is equal to one if X⊤
i β is positive, and zero otherwise. The key intuition is to

introduce additional variables to write Bi(π, h) using mixed-integer linear constraints. Define

ti,h,1 = 1

{∑
k∈Ni

pk ≥ h

}
, ti,h,2 = 1

{∑
k∈Ni

pk ≤ h

}
, h ∈ {0, · · · , |Ni|}.

It follows that ti,h,1 + ti,h,2 − 1 = Bi(π, h), and that such variables admit a mixed-integer

linear program characterization. Formally, the optimization program is

max
{ui,h},{pi},{ti,1,h,ti,2,h}

n∑
i=1

|Ni|∑
h=0

Ri

{(
qi(1, h)− qi(0, h)

)
ui,h + qi(0, h)(ti,h,1 + ti,h,2 − 1)

}
(19)

under the following constraints:

(A) pi = π(Xi), π ∈ Πn, ∀i : Ri = 1 or Rf
i = 1

(B)
pi + ti,h,1 + ti,h,2

3
− 1 < ui,h ≤

pi + ti,h,1 + ti,h,2
3

, ui,h ∈ {0, 1} ∀h ∈ {0, · · · , |Ni|},∀i : Ri = 1

(C)
(
∑

k Ai,kpk − h)

|Ni|+ 1
< ti,h,1 ≤

(
∑

k Ai,kpk − h)

|Ni|+ 1
+ 1, ti,h,1 ∈ {0, 1}, ∀h ∈ {0, · · · , |Ni|},∀i : Ri = 1

(D)
(h−

∑
k Ai,kpk)

|Ni|+ 1
< ti,h,2 ≤

(h−
∑

k Ai,kpk)

|Ni|+ 1
+ 1, ti,h,2 ∈ {0, 1}, ∀h ∈ {0, · · · , |Ni|},∀i : Ri = 1.

(20)

The first constraint can be replaced by methods discussed in previous literature, such as

maximum scores (Florios and Skouras, 2008). By contrast, the additional constraints are

due to interference. In practice, including additional (superfluous) constraints stabilizes the

optimization problem. These are
∑

h(ti,h,1+ ti,h,2−1) = 1 for each i and
∑

i

∑
h ui,h =

∑
i pi.

Whenever units have no neighbors, the objective function is proportional to the one discussed

in Kitagawa and Tetenov (2018) under no interference. Therefore, the formulation generalizes

the MILP formulation to the case of interference.
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Theorem 3.4. Let Ti =
∑

k∈Ni
Dk. Then π̂ ∈ argmaxπ∈Πn

Wn(π,m
c, e), if and only if it

maximizes Equation (19) with constraints in Equation (20).

The proof of Theorem 3.4 follows directly from the argument in the current section.

3.4 Derivation of Theorem 3.1: main steps

This section includes a sketch of the proof of Theorem 3.1, whereas Appendix D.2 presents

formal definitions and derivations. Readers not interested in the proof of Theorem 3.1 can

skip to Section 4 (or 5). For brevity, in the argument below, I further assume Yi ∈ [−Γ′,Γ′]

for a finite constant Γ′ < ∞; that is, the outcome is uniformly bounded. Appendix D.2

presents derivations for unbounded outcomes. Because Πn ⊆ Π, it follows that

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] ≤ 2E

[
sup
π∈Πn

∣∣∣Wn(π,m
c, e)−WA,Z(π)

∣∣∣|A,Z]
≤ 2E

[
sup
π∈Π

∣∣∣Wn(π,m
c, e)−WA,Z(π)

∣∣∣|A,Z] , (21)

our focus will be bounding the right-hand side of Equation (21). Define

Qi(π,A,Z) = Ri

[
Ii(π)

ei(π)

(
Yi −mc

i (π)
)
+mc

i (π)

]
,

where the dependence with e,mc is suppressed for convenience. Define Qn(π,A, Z) as the

joint distribution, of Qi, namely
(
Qi(π,A, Z)

)n
i=1

∣∣∣A,Z ∼ Qn(π,A, Z), for given π,A, Z.

Define (σi)
n
i=1 i.i.d. Rademacher random variables independent of observables and un-

observables (P (σi = 1) = P (σi = −1) = 1/2) and Eσ[·] denotes the expectation only

with respect to (σi)
n
i=1, conditional on observables and unobservables. By Lemma 2.1

E[Wn(π)|A,Z] = WA,Z(π) for all π ∈ Π.

Symmetrization with network data Next, I extend the symmetrization argument (e.g.,

Lemma 6.4.2 in Vershynin, 2018) to the context of this paper. Define(
Q′

i(π,A, Z)
)n
i=1

∣∣∣A,Z ∼ Qn(π,A, Z), an independent copy of
(
Qi(π,A, Z)

)n
i=1

, conditional

on (A,Z). It follows

(21) ≤ E

[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z] (∵ Jensen’s inequality). (22)

Ideally, using standard symmetrization arguments, I would like to bound the right-hand

side in Equation (22). Unfortunately, this is not possible because of dependence. I instead

partition observations into groups of conditionally independent random variables. I then

obtain bounds that depend on the number of such groups. Let A2 be the adjacency matrix
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obtained by connecting neighbors and two-degree neighbors under A. Let χn(A
2) be the

smallest number of groups such that each group does not contain two units that either are

neighbors or share a common neighbor under A, and C2
n = {C2

n(g)}
χn(A2)
g=1 , C2

n(g) ⊆ {1, · · · , n},
the smallest set of such groups. Then

E

[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z] (∵ triangular inequality)

≤
∑

g∈{1,··· ,χn(A2)}

E

sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z


︸ ︷︷ ︸

(II)

.
(23)

Note that Qi equals zero if Ri = 0. Therefore, under Assumption 2.3 (ii), it follows that

Qi can be written as a function of
[
Ri

(
εi, Ri, εDi

, Rf
i , Rj∈Ni

, Rf
j∈Ni

, εDj∈Ni
, Zi, |Ni|, Zk∈Ni

)]
,

where Rf
i = 1{

∑
k Ai,kRk > 0}. For each j ∈ Ni, R

f
j equals one almost surely conditional on

Ri = 1. Rf
i is instead a deterministic function of Rj∈Ni

. As a result, because Qi = 0 if Ri = 0

almost surely, one can writeQi only as a function of
[
Ri

(
εi, Ri, εDi

, Rj∈Ni
, εDj∈Ni

, Zi, |Ni|, Zk∈Ni

)]
,

its dependence with Rf
j∈Ni

can be dropped.

Under the distributional assumptions of each of these components, it follows that Qi are

jointly independent if they are not neighbors and do not share a common neighbor conditional

on A,Z.12 Because Qi, Q
′
i|A,Z have the same marginal distribution by construction,

(II) ≤ 2E
[
Eσ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

σiQi(π,A,Z)
∣∣∣]

︸ ︷︷ ︸
(III)

∣∣∣A,Z].

Bound on the function class complexity I control (III) with Lemma D.7. The

idea of the lemma is the following. First, note that here Qi(π, ·) depends on π through(
π(Xi),

∑
k∈Ni

π(Xk)
)
. I show that Qi(π,A, Z) is Lipschitz in

(∑
k∈Ni

π(Xk)
)

with the

Lipschitz contant proportional to Γ′

γδn
. I then leverage extensions of the Ledoux-Talagrand

contraction inequality (Lemma D.6, which extends Theorem 4.12 in Ledoux and Talagrand,

2011) to show

Eσ

sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

σiQi(π,A,Z)
∣∣∣
 ≤ C̄Γ′

γδn
Eσ

sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

Riσi

( ∑
k∈Ni

π(Xk)
)
π(Xi)

∣∣∣
 (24)

for a universal constant C̄ < ∞. Using Theorem 5.22 in Wainwright (2019), I can bound

the right-hand side in Equation (24), by an integral of the covering number of a function

12In particular, we leverage here Assumption 2.1 (interference is local); Assumption 2.3 (ii) (treatments
are conditionally independent); Assumption 2.2 (B) (unobservables are conditionally independent if two
individuals do not share a common neighbor). I relax Assumption 2.2 (B) in Section 4.
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class obtained from
(∑

k∈Ni
π(xk)

)
π(xi), π ∈ Π – which we can bound by a function of the

maximum degree and the VC dimension of Π (Lemma D.5) – and

√∑n
i=1 Ri1{i∈C2

n(g)}
ne

.

Conclusions Collecting terms, for a universal constant C̄ < ∞, I show

(21) ≤ C̄ ×
χn(A2)∑
g=1

× Γ′

γδn
×
√

log(Nn)NnVC(Π)× E

[√∑n
i=1Ri1{i ∈ C2

n(g)}
ne

∣∣∣A,Z]

≤ C̄ ×
√
χn(A2)× Γ′

γδn
×
√

log(Nn)NnVC(Π)× E

[√∑n
i=1Ri

ne

∣∣∣A,Z] (∵ concavity of
√
x).

The first term
√
χn(A2) captures the dependence structure. By Brooks (1941)’s theorem,

χn(A
2) ≤ 2N 2

n (see Lemma D.5). The second term captures Lipschitz-continuity of the

objective function and depends on the overlap 1/δn. The third term captures the complexity

of the function class of interest, increasing in the maximum degree. The last term captures

concentration in the sample size. Using Jensen’s inequality, E
[√∑n

i=1 Ri

ne

]
≤ 1/n

1/2
e . In

Theorem 3.1, Γ replaces Γ′ under bounded moments, instead of bounded outcomes.

Remark 8 (Independence of sampling indicators). My results extend to settings where

sampling indicators are locally dependent. For instance, if indicators are dependent between

two-degree neighbors, the proof above follows verbatim, because the sampling indicators in

the set C2
n(g), g ∈ {1, · · · , χ(A2

n)} are independent.

Remark 9 (Regret conditional on εi). For known propensity score and uniformly bounded

outcome, the proof technique follows verbatim conditional on εi, once I define welfare as
1
n

∑n
i=1 r

(
π(Xi),

∑
k∈Ni

π(Xk), Zi, |Ni|, εi
)
, conditional on (εi)

n
i=1, as in a design-based frame-

work (e.g. Leung, 2021). In particular, we can invoke verbatim the symmetrization argument

in Equation (22) and follow the same steps, providing stronger guarantees that hold condi-

tional on (εi)
n
i=1 (without assumptions on (εi)

n
i=1). However, with an unknown propensity

score, convergence rates of the estimators in Section 3.2 depend on the distribution of εi:

regret guarantees can only be obtained in expectation, after integrating welfare over εi as in

Kitagawa and Tetenov (2018), Athey and Wager (2021).

4 Main extensions

I discuss here trimming with poor overlap, higher-order dependence, different target and

sample units, and non-reversible treatments. Appendix B contains additional extensions.
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4.1 Trimming to control overlap

In this subsection, I provide regret bounds whenever a few units may present a large degree.

I consider the setting where Ti =
∑

k∈Ni
Dk. To guarantee overlap, I introduce the following

trimming estimator:

W tr
n (π,mc, e;κn) =

1

n

n∑
i=1

Ri

{
Ii(π)

ei(π)

(
Yi −mc

i(π)
)
1
{
|Ni| ≤ logγ(κn)

}
+mc

i(π)

}
, (25)

with ei(π),m
c
i(π), Ii(π) as in Equation (10). Here, logγ(κn) defines the trimming constant,

as the logarithm in scale γ of a user-specific κn (with γ in Assumption 2.3).

The trimming estimator builds on the following idea: it excludes the direct effect on the

largely connected nodes (with more than logγ(κn) neighbors) but keeps information from the

spillovers that such nodes generate. This is because nodes with most connections are those

for which overlap restrictions are more likely to fail. Define

π̂tr
κn

∈ arg max
π∈Πn

W tr
n (π,mc, e;κn), Pn

(
|Ni| ≥ logγ(κn)

)
=

1

n

n∑
i=1

1
{
|Ni| ≥ logγ(κn)

}
.

Theorem 4.1. Suppose that Pn

(
|Ni| ≥ logγ(κn)

)
< c, for a constant c < 1. Let Ti =∑

k∈Ni
Dk, and let Assumptions 2.1, 2.2, 2.3, 2.4, 3.1 hold. Then

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂
tr
κn
)
∣∣∣A,Z] = O

N 3/2
n

κn

√
log(Nn)VC(Π)

ne

+ Pn

(
|Ni| ≥ logγ(κn)

) .

Proof of Theorem 4.1. See Appendix D.2.

Theorem 4.1 shows we can improve the regret bound for a suitable choice of κn under

restrictions on the degree distribution. For instance, suppose
√
n-many individuals have

a degree that can grow in n, whereas all other units have a degree bounded by at most

logγ(κ), for a constant κ independent of n. In this case, Pn(|Ni| ≥ logγ(κ)) = O(
√

α
ne
), and

the regret is of order O
(

N 3/2
n

κ

√
log(Nn)VC(Π)

ne

)
, independent of δn. Theorem 4.1 illustrates how

information can be leveraged from the degree distribution to improve convergence rates.

4.2 Regret with higher-order dependence

Next, I characterize regret bounds in settings where individuals can depend on friends up to

the degree of order M , where M is a finite number and unknown. To simplify exposition, I

assume the outcome is uniformly bounded.
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Assumption 4.1 (Higher-order dependence and bounded outcome). Suppose that for some

unknown M ≥ 2, (A) εi ⊥ (εj)j ̸∈∪M
k=1Ni,k

∣∣∣A,Z, where Ni,k denotes the set of connection of i

of degree k. Suppose in addition that (B) Yi ∈ [−Γ′,Γ′], for a positive constant Γ′ < ∞.

Under Assumption 4.1, unobservables can depend on individuals of at most degree M .

SupposeM is unknown and researchers do not have information from higher-order neighbors.

Definemc : {0, 1}×Z×Z×Z 7→ [−Γ′,Γ′] for some finite Γ′ < ∞, ec(·; |Ni|) : Z |Ni|×{0, 1}|Ni|×
Z 7→ (γδn, 1 − γδn), the pseudo-true conditional mean function and propensity score, and

m̂, ê their corresponding estimators constructed arbitrarly (e.g., pooling information from

all sampled units). Let

R̃n(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

(
m̂(d, t, Zi, |Ni|)−mc(d, t, Zi, |Ni|)

)2
|A,Z

]
.

B̃n(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

( 1

ec(d, t, Zk∈Ni
, Rk∈Ni

, Zi)
− 1

ê(d, t, Zk∈Ni
, Rk∈Ni

, Zi)

)2
|A,Z

] (26)

denote the mean-squared errors of the estimators obtained from all sampled units, averaged

over the population covariates and number of neighbors. Different from Theorem 3.3, we do

not need to condition on Ri = 1 in Equation (26) because no cross-fitting is used, and the

estimated nuisance function is independent of i’s index.

Theorem 4.2. Let Assumptions 2.1, 2.3 hold, and Condition (C) in 2.2, Assumptions 2.4,

2.5, 3.1, 3.2, 4.1 hold. Assume either (or both) (i) ec(·) = e(·), or (ii) Assumption 2.2 (A)

holds and mc = m. Then, for M ≥ 2, ξ ∈ (0, 1/2] as in Assumption 2.5:

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] = O

(
MNM/2−1

n n−ξ
e +

1

δn

√
max

{
R̃n(A,Z), B̃n(A,Z)

})
.

Proof of Theorem 4.2. See Appendix D.2.1

Theorem 4.2 provides a uniform bound on the regret, and it is double robust to correct

specification of the conditional mean and the propensity score. The theorem’s result depends

on the convergence rate of ê and m̂ to their pseudo-true value. For parametric estimators of

the conditional mean and the propensity score and bounded degree, the regret bounds scale

at rate 1/
√
ne, divided by the overlap parameter. For general machine-learning estimators,

the rate can be slower than the parametric one, reflecting the “cost” of the lack of knowledge

of the degree of dependence M . Here, NM/2−1
n captures higher-order dependence. Theorem

4.2 does not require that Assumption 2.2 (A) holds in settings with a correctly specified

propensity score, assuming m̂c converges to some pseudo-true value mc.
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4.3 Expected regret with a different target population

This subsection compares regret guarantees when units are either drawn from the (larger)

target population as described in Section 2, or units are drawn from a different population

from the target population. Following Kitagawa and Tetenov (2018), and to simplify expo-

sition in this subsection, we consider a policy function class Πn = Π where Π is not data

dependent.13 Consider a population with n individuals, connected under adjacency matrix

A′ and with covariates matrix Z ′. For given (A′, Z ′), welfare is defined as

WA′,Z′(π) =
1

n

n∑
i=1

m
(
π(Xi),

∑
k

A′
i,kπ(X

′
k), Z

′
i,
∑
k

A′
i,k

)
, X ′

i ⊆ Z ′
i. (27)

Consider two notions of regret, the conditional and expected regret, defined respectively as

Rcond
Π,A′,Z′ = E

[
sup
π∈Π

WA′,Z′(π)−WA′,Z′(π̂mc,e)
∣∣∣A′, Z ′

]
,

Rexp
Π = sup

π∈Π
E
[
WA′,Z′(π)

]
− E

[
WA′,Z′(π̂mc,e)

]
.

(28)

The conditional regret is a function of the target population adjacency matrix and covariates

Z ′, whereas the expected regret takes expectation over (A′, Z ′). The expected regret is

(implicitly) a function of the joint distribution of (A′, Z ′, A, Z), since it integrates over the

distribution of (A′, Z ′) and π̂ estimated on the sampled units.

When the target population differs from the population from which we sample experiment

participants, we can only hope to control the expected, but not the conditional regret. When

instead the target population is the one from which we sample the experiment participants,

we can control both notions of regret as shown in the following lemma.

Lemma 4.3 (Expected and conditional regret). Suppose that (A′, Z ′) = (A,Z) almost surely,

i.e., for any realization of (A,Z), experiment participants are always drawn from the (larger)

target population as in Section 2. Then

Rexp
Π ≤ E

[
Rcond

Π,A,Z

]
,

where Rcond
Π,A,Z is bounded as in Theorem 3.1 for Πn = Π.

Lemma 4.3 shows that the regret guarantees in Section 3 are valid bounds on the expected

(and conditional) regret. The proof of Lemma 4.3 follows directly from Jensen’s inequality

and the law of iterated expectations. The main assumption of Lemma 4.3 is that the sampled

13We assume that Πn = Π not to define the joint distribution of (X,A′, Z ′) in the definition below.
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i ∼ P(Zi, Ri, R

f
i )

[
(Yi, Zi, ZNi

, Di, DNi
)Ri, Ri

]n
i=1

Sample from target pop Sample not from target pop

Figure 2: Example of the experiment (picture at the center) and policy targeting exercise when
the sample is drawn from the target population as in Section 2.3 (left-hand side) or the sample
is not drawn from the target population (right-hand side). Green dots denote treated units, and
pink dots denote untreated ones. The experiment runs as described in Section 2. Researchers
observe the vector of outcome, treatment, neighbors, treatments, and covariates of sampled units
((Yi, Zi, ZNi , Di, DNi)Ri), as well as the the identity of whom they sample (Ri). When the ex-
periment participants are drawn from the target population, researchers then design a treatment
allocation π(Xi) for the entire population using information Xi, a subset of Zi available to policy-
makers for all n units. When instead the target population is different from the population from
which the sample is drawn, policymakers only observe covariates (X ′

i)
n
i=1 from the target sample,

and the experiment did not use a sample drawn from the target population.

units are drawn from the (larger) target population, which is the main case of interest in

this paper. This is a common feature in applications where researchers sample (small groups

of) individuals at random from a large region or country (e.g., Cai et al., 2015; Egger et al.,

2019), and are interested in scaling the policy up in such a region or country.

Suppose, however, we are interested in implementing the policy on a population different

from the one from which we have drawn our sample (e.g., in a different country). In the

following theorem, we study guarantees of the proposed procedure for this setting.

Theorem 4.4 (Sampled units not drawn from the target population). Suppose that the

conditions in Theorem 3.1 hold, with (A′, Z ′) ⊥
[
A,Z, (Yi, Ri, Di)

n
i=1

]
. For a universal

constant C̄ < ∞,

Rexp
Π ≤C̄

ΓEA

[
N 3/2

n log1/2(Nn)
]

γδn

√
VC(Π)

ne
+ 2EA,Z

[
sup
π∈Π

∣∣∣WA,Z(π)− EA′,Z′ [WA′,Z′(π)]
∣∣∣] ,

where EA,Z [·] is the expectation operator with respect to the distribution of (A,Z).

The proof is in Appendix D.2.5. Theorem 4.4 provides a bound on the expected (instead

of conditional) regret, allowing the sampled units to be drawn from a population different
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from the target population. The bound depends on two components. The first mimics the

component in Theorem 3.1 and depends on the expected maximum degree and the expected

size of the sampled population ne. The second component instead captures the discrepancy

between the population from which the sample is drawn (A,Z) and the target population.

Suppose that (A,Z), (A′, Z ′) have the same distribution. It follows

E
[
sup
π∈Π

∣∣∣WA,Z(π)− EA′,Z′ [WA′,Z′(π)]
∣∣∣]

= E

[
sup
π∈Π

∣∣∣ 1
n

n∑
i=1

m(π(Xi),
∑
k

Ai,kπ(Xk), Zi, |Ni|)− E
[
m(π(Xi),

∑
k

Ai,kπ(Xk), Zi, |Ni|)
]∣∣∣] , (29)

which is independent of the sample size ne. Equation (29) depends on how fast the condi-

tional mean functions of all units n concentrate around their expectation uniformly over Π.

Equation (29) captures the expected “cost” of targeting treatments on a population different

from the one from which the sample was drawn.

Remark 10 (Trade-offs of collecting network data). In settings where the target population

is different from the population from which the sample is drawn, it is possible to obtain

faster regret bounds if researchers observe network data from the entire target population.

I show this in Appendix B.3, where regret guarantees do not depend on the additional

component EA,Z

[
supπ∈Π

∣∣∣WA,Z(π)− EA′,Z′ [WA′,Z′(π)]
∣∣∣]. Therefore, Appendix B.3, together

with Theorem 4.4, illustrates trade-offs between collecting and not collecting network data

from the target sample when sampled units are not drawn from the target population.

5 Empirical application

I now illustrate the proposed method using data originating from Cai et al. (2015). The

authors study the effect of an information session on farmers’ weather insurance adoption.

Individuals are grouped into 185 addresses (villages) grouped into approximately 50 larger

areas. According to the authors, “All rice-producing households were invited to one of the

sessions, and almost 90% of them attended. Consequently, this provided us (the authors)

with a census of the population of these 185 villages. In total, 5,335 households were sur-

veyed” (Cai et al., 2015). Before conducting the experiment, researchers collected network

data by asking each individual to indicate at most five friends (who can be in the same

or different village). On average, 50% of the connections of sampled units have a different

village. More than 90% of the connections are within the same area.

In this application, I use information collected from those units for which information

about their post-treatment outcome and their friend’s identity is available; in total, 4511,
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a subset of the population. The experiment consists of two rounds of information sessions

three days apart, each round containing two types of information sessions (simple and in-

tensive). Households are randomized to each round and within each round to each type of

information session. By using time variation over the two rounds, Cai et al. (2015) show

the existence of significant neighbors’ spillover effects of an intensive information session on

second-round participants’ outcomes and no endogenous spillover effects, consistently with

the model presented in this paper. I defer a discussion on how the model and assumptions

of this paper connect to Cai et al. (2015) to Section 5.3.

5.1 Experimental setup and estimation

In the experiment, “the effect of social networks on insurance take-up is identified by look-

ing at whether second round participants are more likely to buy insurance if they have more

friends who were invited to first round intensive sessions” (Cai et al., 2015). Specifically,

each round consists of two sessions held simultaneously. In the first round, households are

assigned to either a 20-minute session during which researchers offer details about the insur-

ance contract only (control arm, “simple” information session) or a 45-minute session that

also provides details about the expected benefits of insurance (treatment arm, “intensive”

information session). In the second round, farmers are assigned similarly to either inten-

sive or simple information sessions. Treatment denotes whether individuals were assigned

to an intensive information session (either in the first or second round), whereas, by design,

spillovers occurs from the first to second round, as described in Cai et al. (2015).14 Re-

searchers also considered additional arms where they provided information about purchase

decisions of other participants (“More info” in Figure 3). Here, I follow the main analysis in

Cai et al. (2015) (Table 2), and focus on providing information on insurance benefits only.

I follow Cai et al. (2015) in the model specification. I estimate a model using all first-

round participants and those second-round participants either in the control arm or in the

main (intensive) treatment arm.15 I estimate m̂ using the linear probability model for the

outcome as in Cai et al. (2015) (Table 2, Col (4)), controlling for area fixed effects, a large

set of covariates, the average number of treated neighbors, individual treatment, and the

14For estimation, I follow Cai et al. (2015) and consider the general network matrix where spillovers only
occur from individuals participating in the first information session to individuals in the second session.
When evaluating the out-of-sample performance of the policy, I use the original “general network” as an
adjacency matrix because out-of-sample evaluations may not have the sequential structure of the experiment
(i.e., some individuals may be treated and asked to make purchase decisions some time after treatment occurs,
possibly generating spillovers also on the treated units participating in the same information session).

15Namely, I follow Column (2)-(5) in Table 2 in Cai et al. (2015). As discussed in Cai et al. (2015), I can
drop observations in the “More info” treatment arms for estimating the conditional mean function because
individuals in the second-round of information sessions do not generate spillover effects by design.
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round

Simple
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Intensive
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Second
round

Simple
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Intensive
session

More
Info
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Figure 3: Design in Cai et al. (2015) with household-level treatment randomization. Participants
are assigned at random to first and second rounds, and within each round, to different information
sessions. Simple session denotes the control arm, where researchers provided information about the
insurance contract only. Intensive session is the main treatment arm, where individuals are also
provided with information about the benefits of insurance. “More info” contains additional arms
with information about purchase decisions, omitted in our analysis and Cai et al. (2015)’s main
analysis. Purchase decisions were made at the end of each information session.

interaction between individual and neighbors’ treatments. The model in Cai et al. (2015)

assumes homogenous treatment effects across covariates and villages. Here, I also allow

for some heterogeneity in covariates and control for interaction terms of the rice area, a

coefficient capturing risk aversion and education with individual and neighbors’ treatments.

Following Cai et al. (2015), I consider the “general network” as the main network, that is,

the raw network data obtained from surveys where an individual generates spillover effects

on i if she was indicated by i as a friend. I then construct welfare using a doubly-robust

estimator, with ten-fold cross-fitting as in Algorithm 4. The conditional mean is estimated

via lasso with a small penalty (e−12) to increase the stability of the estimator. The individual

propensity score is estimated as in Remark 1 via a penalized logistic regression with a similar

small penalty and 5% trimming.

5.2 Policy evaluation

I “simulate” the following environment: researchers collect information from villages in the

first fifteen areas. They estimate the policy to treat individuals in the remaining villages.

In the remaining villages, I assume the policymaker does not have access to the network

information but only observes the farmer’s education, risk aversion, and rice area. I then

compute welfare effects out-of-sample on the villages outside the training set (first 15 areas).

I repeat the same process via three-fold cross-fitting: I use the second fifteen areas as a

training set and the remaining areas as a test set; similarly, I use the last group of areas as

a training set and the first thirty areas as a test set. Finally, I compute the average out-of-
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sample improvements over the three out-of-sample evaluations. The out-of-sample evaluation

uses the double-robust score, estimated out-of-sample. This exercise mimics settings where

participants are sampled from a random subset of villages, and the treatment assigned to

the experiment participants cannot be changed after the experiment (see Remark 2). In

this exercise, I sample areas instead of villages to guarantee that the welfare estimates are

independent of the training set, a desirable property for out-of-sample comparisons.

I contrast to the empirical welfare-maximization method that ignores welfare effects in

Athey and Wager (2021); Kitagawa and Tetenov (2018) and uses the same policy and models

of the proposed procedure for both the propensity score and conditional mean function

(including that the conditional mean function controls for spillovers).

As a first exercise, I consider simple policies that use information from transformations

of two of the three covariates: education, rice area, and a coefficient capturing risk aversion.

I compute simple classification trees obtained for all possible two-out-of-three combinations

of such variables. The tree finds one optimal split over the first (continuous) variable. The

split for the second variable is constrained to be at the population median value. This pol-

icy is simple to compute and communicate because it assigns treatments based on a few

possible sub-groups. I study out-of-sample improvements while varying the treatment cost

as 1%, 3%, 5% of the insurance take-up benefit. These costs are comparable to the direct

treatment effect that we would estimate once observations from all villages as in Table 2,

Col 2 in Cai et al. (2015) are pooled (approximately equal to 3%). Table 1 provides wel-

fare comparisons. We observe welfare improvements up to approximately thirty percentage

points and positive effects uniformly across the specifications. These economically significant

improvements are obtained despite the network not being observable in the target sample.

As a second exercise, I consider a more complex policy consisting of a maximum score

that controls for education, rice area and risk aversion as follows:

π(Xi) = 1
{
β0 +Rice area× β1 +Risk aversion × β2 + Education× β3 > 0

}
. (30)

The parameters are estimated using the mixed-integer linear program in Section 3.3. Table

2 reports the average out-of-sample welfare improvement estimated via three-fold cross-

fitting. It shows out-of-sample welfare improvements up to nine percentage points. This

result illustrates the benefits of the procedure for more complex policy functions as well.

The cross-fitting procedure returns three policies estimated on independent samples.

To investigate the properties of the estimated policy, Table 2 reports the coefficients of

the estimated policy (NEWM) leading to the largest out-of-sample welfare. The policy

treats individuals who are more risk-averse, less educated, and with a smaller rice area. I

contrast this policy with the one that ignores network effects (EWM). The two policies are
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substantially different when treating individuals with larger rice areas and risk aversion.

This difference highlights the importance of taking into account spillover effects for policy

targeting because different subgroups should be treated differently with spillover effects.

Table 1: Out-of-sample welfare improvement for a classification tree upon empirical welfare-
maximization targeting rule in Athey and Wager (2021) that does not account for network effects in
the design of the policy. Different columns denote different X variables considered for the design of
the policy. Here C denotes the cost of the treatment. The policy is a classification tree that allows
for the first covariate to be continuous and finds the best split over the first covariate, whereas the
second covariate is whether such a variable is above or below its median value or missing.

Educ & Rice-ar Educ & Risk-av Rice-ar & Risk-av

C = 1% 0.146 0.084 0.289
C = 3% 0.159 0.093 0.201
C = 5% 0.093 0.111 0.143

Table 2: Estimated coefficients for π(X) = 1{X⊤β + β0 > 0}, as a function of the rice area of the
farmer, a coefficient capturing risk aversion and education. NEWM denotes the proposed method
and EWM the double-robust empirical welfare-maximization procedure that ignores network effects.
Coefficients are normalized by β0, with estimated β0 = 1 for both NEWM and EWM. The right-
hand-side panel reports the average out-of-sample improvement of the NEWM method over policies
that ignore network effects, estimated via three folds cross-fitting. C denotes the cost of treatment.
The left-hand-side panel reports the estimated coefficients of the policy with the largest out-of-
sample welfare for C = 5%.

Rice Area Risk Aversion Educ Welfare Improvement
C = 1% 3% 5%

NEWM -0.068 0.395 -0.397 0.074 0.085 0.093
EWM -0.003 -0.041 -0.473

5.3 Assumptions and applicability of the method

This section concludes with a review of the assumptions required by the proposed procedure

and their applicability in the context of the chosen application. Assumption 2.1 states that

interference occurs through the neighbors’ treatment assignments. In the context of our ap-

plication, treatments denote (intensive) information sessions. This paper assumes potential

outcomes are (possibly heterogeneous) functions of the number of informed neighbors. As a

result, the model is best suited when information effects, as opposed to endorsement effects

(i.e., effects driven by neighbors’ purchase decisions), occur. This restriction is consistent
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with findings in Cai et al. (2015), who, by leveraging the sequential structure of the ex-

periment, illustrate information effects and lack of endorsement effects. Quoting Cai et al.

(2015)’s abstract: “By varying the information available about peers’ decisions and random-

izing default options, we show that the network effect is driven by the diffusion of insurance

knowledge rather than the purchase decisions.” Insurance knowledge denotes the treatments,

and purchase decisions are the outcomes of interest, consistent with our model.

A second restriction this paper imposes is that the maximum degree is sufficiently smaller

than the sample size (Assumption 2.5). This restriction avoids overfitting and controls the

complexity of the function class of interest. Following the specification in Cai et al. (2015),

here individuals generate spillovers on those people indicated as friends, at most five of them

by the design of the survey in Cai et al. (2015). Therefore, we interpret our analysis as

imposing a restriction on the exposure mapping gn(·): only the five “closest” friends (i.e.,

friends indicated in the survey) generate spillover effects, whereas if there are other friends

not indicated in the survey, these generate no or negligible spillovers. This assumption is

mantained in Cai et al. (2015), who state: “The drawback of this specification is that the

network characterization may be incomplete. This concern is mitigated by the experience

of the pilot test in two villages, where most farmers named four or five friends (82% five,

14% four, and 4% others) when the number was not limited.” However, it is important to

acknowledge that this is an assumption, and future research should explore the sensitivity

of the estimated policy to misspecification of the exposure mapping (e.g., Sävje, 2023).

The model specification of the conditional mean function in Cai et al. (2015) imposes

a lack of heterogeneity in unobserved network statistics. However, because we augment

the estimated conditional mean with the doubly robust score, the estimators also allow for

arbitrary network heterogeneity, even if such heterogeneity is not captured in the estimated

conditional mean function. The reader may refer to Lemma 2.1 and Theorem 3.1 for details.

Finally, the sampling in Cai et al. (2015) guarantees that the welfare estimated using

information from participants is an unbiased estimator of welfare once the policy is deployed

at scale in rural China. The main reason is that Cai et al. (2015) independently sample 185

small villages in rural China, and, among such, they randomize treatments at the individual

level (see Page 7 in Cai et al., 2015). This sampling induces local dependence within small

villages, which is possible to accommodate in our framework (see Remark 8).

6 Conclusions

This paper introduced a method for estimating treatment rules under network interference.

It considers constrained environments, and accommodates policy functions that do not nec-
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essarily depend on network information. The proposed methodology is valid for a large class

of networks and does not impose restrictions on covariates. I cast the optimization problem

into a mixed-integer linear program and derive guarantees on the policy regret.

The proposed method assumes anonymous and exogenous interactions. Future research

can address the case of endogenous interactions by explicitly modeling the endogenous com-

ponent, or considering weak dependence structures as in Leung (2022).

This paper estimates welfare-maximizing policies when the network information on the

target sample is not observed by directly maximizing the empirical welfare. Extending our

method by incorporating partial information on the population network is an interesting

future direction. Combining the high-dimensional estimator of the network as in Alidaee

et al. (2020) with the empirical welfare-maximization procedure is a possible approach.

Finally, the literature on influence maximization has often relied on structural models,

whereas the literature on treatment choice has focused on semiparametric estimation. This

paper opens new questions about the trade-off between structural assumptions and model-

robust estimation of policy functions. Exploring this trade-off remains an open question.

Appendix A Practical guide

This section provides details on the implementation. Algorithm 2 presents a summary.

The method is implemented in the R package NetworkTargeting available on the author’s

website.

Algorithm 2 Network Empirical Welfare Maximization

1: Sample individuals in a (quasi)experiment at random from the population of interest
(see Remark 5 for stratified sampling).

2: For each sampled individual (Ri = 1) and their friends (Rf
i = 1) in the experiment

randomize treatment assignments as in Assumption 2.3 (treatments do not need to be
randomized among the remaining units in the population).

3: Collect information
[
Ri

(
Yi, Di, Ti, Ni, Zi, Zk∈Ni

)
, Ri

]n
i=1

, denoting sampling indicators

(Ri = 1), post treatment outcome Yi, treatment assignment Di, neighbors’ treatments
Ti, arbitrary individual and neighbors’ observable characteristics Zi, Zk∈Ni

.
4: Run Algorithm 3 to estimate m̂, ê the conditional mean and propensity scores for sampled

units (Ri = 1) as defined in Equation (3).
5: Run the optimization algorithm in Section 3.3 to estimate π̂ using (arbitrary) individual

level information Xi ⊆ Zi.
6: Implement π̂ on the population of interest by collecting individual-level information

(Xi)
n
i=1 for all units in the population.
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A.1 Cross-fitting: exact solution

The cross-fitting algorithm is described in Algorithm 3. It solves a sequence of mixed-integer

linear programs of the form

(K∗, G∗) =arg min
K∈Z,G∈{0,1}n×K

K such that
K∑
k=1

n∑
j=1

RiRj1{j ̸∈ Ii}Gj,kGi,k = 0

K∑
k=1

Gi,k = 1, ∀i ∈ {1, · · · , n},

(31)

where Ii is defined in Equation (32) as the set of sampled units who are not friends or share a

common friend with i. Each program consists of finding a feasible solution to the constraints

in Equation (31) for given K. The program finds the smallest number of groups K∗ and

groups partition G∗ such that two sampled individuals who are friends or share a common

friend are not in the same group. Here, G∗
i,k = 1 if i is assigned to group k.

To estimate the conditional mean, the algorithm performs cross-fitting with J folds within

each group, as in standard cross-fitting algorithms (Athey and Wager, 2021). If some of these

groups are small (with fewer than JP̌ units, for some small finite P̌ ), Algorithm 3 does not

use information from such groups. Here, P̌ is a small constant and denotes the minimum

number of observations such that the estimator is well-defined (e.g., the effective degrees of

freedom for linear regression).16 The propensity score is estimated using a similar approach.

To estimate ê(i), researchers can also use information about the treatments of the neighbors

of sampled units (Ri = 1) who have not been sampled, as described in Algorithm 3.

To gain further intuition on each step, observe that the proposed partition guarantees

that the outcomes of two individuals in the same group are independent conditional on

(A,Z). Therefore, within each group, we can then apply a standard cross-fitting algorithm.

The construction of such groups and the intuition behind the cross-fitting approach is a novel

contribution of this paper.

A.2 (Approximate) network cross-fitting with subgraphs

Algorithm 4 presents a relaxation of network cross-fitting. It fixes K, and creates K groups

recursively. Each iteration, it constructs two groups to maximize the number of individuals

who are friends or share a common friend and are assigned to the same group. It then

16The presence of groups with a few units does not affect our results in Theorem 3.3, because these
results are directly expressed in terms of average convergence rates of the nuisance functions (see Appendix
D.2.3). It also does not affect the characterization of the convergence rate in Remark 7, and Appendix B.1.
Intuitively, because K∗ ≤ 2N 2

n by Brooks (1941)’s theorem, the contribution of groups with few observations
to the average estimation error is at most O(N 2

n/ne). See Appendix B.1 for details.
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Algorithm 3 Network Cross-Fitting: Exact Optimization

Require:
[
Ri

(
Yi, Di, Ti, Ni, Zi, Zk∈Ni

)
, Ri

]n
i=1

, finite P̌ , finite J .

1: For each i ∈ {1, · · · , n} construct

Ii =
{
j ∈ {1, · · · , n} \ {i} : Rj = 1 and j ̸∈ Ni, Ni ∩Nj = ∅

}
. (32)

2: Solve Equation (31) and return K∗, G∗.
3: for k ∈ {1, · · · , K∗} do

a: Partition units {i : RiG
∗
i,k = 1}, to J folds (F j

k )
J
j=1, equally sized up-to one element.

Define F
j(i)
k the fold containing unit i.

b: For i such that G∗
i,kRi = 1 construct the estimator m̂(i)(·) of m(·), using

(Yv, Dv, Dk∈Nv , Zv, Nv) from units v in (F j
k )

J
j=1 \F

j(i)
k . Let m̂(i)(·) = 0 if

∑
i G

∗
i,kRi ≤ JP̌ .

4: end for
5: Repeat for the propensity score: for i such that G∗

i,kRi = 1 estimate the individual con-
ditional treatment probabilities using (Dv, Zv, Rv, (Dk(1 − Rk), Rk, Zk)k∈Nv) from units

v in folds (F j
k )

J
j=1 \ F

j(i)
k . Aggregate such probabilities to construct an estimator of e(·)

for unit i, ê(i)(·) as in Remark 1. Let 1/ê(i)(·) = 0 if
∑

i G
∗
i,kRi ≤ JP̌ .

6: Define m̂i(π), êi(π) as in Equation (14) and Wn(π, m̂, ê) as in Equation (15).
7: return Wn(π, m̂, ê).

repeats the same optimization within each group until we obtain K groups in total. The

algorithm constructs subgraphs by solving recursively max-cut optimization problems (see

Algorithm 5). For each unit i, Algorithm 4 then estimates the conditional mean function

using all groups except the group assigned to unit i. To estimate the propensity score, I

construct subgraphs where I maximize the number of individuals who are neighbors (but

not necessarily neighbors of neighbors) in each subgraph.17 The slackness parameter s in

Algorithm 5 guarantees subgraphs have approximately the same number of units up to s

units (e.g., five or ten).

The rationale is the following. If the network presents K completely independent and

equally sized clusters, the algorithm will recover such clusters. In this case, unit i’s prediction

would use information from clusters except the one containing i; the predicted value for unit

i would be independent of i’s outcome, avoiding overfitting. The algorithm approximates

this setup by constructing subgraphs that minimize the number of connections between such

subgraphs.18 I recommend choosing K by leveraging prior knowledge of the data, such as

17The reason is that, due to the independence of treatments in Assumption 2.3 (ii), the estimated propen-
sity score is independent of unit i’s outcome if it is estimated using information from treatments different
from (Di, Dk∈Ni).

18Although optimization for clusterings with networks goes beyond the scope of this paper, we note that
Leung (2021) presents an extensive discussion where clusters are not independent.
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using the number of villages or regions. For example, in the empirical application, units

present almost all the connections within same large areas with 47 total areas; therefore,

any K ≤ 47 (e.g., K = 10) guarantees independent subgraphs. Also, note that the effective

sample size only shrinks by a factor (K − 1)/K = O(1).

Algorithm 4 Network Cross-Fitting: Approximate Optimization

Require:
[
Ri

(
Yi, Di, Ti, Ni, Zi, Zk∈Ni

)
, Ri

]n
i=1

, slackness parameter s, K folds.

1: Assign individuals into K folds by running Recursive Opt in Algorithm 5 with ñ = n,
and slackness s.

2: For i : Ri = 1, construct m̂(i)(·), the estimator of m(·) for unit i, using data in all except
i’s fold.

3: Repeat for the propensity score: run Algorithm 5 with Hi = {j ∈ {1, · · · , n} : j ̸∈
Ni, Rj +

∑
k Aj,kRk > 0} in lieu of Ii. For each unit i, construct ê(i)(·), the estimator of

e(·) for unit i by: (i) estimating individual treatment probabilities with units in all folds
except the one containing i; (ii) aggregating such probabilites as in Remark 1.

4: Construct ê(i), m̂(i) and Wn(π, m̂, ê) as in Equation (15). return Wn(π, m̂, ê).

Algorithm 5 Recursive Opt

Require: input size ñ, (Ri, Ii)
ñ
i=1, with Ii as in Equation (32), slackness parameter s, K

1: Solve

G∗ ∈ arg min
G∈{0,1}ñ×ñ

ñ∑
i=1

ñ∑
j ̸=i

Gi(1−Gj)1{j ∈ Ii}RiRj Gi ∈ {0, 1}, i ∈ {1, · · · , ñ},

1

n

n∑
i=1

Gi ∈

[
1

2ñ

ñ∑
i=1

Ri − s/ñ,
1

2ñ

ñ∑
i=1

Ri + s/ñ

]
.

2: if K = 2 then
3: return G∗.
4: else
5: return[
G∗,Recursive Opt

(
ñ∑

i=1

G∗
i , (Ri, Ii)G∗

i=1, S
′,
K

2

)
,Recursive Opt

(
ñ−

ñ∑
i=1

G∗
i , (Ri, Ii)G∗

i=0, S
′,
K

2

)]
.

6: end if

Appendix B contains additional extensions, Appendix C a numerical study , and Ap-

pendix D derivations. Appendix A at the end of the main text contains the algorithms.
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Kempe, D., J. Kleinberg, and É. Tardos (2003). Maximizing the spread of influence through

a social network. In Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 137–146. ACM.

Kitagawa, T. and A. Tetenov (2018). Who should be treated? Empirical welfare maximiza-

tion methods for treatment choice. Econometrica 86 (2), 591–616.

Kitagawa, T. and A. Tetenov (2019). Equality-minded treatment choice. Journal of Business

& Economic Statistics , 1–14.

43



Kitagawa, T. and G. Wang (2020). Who should get vaccinated? individualized allocation of

vaccines over sir network. arXiv preprint arXiv:2012.04055 .

Kline, B. and E. Tamer (2020). Econometric analysis of models with social interactions. In

The Econometric Analysis of Network Data, pp. 149–181. Elsevier.

Laber, E. B., N. J. Meyer, B. J. Reich, K. Pacifici, J. A. Collazo, and J. M. Drake (2018).

Optimal treatment allocations in space and time for on-line control of an emerging infec-

tious disease. Journal of the Royal Statistical Society: Series C (Applied Statistics) 67 (4),

743–789.

Ledoux, M. and M. Talagrand (2011). Probability in banach spaces. classics in mathematics.

Leung, M. P. (2020). Treatment and spillover effects under network interference. Review of

Economics and Statistics 102 (2), 368–380.

Leung, M. P. (2021). Network cluster-robust inference. arXiv preprint arXiv:2103.01470 .

Leung, M. P. (2022). Causal inference under approximate neighborhood interference. Econo-

metrica 90 (1), 267–293.

Li, X., P. Ding, Q. Lin, D. Yang, and J. S. Liu (2019). Randomization inference for peer

effects. Journal of the American Statistical Association, 1–31.

Liu, L., M. G. Hudgens, B. Saul, J. D. Clemens, M. Ali, and M. E. Emch (2019). Doubly

robust estimation in observational studies with partial interference. Stat 8 (1), e214.

Manresa, E. (2013). Estimating the structure of social interactions using panel data. Un-

published Manuscript. CEMFI, Madrid .

Manski (2004). Statistical treatment rules for heterogeneous populations. Economet-

rica 72 (4), 1221–1246.

Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem.

The review of economic studies 60 (3), 531–542.

Manski, C. F. (2013). Identification of treatment response with social interactions. The

Econometrics Journal 16 (1), S1–S23.

Mbakop, E. and M. Tabord-Meehan (2016). Model selection for treatment choice: Penalized

welfare maximization. arXiv preprint arXiv:1609.03167 .

Muralidharan, K., P. Niehaus, and S. Sukhtankar (2017). General equilibrium effects of

(improving) public employment programs: Experimental evidence from india. Technical

report, National Bureau of Economic Research.

Negahban, S. N., P. Ravikumar, M. J. Wainwright, and B. Yu (2012). A unified framework

for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical

science 27 (4), 538–557.

Opper, I. M. (2016). Does helping john help sue? evidence of spillovers in education.

American Economic Review 109 (3), 1080–1115.

44



Robins, J. M., A. Rotnitzky, and L. P. Zhao (1994). Estimation of regression coefficients

when some regressors are not always observed. Journal of the American statistical Asso-

ciation 89 (427), 846–866.
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Appendix B Additional extensions

B.1 Estimation error of nuisance functions with Algorithm 3

This section examines the estimation error
√
Rn(A,Z)× Bn(A,Z) in Theorem 3.3. Consider

estimating m(·) with Algorithm 3. Algorithm 3 first partitions the units into K∗ groups.

Within each group, it constructs J equally sized folds. For two units (i, v), define ϕm
v (i) ∈

{0, 1} with ϕm
v (i) = 1 if all of the following conditions hold unit v is sampled (Rv = 1); v is in

the same partition k ∈ {1, · · · , K∗} of i; and v is in any fold except the one containing unit

i.19 The effective sample size for estimation of m̂(i) is
∑n

v=1 Rvϕ
m
v (i) because, Algorithm 3

uses sampled units not in the same fold of i, but in its same partition k. Define ϕe
v(i) ∈ {0, 1},

with ϕe
v(i) = 1 if all of the following conditions hold: (a) unit v is sampled or, if not sampled,

one of its friends is sampled (Rv = 1 or (1 − Rv)R
f
v = 1); (b) v is in the same partition

k ∈ {1, · · · , K∗} of i; and (c) v is in any fold except the one containing unit i, once we run

Algorithm 3 to estimate e(·). Let m ∈ M, e ∈ E , for function classes M, E , and assume

Rn(A,Z) = O
( 1
n

n∑
i=1

CME
[(

1 +
n∑

v=1

Rvϕ
m
v (i)

)−2ζm
∣∣∣Ri = 1, A, Z

])
Bn(A,Z) = O

( 1
n

n∑
i=1

1

δ2n
CEE

[(
1 +

n∑
v=1

Rvϕ
e
v(i)
)−2ζe

∣∣∣Ri = 1, A, Z
]) (33)

for some 1/2 ≥ ζm, ζe > 0, and CM, CE capturing the complexity of the function class.

Here, ζm characterizes the convergence rate of the conditional mean function on a sample

of independent units (by Algorithm 3), with
(
1 +

∑n
v=1Rvϕ

m
v (i)

)
denoting the effective

sample size to estimate m̂i. Similarly, ζe for the propensity score. I rescale the rates for the

propensity score by 1/δ2n because the propensity score is bounded from zero by δn. Equation

(33) also captures the contribution to the estimation error of those units i belonging to

groups with a few (finite number of) observations (see Algorithm 3).20

Proposition B.1. Suppose the conditions in Theorem 3.3 and Equation (33) hold, and

ne = αn, α ∈ (0, 1). Then
√
Rn(A,Z)× Bn(A,Z) = O

(
N 2

nC
1/2
M C

1/2
E

δnn
ζm+ζe
e

)
. In addition, if

N 1/2
n C

1/2
M C

1/2
E /nζm+ζe

e = O
(
n
−1/2
e

)
, then E

[
supπ∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] = O

(
n−ξ
e

)
.

19Following Algorithm 3’s definitions, ϕm
v (i) = 1{v ∈ (F j

k )
J
j=1 \ F

j(i)
k , k such that i ∈ ∪jF

j
k}.

20For those units i with a finite number of observations in their partition k,
∑n

v=1 Rvϕ
m
v (i) = O(1), and

O
(
E
[(

1 +
∑n

v=1 Rvϕ
m
v (i)

)−2ζm ∣∣∣A,Z,Ri = 1
])

is bounded away from (does not converge to) zero for i.
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See Appendix D.4.1 for the proof. Proposition B.1 characterizes the rate of the estimation

error. Here, N 1/2
n C

1/2
M C

1/2
E /nζm+ζe

e = O
(
n
−1/2
e

)
holds for a large class of estimators under

conditions on the maximum degree. An example is lasso. Under fixed sparsity, bounded

regression matrix, and regularities in Negahban et al. (2012), ζm = 1/2, CM = log(p), where

p is the dimension of the regression matrix. To attain N 1/2
n C

1/2
M C

1/2
E /nζm+ζe

e = O
(
n
−1/2
e

)
,

we only need that ζe for the propensity score is such that N 1/2
n C1/2

E log1/2(p)/nζe
e = O (1).

B.2 Welfare with spillovers on non-compliance

Consider the setting where spillovers also occur over individuals’ compliance. Namely, let

Di ∈ {0, 1} denote the assigned treatment and Si ∈ {0, 1} denote the selected treatment

from individual i. I model non-compliance as follows:

Yi = r
(
Si,
∑
k∈Ni

Sk, Zi, |Ni|, εi
)
, Si = hθ

(
Di,

∑
k∈Ni

Dk, Zi, |Ni|, νi
)
. (34)

I let νi be exogenous unobservables, independent from εi (see Proposition B.2), and (r(·), θ)
unknown, with θ denoting the set of parameters indexing h. Similarly to what discussed in

Section 2, let WA,Z(π) =
1
n

∑n
i=1 E

[
Yi

∣∣∣A,Z,{Di = π(Xi)
}n

i=1

]
be the welfare under π.

Proposition B.2 (Identification). Let Equation (34) hold with εi ⊥
(
(νj)

n
j=1, (εDj

)nj=1

)∣∣∣A,Z,
νi

∣∣∣A,Z, (εDj
)nj=1 ∼i.i.d. Pν . Let Pθ(Si = 1|·) denotes the conditional probability of selection

into treatment indexed by the parameters θ. For each i ∈ {1, · · · , n},

E
[
Yi

∣∣∣A,Z,{Di = π(Xi)
}n

i=1

]
=

∑
d∈{0,1},s∈{0,··· ,|Ni|}

E
[
Yi

∣∣∣Zi, |Ni|, Si = d,
∑
k∈Ni

Sk = s
]
×Hi(d, s, π),

Hi(d, s, π) = Pθ

(
Si = d

∣∣∣Zi, |Ni|, Vi(π)
) ∑

u1,··· ,ul:
∑

v uv=s

|Ni|∏
k=1

Pθ

(
S
N

(k)
i

= uk

∣∣∣Z
N

(k)
i

, |N
N

(k)
i

|, V
N

(k)
i

(π)
)
,

where Vi(π) =
{
Di = π(Xi),

∑
k∈Ni

Dk =
∑

k∈Ni
π(Xk), Zi, Zk∈Ni

}
.

See Appendix D.4.2 for the proof. Proposition B.2 is an identification result. The wel-

fare effect of an incentive π depends on conditional means and Hi(·). Here Hi(·) denotes

the conditional probability of selecting into treatment, conditional on the individual and

neighbors’ incentives. Its expression only depends on the individual probability of selected

treatments Pθ(Si = 1|·), conditional on individual’s and neighbors’ treatment assignments.

Interestingly, Hi(·) also depends on the treatment assigned to the second-degree neighbors;

therefore, information from second-degree neighbors is required for identification. Literature

on non compliance includes Kang and Imbens (2016), Vazquez-Bare (2020). These references

do not study welfare maximization. This motivates a different identification strategy here.

47



B.3 Reweighting with known and different target population

Here, we study settings where the target population differs from the population from which

the sample is drawn and the adjacency matrix of the target population is known.

Consider a population with n individuals, connected under adjacency matrix A′ and

with covariates matrix Z ′, and (A′, Z ′) are observed by the researcher. Welfare is as in

Equation (27). Define Sn(A,Z) as the empirical support of Zi, Zk∈Ni
, |Ni| for given adja-

cency matrix (A,Z), and similarly Sn(A
′, Z ′) for A′, Z ′. |Sn(A,Z)| ≤ n by construction.

Define L(z,x, l) = 1
n

∑n
i=1 1

{
Zi = z, Zk∈Ni

= x,
∑

k Ai,k = l
}
, L′(z,x, l) = 1

n

∑n
i=1 1

{
Z ′

i =

z, Z ′
k∈N ′

i
= x,

∑
k A

′
i,k = l

}
, the number of units in each population with individual covariates

z, neighbors’ observables x, and number of friends l. Estimate the empirical welfare as

W̃n(π,m
c, e) =

1

ne

n∑
i=1

Ri

L′
(
Zi, Zk∈Ni

, |Ni|
)

L
(
Zi, Zk∈Ni

, |Ni|
) {Ii(π)

ei(π)

(
Yi −mc

i (π)
)
+mc

i (π)

}
.

Here, the empirical welfare reweights observations by the ratio of the empirical distributions

in the target population and the sampled units. Importantly, the functions L(·), L′(·) must

be observed by the researcher. L(·) is observed under the sampling assumptions in Section 2,

whereas observing L′(·) assumes that researcher observe (A′, Z ′) from the target population.

Proposition B.3. Suppose the conditions in Theorem 3.1 hold conditional also on (A′, Z ′),

and Sn(A
′, Z ′) ⊆ Sn(A,Z) almost surely. Let π̂t ∈ argmaxπ∈Πn W̃n(π,m

c, e). Then, for a

universal constant C̄ < ∞, E
[
supπ∈Πn

WA′,Z′(π)−WA′,Z′(π̂t)
∣∣∣A,Z,A′, Z ′

]
≤ C̄ΓL̄A,Z,nN

3/2
n

γδn

√
log(Nn)VC(Π)

ne
,

where L̄A,Z,n = max(Zi,Zk∈Ni
,|Ni|)∈Sn(A,Z) L

′
(
Zi, Zk∈Ni

, |Ni|
)/

L
(
Zi, Zk∈Ni

, |Ni|
)
.

See Appendix D.4.3 for a proof. Proposition B.3 shows that regret bounds depend on

the largest ratio between the empirical distribution on the target and sampled units over the

empirical support of the individuals, and neighbors’ covariates and of degree. An important

assumption is that the support Sn(A
′, Z ′) is contained in the support Sn(A,Z).

B.4 Constraints on Πn that depend on D

Following Remark 2, in this subsection, I discuss a policy-function class

Π̃n =
{
π̃ : X × {0, 1} 7→ {0, 1}, π̃(x, d) = π(x)(1− d) + d, π ∈ Πn

}
, (35)

for Π with finite VC dimension. Here π̃(Di, Xi) is one almost surely if the treatment in the

experiment is one (Di = 1). I define e,mc as in Equation (10), here functions of π̃.
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Proposition B.4. Let Assumptions 2.1, 2.2, 2.3, 2.4, and 3.1 hold. Consider a policy class

π̃(Xi, Di), π̃ ∈ Π̃n, with π̃∗
mc,e ∈ argmaxπ̃∈Π̃n

Wn(π̃,m
c, e). For a universal constant C̄ < ∞,

E
[
sup
π∈Π̃n

WA,Z(π)−WA,Z(π̃
∗
mc,e)

∣∣∣A,Z] ≤ C̄
ΓN 3/2

n

γδn

√
log(Nn)VC(Π)

ne
.

See Appendix D.2.6 for the proof. Proposition B.4 extends our results for policies con-

strained to always assign treatments to the treated individuals in the experiment.

Appendix C A numerical study

I simulate data as Yi =
1

max 1,|Ni|

(
Xiβ1+Xiβ2Di+µ

)∑
k∈Ni

Dk+Xiβ3Di+εi, εi =
ηi+

∑
k∈Ni

ηk√
2(|Ni|+1)

,

with ηi ∼i.i.d. N (0, 1). I simulate covariates as Xi ∈ [−1, 1]4, with each entry drawn inde-

pendently and uniformly between [−1, 1]. I draw β3 ∈ {−1.5, 1.5} with equal probabilities.

I consider five versions of NEWM described in the caption of Table 3.

I compare NEWM to methods that ignore network effects from Kitagawa and Tetenov

(2018); Athey and Wager (2021). Each method uses a policy function of the form π(Xi) =

1
{
Xi,1ϕ1 + Xi,2ϕ2 + ϕ3 ≥ 0

}
, estimated via MILP. First, I consider a geometric network

formation of the form Ai,j = 1
{
|Xi,2−Xj,2|/2+|Xi,4−Xj,4|/2 ≤

√
4/2.75n

}
. In the second set

of simulations, I generate Barabasi-Albert networks. I draw n/5 edges uniformly according to

Erdős-Rényi graph with probabilities 10/n, and second, I draw sequentially connections of the

new nodes to the existing ones with probability equal to the average number of connections of

the existing nodes. I simulate over 200 data sets with ne = n, and evaluate the performance

out-of-sample over 1000 networks, drawn from the same distribution. Results are in Table 3.

For n sufficiently large (n = 200), the five specifications of NEWM yield comparable results.

NEWM outperforms methods that ignore spillovers across all specifications.
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Table 3: Out-of-sample median welfare over 200 replications. DR is the method in Athey and Wager
(2021) with estimated balancing score and EWM PS is the method in Kitagawa and Tetenov (2018)
with known balancing score. NEWM out1 is NEWM with a correctly specified outcome model,
and NEWM out2 its equivalent with approximate network cross-fitting. NEWM dr1 is the doubly
robust equivalent controlling for the number of treated neighbors, and NEWM dr2, NEWM dr3
control for a binned version of the number of treated neighbors as in Remark 2.5, with and without
approximate network cross-fitting. GE denotes the geometric network, and AB the Albert-Barabasi.

Welfare n = 50 n = 70 n = 100 n = 150 n = 200

GE AB GE AB GE AB GE AB GE AB

DR 1.49 0.94 1.49 1.08 1.38 1.05 1.53 0.95 1.42 0.95

EWM PS 1.21 0.93 1.23 0.92 1.32 0.93 1.38 0.90 1.29 0.95

NEWM out1 1.74 1.31 1.87 1.38 1.93 1.37 1.91 1.40 2.00 1.39

NEWM out2 1.77 1.34 1.87 1.41 1.91 1.37 1.95 1.38 1.98 1.39

NEWM dr1 1.78 1.22 1.89 1.33 1.89 1.37 1.94 1.28 1.95 1.33

NEWM dr2 1.69 1.21 1.83 1.36 1.84 1.33 1.82 1.31 1.94 1.38

NEWM dr3 1.45 1.15 1.75 1.25 1.79 1.28 1.81 1.28 1.88 1.35

Appendix D Derivations

D.1 Notation

Definition D.1 (Proper Cover). Given an adjacency matrix A ∈ An, with n rows and

columns, a family Cn = {Cn(g)} of disjoint subsets Cn(1), Cn(2), · · · of {1, · · · , n} is a proper

cover of A if ∪gCn(g) = {1, · · · , n} and Cn(g) ⊆ {1, · · · , n} consists of units such that for

any pair of elements {i, k ∈ Cn(g), k ̸= i}, Ai,k = 0.

Definition D.2 (Chromatic number). The chromatic number χn(A), denotes the size of the

smallest proper cover of A.

Definition D.3. For a given matrix A ∈ An, I define A2 ∈ An the adjacency matrix such

that Ai,j = 1 if (i, j) are either neighbors or they share at least a common neighbor. Similarly

AM(A) is the adjacency matrix obtained after connecting units sharing common neighbors

up toM th degree; Ni,M is the set of neighbors of individual i for an adjacency matrix AM .

The proper cover of A2
n is defined as C2

n = {C2
n(g)}

χ(A2)
g=1 with chromatic number χ(A2

n).

Similarly CM
n = {CM

n (g)}χ(A
M )

g=1 with chromatic number χn(A
M
n ) is the proper cover of AM

n .

For a given set CM
n (g), I denote |CM

n (g)| the number of elements in such a set.

I will refer to χ(A) as χn(An) whenever clear from the context. Let

eci (π) = ec
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
, mc

i (π) = mc
(
π(Xi), Ti(π), Zi, |Ni|

)
,
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for given functions ec,mc, and Ii(π) = 1{Ti(π) = Ti, π(Xi) = Di}, similarly to Equation (6).

In the presence of estimation error, define êi(π), m̂i(π) their corresponding estimators.

Following Devroye et al. (2013)’s notation, for xn
1 = (x1, ..., xn) being arbitrary points in

X n, for a function class F , with f ∈ F , f : X 7→ R, let F(xn
1 ) = {f(x1), ..., f(xn) : f ∈ F} .

Definition D.4. For a class of functions F , with f : X 7→ R, ∀f ∈ F and n data points

x1, ..., xn ∈ X define the lq-covering number Mq

(
η,F(xn

1 )
)

to be the cardinality of the

smallest cover {s1, ..., sN}, with sj ∈ Rn, such that for each f ∈ F , there exist an sj ∈
{s1, ..., sN} such that ( 1

n

∑n
i=1 |f(xi) − s

(i)
j |q)1/q < η. For F̄ the envelope of F , define the

Dudley’s integral as
∫ 2F̄

0

√
log
(
M1(η,F(xn

1 ))
)
dη.

For random variables X = (X1, ..., Xn), denote EX [.] the expectation with respect to X,

conditional on the other variables inside the expectation operator.

Definition D.5. Let X1, ..., Xn be arbitrary random variables. Let σ = {σi}ni=1 be i.i.d

Rademacher random variables (P (σi = −1) = P (σi = 1) = 1/2), independent of X1, ..., Xn.

The empirical Rademacher complexity is Rn(F) = Eσ

[
supf∈F | 1

n

∑n
i=1 σif(Xi)|

∣∣∣X1, ..., Xn

]
.

D.2 Theorems

I discuss the theorems first. Appendix D.3 presents the lemmas used for these theorems.

The first theorem controls the supremum of the empirical process of interest with respect

to Π ⊇ Πn as in Assumption 2.4. Theorem D.1 imposes the same assumptions as Theorem

3.1, except that unobservables can be locally dependent up to the M th degree.

Theorem D.1. Let Assumptions 2.1, 2.2 (C), 2.3, 2.4, 3.1, 4.1 (A) hold. Consider functions

mc(·), ec(·) such that for all d ∈ {0, 1}, t ∈ Tn mc(d, t, Zi, |Ni|) ∈ [−Γ,Γ], for a finite constant

Γ, and ec(d, t, Zk∈Ni
, Rk∈Ni

, Zi, |Ni|) ∈ (γδn, 1 − γδn) almost surely. Suppose that either

(or both) (i) ec = e, or (ii) also Assumption 2.2 (A) hold and mc = m. Then for any

n ≥ 1,M ≥ 2, and a universal constant C̄ < ∞

E
[
sup
π∈Π

|Wn(π,m
c, ec)−WA,Z(π)|

∣∣∣A,Z] ≤ C̄
Γ

γδn

√
MNM+1

n log(Nn)VC(Π)

ne
. (36)

Proof of Theorem D.1. I organize the proof as follows. First, I derive a symmetrization argu-

ment to bound the supremum of the empirical process in Equation (36) with the Rademacher

complexity of direct and spillover effects. Second, I bound the Rademacher complexity using

Lemmas D.7, D.8. Section 3.4 provides a proof sketch. Define

Qi(π,A,Z) = Ri

[
Ii(π)

eci (π)

(
Yi −mc

i (π)
)
+mc

i (π)

]
,
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where I suppressed the dependence with ec,mc. Define Qn(π,A, Z) the distribution such

that
(
Qi(π,A, Z)

)n
i=1

∣∣∣A,Z ∼ Qn(π,A, Z). Define (σi)
n
i=1 i.i.d. Rademacher random vari-

ables independent of observables and unobservables. Finally, let
(
Q′

i(π,A, Z)
)n
i=1

∣∣∣A,Z ∼

Qn(π,A, Z), an independent copy of
(
Qi(π,A, Z)

)n
i=1

, conditional on (A,Z). Note that

Qi(π,A, Z) depends on π through
(
π(Xi),

∑
k∈Ni

π(Xk)
)
by Assumption 2.1.

Conditional expectation By definition of Q′
i,

E[Wn(π, e
c,mc)|A,Z] =

1

n

n∑
i=1

E[Qi(π, e
c,mc)|A,Z] =

1

n

n∑
i=1

E[Q′
i(π, e

c,mc)|A,Z]. (37)

It follows:

E
[
sup
π∈Π

|Wn(π,m
c, ec)−WA,Z(π)|

∣∣∣A,Z]
= E

[
sup
π∈Π

|Wn(π,m
c, ec)− E[Wn(π,m

c, ec)|A,Z]|
∣∣∣A,Z] (∵ Lemma D.10)

= E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)− E[Q′

i(π,A,Z)|A,Z]
]∣∣∣|A,Z] (∵ Eq. (37))

= E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

EQ′

[
Qi(π,A,Z)−Q′

i(π,A,Z)
∣∣∣A,Z]∣∣∣|A,Z] (∵ (Q′

i)
n
i=1 ⊥ (Qi)

n
i=1|A,Z)

≤ E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z] (∵ Jensen’s inequality).

(38)

The second to last equality takes the expectation with respect to Q′ (given Q,A,Z).

Symmetrization and proper cover Recall now Definitions D.1, D.2, D.3. Construct

an adjacency matrix AM with neighbors connected up to the M th degree, with smallest

proper cover CM
n = {Cn(j)}χ(A

M )
g=1 , CM

n (g) ⊆ {1, · · · , n},∪gCM
n (g) = {1, · · · , n}, and chromatic

number χ(AM). Note that such a cover always exists.21 By the triangular inequality

E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z]

≤
∑

g∈{1,··· ,χ(AM )}

E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z]

︸ ︷︷ ︸
:=II(g)

. (39)

Observe first that E[Qi(π,A, Z)−Q′
i(π,A, Z)|A,Z] = 0 since Qi, Q

′
i have the same distri-

bution. Also, if Ri = 0, then Qi = 0. Therefore, by Assumption 2.1, and Assumption 2.3 (ii),

21For example, in a fully connected network, the chromatic number is n, where each group only contains
one unit, while in a network with no connection, the chromatic number is one. The size of such cover
(chromatic number) will affect the bound in the statement of the theorem via the maximum degree.
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for a given π, Qi(π,A, Z) is a deterministic function ofRi

(
Rk∈Ni

, εDi
, εDk∈Ni

, Zk∈Ni
, Zi, εi, R

f
k∈Ni

)
.

Also, note that if Ri = 1, then Rf
k = 1, for k ∈ Ni almost surely. Therefore, Qi can be written

as a deterministic function of
(
Ri, Rk∈Ni

, εDi
, εDk∈Ni

, Zk∈Ni
, Zi, εi

)
only, where we can drop

its dependence with Rf
k∈Ni

. The following holds.

• By Assumption 2.3 (ii), εDi
are i.i.d. and exogenous with respect to (A,Z, ε);

• By Assumption 2.3 (i) Ri are i.i.d. and exogenous;

• Under Assumption 4.1 (A), εi|A,Z are independent for individuals who are not neigh-

bors up to degree M ≥ 2.

As a result, it directly follows that conditional on A,Z, for any M ≥ 2,(
Ri, Rk∈Ni

, εDi , εDk∈Ni
, Zk∈Ni

, Zi, εi

)
⊥
(
Rj , Rk∈Nj

, εDj , εDk∈Nj
, Zk∈Nj

, Zj , εj

)
j ̸∈∪M

k=1Ni,k

|A,Z.

(40)

Equation (40) implies thatQi(π,A, Z) ⊥ (Qj(π,A, Z))j ̸∈∪M
k=1Ni,k

|A,Z. Since (Qi)
n
i=1, (Q

′
i)
n
i=1|A,Z

have the same joint distribution and are independent, we also have(
Qi(π,A,Z)−Q′

i(π,A,Z)
)
⊥
(
Qj(π,A,Z)−Q′

j(π,A,Z)
)
j ̸∈∪M

k=1Ni,k

|A,Z. (41)

Note that (Qi)i∈CM
n (g) =d (Q′

i)i∈CM
n (g)|A,Z and are independent (since CM

n is deterministic

conditional on A). Therefore, for each group CM
n (g), by Equation (41), for i ∈ CM

n (g)(
Qi(π,A,Z)−Q′

i(π,A,Z)
)
⊥
(
Qj(π,A,Z)−Q′

j(π,A,Z)
)
j ̸=i,j∈CM

n (g)
|A,Z.

We can then bound II(g) in Equation (39) as follows

II(g) = E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σi

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z]

≤ E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQi(π,A,Z)
∣∣∣|A,Z]+ E

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQ
′
i(π,A,Z)

∣∣∣|A,Z]
= 2E

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQi(π,A,Z)
∣∣∣|A,Z].

The first equality follows from independence of Qi − Q′
i|A,Z within the subset CM

n (g), and

the fact that Qi, Q
′
i have the same distribution. The second inequality follows from the

triangular inequality and Qi, Q
′
i having the same joint distribution given A,Z.
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Bound on the Rademacher complexity The following holds

E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQi(π,A,Z)
∣∣∣|A,Z] ≤ E

[
EY,σ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiRi
Ii(π)

eci (π)
Yi

∣∣∣]
︸ ︷︷ ︸

:=i(g)

|A,Z
]

+ E
[
Eσ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiRi
Ii(π)

eci (π)
mc

i (π)
∣∣∣]

︸ ︷︷ ︸
:=ii(g)

|A,Z
]
+ E

[
Eσ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiRim
c
i (π)

∣∣∣]
︸ ︷︷ ︸

:=iii(g)

|A,Z
]
,

(42)

where EY,σ[·] denotes the conditional expectation with respect to (Y, σ) only, given all other

observables and unobservables, and similarly Eσ[·], with respect to σ only. Let C̄ < ∞ be a

universal constant. I invoke Lemma D.8 for each element in Equation (42) as follows.

• I invoke Lemma D.8 for i(g) with Yi in lieu of Ωi in the statement of Lemma D.8,

with third moment bounded by Γ2 by Assumption 2.2 (C); and Ii(π)
eci (π)

in lieu of gi(·) in
Lemma D.8, with upper bound Un = 1/(γδn) (Un as in the statement of Lemma D.8)

by Assumption 2.3 (iii). Since we sum over elements Ri1{i ∈ CM
n (g)} = 1, by Lemma

D.8

i(g) ≤ C̄
Γ

neγδn

√√√√VC(Π)Nn

n∑
i=1

Ri1{i ∈ CM
n (g)} log(Nn).

• I invoke Lemma D.8 for ii(g) where we have Ii(π)
eci (π)

mi(π) in lieu of gi(·) in the statement

of Lemma D.8, with constant Un = Γ/(γδn) by Assumption 2.2 (C) and Assumption

2.3 (iii), and Ωi = 1 in the statement of Lemma D.8. Therefore,

ii(g) ≤ C̄
Γ

neγδn

√√√√VC(Π)Nn

n∑
i=1

Ri1{i ∈ CM
n (g)} log(Nn).

• I invoke Lemma D.8 for iii(g) where we havemi(π) in lieu of gi(·) with constant Un = Γ,

and Ωi = 1 in the statement of Lemma D.8. Therefore,

iii(g) ≤ C̄
Γ

ne

√√√√VC(Π)Nn

n∑
i=1

Ri1{i ∈ CM
n (g)} log(Nn).

Summing the terms Collecting the terms together, I obtain

(39) ≤
∑

g∈{1,··· ,χ(AM )}

E
[ Γ

neγδn

√√√√Nn log(Nn)VC(Π)

n∑
i=1

Ri1{i ∈ CM
n (g)}

∣∣∣A,Z],
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where the expectation is taken with respect to R = (R1, · · · , Rn). I write

∑
g∈{1,··· ,χ(AM )}

E
[ Γ

neγδn

√√√√Nn log(Nn)VC(Π)

n∑
i=1

Ri1{i ∈ CM
n (g)}

∣∣∣A,Z]

≤
∑

g∈{1,··· ,χ(AM )}

Γ

neγδn

√√√√Nn log(Nn)VC(Π)
n∑

i=1

E[Ri|A,Z]1{i ∈ CM
n (g)} (∵ Jensen’s inequality)

=
∑

g∈{1,··· ,χ(AM )}

Γ

neγδn

√
Nn log(Nn)VC(Π)ne|CM

n (g)|/n (∵ E[Ri|A,Z] = ne/n).

(43)

We have

(43) ≤ χ(AM )
Γ

neγδn

√√√√Nn log(Nn)VC(Π)ne
1

χ(AM )

∑
g∈{1,··· ,χ(AM )}

|CM
n (g)|/n (∵ concave

√
x)

= χ(AM )
Γ

neγδn

√
Nn log(Nn)VC(Π)ne

1

χ(AM )
=

Γ

γδn

√
χ(AM )Nn log(Nn)VC(Π)

ne
.

(44)

In the first inequality in (44) I divided and multiplied by χ(AM) and used concavity of the

square-root function. In the second equality I used the fact that {CM
n (g)} contain disjoint

sets, with
∑

g |CM
n (g)| = n. By Lemma D.2 χ(AM) ≤ MNM

n , completing the proof.

D.2.1 Theorem 3.1 and Theorem 4.2

I state these two theorems as corollaries of Theorem D.1.

Corollary 4. Theorem 3.1 holds.

Proof. Following Kitagawa and Tetenov (2018),

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z]

= E
[
sup
π∈Πn

WA,Z(π)−Wn(π̂mc,e,m
c, e) +Wn(π̂mc,e,m

c, e)−WA,Z(π̂mc,e)
∣∣∣A,Z]

≤ E
[
sup
π∈Πn

WA,Z(π)−Wn(π,m
c, e) +Wn(π̂mc,e,m

c, e)−WA,Z(π̂mc,ec)
∣∣∣A,Z].

(45)

We have (45) ≤ E
[
2 supπ∈Πn

|WA,Z(π)−Wn(π,m
c, e)|

∣∣∣A,Z] ≤ E
[
2 supπ∈Π |WA,Z(π)−Wn(π,m

c, e)|
∣∣∣A,Z]

(∵ Πn ⊆ Π). The proof completes by Theorem D.1, with M = 2.

Corollary 5. Theorem 4.2 holds.
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Proof. Following the argument of Corollary 4, and using the fact that Πn ⊆ Π, it follows

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] ≤ 2E

[
sup
π∈Π

|Wn(π,m
c, ec)−WA,Z(π)|

∣∣∣A,Z]︸ ︷︷ ︸
(I)

+ 2E
[
sup
π∈Π

|Wn(π, m̂, ê)−Wn(π,m
c, ec)|

∣∣∣A,Z]︸ ︷︷ ︸
(II)

.

Term (I) is bounded by Theorem D.1. I now study (II). In particular, (II) is equal to

E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
Yi − m̂i(π)

)
+

1

ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
− 1

ne

n∑
i=1

Ri
Ii(π)

eci (π)

(
Yi −mc

i (π)
)∣∣∣|A,Z]

≤ E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
Yi +mc

i (π)−mc
i (π)− m̂i(π)

)
− 1

ne

n∑
i=1

Ri
Ii(π)

eci (π)

(
Yi −mc

i (π)
)∣∣∣|A,Z]

+ E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

≤ E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]+ E

[
sup
π∈Π

| 1
ne

n∑
i=1

Ri(
Ii(π)

eci (π)
− Ii(π)

êi(π)
)
(
Yi −mc

i (π)
)
|
∣∣∣A,Z]

+ E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z].

(46)

I inspect each term in Equation (46). Since Ri ∈ {0, 1}

E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z] ≤ E

[ 1

ne

n∑
i=1

sup
d,s

Ri|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|
∣∣∣A,Z].

By Cauchy-Schwarz inequality and the triangular inequality

E
[ 1

ne

n∑
i=1

sup
d,s

Ri|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|
∣∣∣A,Z]

≤

√√√√ 1

ne

n∑
i=1

E[R2
i ]

√√√√E
[ 1

ne

n∑
i=1

sup
d,s

|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|2
∣∣∣A,Z]

=

√√√√E
[ 1
n

n∑
i=1

sup
d,s

|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|2
∣∣∣A,Z] (∵ E[R2

i ] = E[Ri] = ne/n).

For the second term we have (let eci(d, t) = ec(d, t, Zk∈Ni
, Rk∈Ni

, |Ni|) and similarly for êi(d, t))

E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri(
Ii(π)

eci (π)
− Ii(π)

êi(π)
)
(
Yi −mc

i (π)
)
|
∣∣∣A,Z] ≤ 2Γ′E

[
sup
π∈Π

1

ne

n∑
i=1

Ri|(
Ii(π)

eci (π)
− Ii(π)

êi(π)
)|
∣∣∣A,Z]

≤ 2Γ′E
[ 1

ne

n∑
i=1

Ri sup
d,t

|( 1

eci (d, t)
− 1

êi(d, t)
)|
∣∣∣A,Z] ≤ 2Γ′

√√√√E
[ 1
n

n∑
i=1

sup
d,t

|( 1

eci (d, t)
− 1

êi(d, t)
)|2
∣∣∣A,Z

]
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where in the first inequality I used the fact that Yi,m
c are uniformly bounded and in the

last inequality I used Cauchy-Schwarz. For the third term in (46), it follows similarly

E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z] ≤ 1

γδn
E
[
sup
π∈Π

1

ne

n∑
i=1

Ri|
(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

≤ 1

γδn

√√√√E
[ 1
n

n∑
i=1

sup
d,t

|
(
m̂(d, t, Zi, |Ni|)−mc(d, t, Zi, |Ni|)

)
|2
∣∣∣A,Z].

D.2.2 Proof of Theorem 3.2

The proof constructs an appropriate adjacency matrix, matrix of covariates and distribution

of treatments and unobservables to provide the lower bound, taking into account the selection

indicators. Recall the definition of EDn(A,Z)[·] in Theorem 3.2. Let v = VC(Π), and recall,

under Assumption 2.3 (i), Ri ∼i.i.d. Bern(α), α = ne/n. Let Xi = Zi for expositional

convenience not to keep track of both Xi, Zi. Let A
∗ ∈ Ao

n, such that A∗
i,j = 0 for all i ̸= j.

Let z1, · · · , zv be v points shattered by Π, which, since X = Rd and Π has VC dimension v

they must exist. Let Z∗ such that 1
n

∑n
i=1 1{Z∗

i = zj} = 1
v
for all j ∈ {1, · · · , v}. I write

sup
A∈Ao

n,Z∈Zn
sup

Dn(A,Z)∈Pn(A,Z)

δn

N 3/2
n log1/2(Nn)

EDn(A,Z)

[(
sup
π∈Π

WA,Z(π)−WA,Z(π̂n)
)∣∣∣A,Z]

≥ sup
Dn(A∗,Z∗)∈Pn(A∗,Z∗)

δn

N 3/2
n log1/2(Nn)

EDn(A∗,Z∗)

[(
sup
π∈Π

WA∗,Z∗(π)−WA∗,Z∗(π̂n)
)∣∣∣A = A∗, Z = Z∗

]
,

(47)

where, recall that δn,Nn are also a function of A∗, Z∗.

I will focus on Equation (47). I will indicate for |A∗, Z∗ the conditioning set |A = A∗, Z =

Z∗. Because I consider a fully disconnected network, we have δn = 1 in Assumption 2.3 (since

individuals have no neighbors), and Nn = 2 for adjacency matrix A∗. I follow the proof of

Theorem 14.5 in Devroye et al. (2013), and Theorem 2.2 in Kitagawa and Tetenov (2018),

while I also condition on (A∗, Z∗), and consider random indicators Ri.

Treatment assignments and potential outcomes’ distribution Next, I select the

distribution for treatment assignments and potential outcomes. LetDi be a Bernoulli random

variable, independent of observables and unobservables with P (Di = 1) = 1/2. Let b ∈
{0, 1}v be a bit indicator which indexes a distribution Dn,b(A

∗, Z∗) ∈ Pn(A
∗, Z∗). Namely,

I restrict the class of distributions to a finite number of distributions, indexed by b. Denote

Yi(d) = r(d, 0, Zi, 0, εi), the potential outcome function, where spillovers and number of

connections are equal to zero by construction of A∗. Let P (Yi(1) = 1/2|Zi = zj) = 1/2 + η,

P (Yi(1) = −1/2|Zi = zj) = 1/2 − η for bj = 1, j ≤ v. If bj = 0, instead have P (Yi(1) =
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1/2|Zi = zj) = 1/2 − η, P (Yi(1) = −1/2|Zi = zj) = 1/2 + η, where η ∈ [0, 1/2] and is

selected at the end of the proof. Consider Yi(0) = 0 almost surely.

Lower bound via Bayes risk I can therefore write the optimal treatment rule as π∗
b(zj) =

1{bj = 1}, j ≤ v, which satisfies the finite VC dimension. I have WA∗,Z∗(π∗
b) =

η
v

∑v
j=1 bj

under the distribution Dn,b. Consider b being a random variable with bj ∼i.i.d. Bern(1/2)

and independent of observables and unobservables. Denote Eb[·] the expectation with respect

to b (conditional on A∗, Z∗). For any data-dependent π̂n,
22

sup
Dn(A∗,Z∗)∈Pn

EDn(A∗,Z∗)

[
WA∗,Z∗(π∗

b)−WA∗,Z∗(π̂n)
∣∣∣A∗, Z∗

]
≥ Eb

[
EDn,b(A∗,Z∗)

[
WA∗,Z∗(π∗

b)−WA∗,Z∗(π̂n)
∣∣∣A∗, Z∗

]∣∣∣A∗, Z∗
]
,

≥ inf
π̂n

η
1

v

v∑
j=1

Eb

[
EDn,b(A∗,Z∗)

[
1{bj ̸= π̂n(zj)}

∣∣∣A∗, Z∗
]∣∣∣A∗, Z∗

]
.

(48)

We can see the minimization in Equation (48) as a risk-minimization problem with lower

bound provided by the Bayes risk. I construct a Bayes classifier of the form

π̂n(zj) = 1
{
P
(
bj = 1|

[
(Yi, Di, Dk∈Ni

)Ri, Ri

]n
i=1

, A∗, Z∗
)
≥ 1/2

}
, j ≤ v.

I can then follow the same steps of Kitagawa and Tetenov (2018), Equation (A.12), (A.13),

with k+
j = #

{
i : Zi = zj, RiYiDi = 1/2

}
, k−

j = #
{
i : Zi = zj, RiYiDi = −1/2

}
for the case

of this paper, and YiDiRi in lieu of YiDi in the derivation of Kitagawa and Tetenov (2018).

Following (A.12), (A.13), and the equation below (A.13) in Kitagawa and Tetenov (2018)

inf
π̂n

η
1

v

v∑
j=1

Eb

[
EDn,b(A∗,Z∗)

[
1{bj ̸= π̂n(zj)}

∣∣∣A∗, Z∗
]∣∣∣A∗, Z∗

]

≥ η

2v

v∑
j=1

a
−Eb

[
EDn,b(A∗,Z∗)

[
|
∑

i:Z∗
i
=zj

2YiDiRi|
∣∣∣A∗,Z∗

]]
, a =

1 + 2η

1− 2η
.

Lower bound on the Bayes risk The marginal distribution of Yi(1) (once we integrate

over b), is P (Yi(1) = 1/2|Z∗, A∗) = P (Yi(1) = −1/2|Z∗, A∗) = 1/2 similarly to Kitagawa

and Tetenov (2018). By independence, P (DiRi = 1) = α/2. We have

Eb

EDn,b(A∗,Z∗)

[
|
∑

i:Z∗
i =zj

2YiDiRi|
∣∣∣A∗, Z∗

] = Eb

EDn,b(A∗,Z∗)

[
|

∑
i:Z∗

i =zj ,RiDi=1

2Yi|
∣∣∣A∗, Z∗

]
=

n/v∑
k=0

(
n/v

k

)
(
α

2
)k(1− α

2
)n/v−kE

∣∣∣B(k,
1

2
)− k/2

∣∣∣,
(49)

22See e.g., Appendix A.2 in Kitagawa and Tetenov (2018), Page 8.
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where B(k, 1/2) is a binomial random variable with parameters (k, 1/2). Equation (49) holds

because given Z = Z∗, there are n/v many observations with Z∗
i = zj, j ≤ v by construction

of Z∗. We can write E
∣∣∣B(k, 1

2
)− k/2

∣∣∣ ≤√E
(
B(k, 1

2
)− k/2

)2
=
√

k
4
. It follows

(49) ≤
n/v∑
k=0

(
n/v

k

)
(
α

2
)k(1− α

2
)n/v−k

√
k

4
= E

√
B(n/v, α2 )

4
≤
√

E[B(n/v, α2 )]

4
=

√
nα

v8
.

Following Kitagawa and Tetenov (2018), equation (A.14) and below, with αn in lieu of n

in Kitagawa and Tetenov (2018), it follows that the Bayes risk is bounded from below by
1
2

√
v
αn

exp(−2
√
2) for αn ≥ 16v. Since ne = αn,Nn ≤ 2 for A∗, the proof completes.

D.2.3 Proof of Theorem 3.3

For the sake of brevity, I will be using the following notation

Ĩi(d, t) = 1
{
d = Di, t = Ti

}
, ẽi(d, t) = e

(
d, t, Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
, m̃i(d, t) = m

(
d, t, Zi, |Ni|

)
.

Also, let ε̃i = Yi−m(Di, Ti, Zi, |Ni|). With an abuse of notation, I will refer to êi(d, t), m̂i(d, t)

as the estimated counterpart of ẽi(d, t), m̃i(d, t) from Algorithm 3, with arguments (d, t).

Let Ii(π), ei(π),mi(π) be defined as in Equation (6), and the beginning of Section 3.1, and

êi(π), m̂i(π) be defined as in Algorithm 3 (Equation (14)), as a function of the treatment

assignment rule π (therefore êi(π) := êi(π(Xi), Ti(π)) and similarly for m̂i(π)). Recall the

definitions of K∗, F j
k in Algorithm 3: K∗ denotes the number of partitions obtained under

Algorithm 3, where we have k ∈ {1, · · · , K∗} many partitions. Within each partition, we

have j ∈ {1, · · · , J} folds F j
k . For each k ∈ {1, · · · , K∗}, ∪J

j=1F
j
k never contains two units

that are either neighbors or share a common neighbor. Let R = (R1, · · · , Rn).

The argument I present in the current proof applies to any K∗ obtained from Algorithm

3, and any configurations of folds (F j
k )

J
j=1, k ∈ {1, · · · , K∗} obtained from Algorithm 3,

including settings with folds F j
k with one or few units.23

Preliminary decomposition Following the same argument of Corollary 4, since Πn ⊆ Π,

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] ≤ 2E

[
sup
π∈Π

|Wn(π,m, e)−WA,Z(π)|
∣∣∣A,Z]︸ ︷︷ ︸

(I)

+ 2E
[
sup
π∈Π

|Wn(π, m̂, ê)−Wn(π,m, e)|
∣∣∣A,Z]︸ ︷︷ ︸

(II)

.

23Algorithm 3 estimates m̂(i), 1/ê(i) as zero functions for those units i, assigned to groups k ∈ {1, · · · ,K∗}
with few (a finite) number of units. The estimation error for such units contributes directly to the average
error in Equation (51). Appendix B.1 show how to control the estimation error in (51).
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Term (I) is bounded by Theorem D.1. I now study (II).

(II) = E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

(mi(π)− m̂i(π)) + ε̃i
Ii(π)

êi(π)
+ m̂i(π)−mi(π)

)∣∣∣|A,Z]
= E

[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)
(mi(π)− m̂i(π)) +Riε̃i

Ii(π)

êi(π)
−Ri

(Ii(π)
ei(π)

− 1
)
(m̂i(π)−mi(π))

∣∣∣|A,Z].
The last equality follows after adding and subctracting Ri

Ii(π)
ei(π)

(mi(π)− m̂i(π)). It follows

(II) ≤E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)
(mi(π)− m̂i(π))

∣∣∣|A,Z]︸ ︷︷ ︸
(i)

+E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Riε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣|A,Z]︸ ︷︷ ︸
(ii)

+ E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Riε̃i
Ii(π)

ei(π)

∣∣∣|A,Z]︸ ︷︷ ︸
(iii)

+E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
ei(π)

− 1
)
(m̂i(π)−mi(π))

∣∣∣|A,Z]︸ ︷︷ ︸
(iv)

.

(50)
Bounding (i) Consider (i) first. We have

(i) = E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)
Ri(mi(π)− m̂i(π))

∣∣∣|A,Z] (∵ Ri ∈ {0, 1})

≤

√√√√ 1

ne
E
[ n∑

i=1

Ri sup
d,t

( 1

ẽi(d, t)
− 1

êi(d, t)

)2∣∣∣A,Z]
√√√√ 1

ne
E
[ n∑

i=1

Ri sup
d,t

(
m̃i(d, t)− m̂i(d, t)

)2∣∣∣A,Z]

=

√√√√E[Ri/ne]E
[ n∑

i=1

sup
d,t

( 1

ẽi(d, t)
− 1

êi(d, t)

)2∣∣∣Ri = 1, A, Z
]

(∵ Defn of conditional expectation)

×

√√√√E[Ri/ne]E
[ n∑

i=1

sup
d,t

(
m̃i(d, t)− m̂i(d, t)

)2∣∣∣Ri = 1, A, Z
]
=
√

Rn(A,Z)× Bn(A,Z).

(51)

Summands in (ii) and (iii), (iv) Next, I show that each summand in (ii), (iii), (iv) has

a zero conditional expectation, given R,A,Z, for any ê(i), m̂(i) in Algorithm 3.

(ii) I start from summands in (ii). I write the expectation of each summand as

E
[
Riε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣R,A,Z
]

= E
[
Ri

(
r(π(Xi), Ti(π), Zi, |Ni|, εi)−mi(π)

)(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣R,Z,A
]

= E
[
E
[
Ri

(
r(π(Xi), Ti(π), Zi, |Ni|, εi)−mi(π)

)(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣êi(π), R, Z,A
]∣∣∣R,Z,A

]
= Ri E

[(
r(π(Xi), Ti(π), Zi, |Ni|, εi)−mi(π)

)
|A,Z,R

]
︸ ︷︷ ︸

=0

E
[(Ii(π)

êi(π)
− Ii(π)

ei(π)

)∣∣∣R,Z,A
]

(∵ Alg 3 and Assumptions 2.3(i, ii)) = 0.

(52)
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The last equality follows from the fact that Ti(π) (in Equation (4)) is a deterministic

function of (A,Z), εi is independent of êi(π) given (R,Z,A) by Algorithm 3, and εi is

conditionally independent of (Di, Ri)
n
i=1 given A,Z, by Assumption 2.3 (i, ii).

(iii) For (iii), E[Riε̃iIi(π)/ei(π)|R,A,Z] = 0 directly by Assumptions 2.3 (i, ii).

(iv) For summands in (iv), we have:

E
[
Ri

(Ii(π)
ei(π)

− 1
)
(m̂i(π)−mi(π))

∣∣∣R,A,Z
]

= Ri E
[(Ii(π)

ei(π)
− 1
)∣∣∣R,A,Z

]
︸ ︷︷ ︸

=0

E
[
(m̂i(π)−mi(π))

∣∣∣R,A,Z
]
= 0.

(53)

The first equality follows because m̂i(π) is independent of (Di, Dk∈Ni
) conditional on

(R,A,Z) by Algorithm 3 and Assumption 2.3 (ii).

Bounds for (ii) Using the triangular inequality and the law of iterated expectations, I

write (letting êi(·) be the estimated propensity score function for i)

(ii) ≤E
[ K∗∑
k=1

J∑
j=1

E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈F j

k

Riε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣|êi∈F j
k
(·), R,A, Z

]
︸ ︷︷ ︸

:=(Mj
k)

∣∣∣A,Z],
(54)

where here we also condition on R and the estimated functions êi for units in the fold i ∈ F j
k .

Next, we bound each component (M j
k) in (54). We make the following observations.

(1) (F j
k )

J
j=1, K

∗ are deterministic functions of (R,A) by construction of Algorithm 3.

(2) For each i ∈ F j
k , E

[
Riε̃i

(
Ii(π)
êi(π)

− Ii(π)
ei(π)

)∣∣∣A,R,Z, êi∈F j
k
(·)
]
= 0 by (52) and independence

of êi∈F j
k
(·) with ε̃i (independence follows from Alg 3 and Assumptions 2.3 (i,ii)).24

(3) Conditional on (êi∈F j
k
(·), R,A, Z), we have that

{
Riε̃i

(
Ii(π)
êi(π)

(·)− Ii(π)
ei(π)

)}
are mutually

independent among units in the same fold (i ∈ F j
k ), by 2.3 (i,ii), and Alg 3.

24Independence follows from the fact that ∪J
j=1F

j
k does not contain two sampled individuals that are either

neighbors or share a common neighbor. Therefore, we never use information from (Di, Dk∈Ni
) to estimate

êi(·) for all i : Ri = 1. Also, note that the argument holds if, for estimating the propensity score for i, we also

use information from the neighbors of the units in ∪J
j=1F

j
k \F j(i)

k which have not been sampled, where F
j(i)
k

denotes the fold containing i. These units (i.e., non-sampled neighbors of elements in ∪J
j=1F

j
k \F

j(i)
k ) cannot

be neighbors of i (with Ri = 1) since ∪J
j=1F

j
k does not contain sampled units with a common neighbor.
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Therefore, by (2), and (3) above I can invoke standard symmetrization arguments for centered

independent random variables (see Lemma 6.4.2 in Vershynin, 2018) to bound

(M j
k) ≤ 2E

[
Eε̃,σ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈F j

k

σiRiε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣]|êi∈F j
k
(·), R,A, Z

]
(55)

for (σ1, · · · , σn) be i.i.d. exogenous Radamacher random variables (recall that Eε̃,σ[·] indicates
that the inner expectation is conditional on everything else except σ, ε̃).

I can now directly use Lemma D.8 to bound the right-hand-side of (55). Namely, I invoke

Lemma D.8 where Ωi in the statement of Lemma D.8 is ε̃i in Equation (55), gi(·) in Lemma

D.8 is
(

Ii(π)
êi(π)

− Ii(π)
ei(π)

)
in Equation (55); Un in the statement of Lemma D.8 is 2

γδn
in (55).

Therefore, by Lemma D.8, for a universal constant C̄ < ∞

Eε̃,σ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈F j

k

σiRiε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣] ≤ C̄Γ

ne

√√√√Nn log(Nn)
n∑

i=1

Ri1{i ∈ F j
k}VC(Π).

It follows

J∑
j=1

E
[ K∗∑

k

(M j
k)
∣∣∣A,Z] ≤ JE

[
K∗ C̄Γ

ne

√∑J
j=1

∑K∗

k=1Nn log(Nn)
∑n

i=1Ri1{i ∈ F j
k}VC(Π)

JK∗

∣∣∣A,Z]
(∵ concavity of

√
x)

≤ E
[√

JK∗ C̄Γ

ne

√√√√Nn log(Nn)
n∑

i=1

RiVC(Π)
∣∣∣A,Z] (∵ ∪K∗,J

k=1,j=1F
j
k ⊆ {1, · · · , n})

≤ E
[√

Jχ(A2)
C̄Γ

ne

√√√√Nn log(Nn)

n∑
i=1

RiVC(Π)
∣∣∣A,Z] (∵ K∗ ≤ χ(A2) by Lem D.9)

≤
√

Jχ(A2)
C̄Γ

ne

√√√√Nn log(Nn)
n∑

i=1

E[Ri]VC(Π) (∵ Jensen’s inequality).

(56)

By Assumption 2.3 (i) (56) ≤
√
Jχ(A2)C̄Γ

√
Nn log(Nn)VC(Π)

ne
. By construction of Algorithm

3, J = O(1). By Lemma D.5, χ(A2) ≤ 2N 2
n .

Rademacher complexity bounds for (iii) Since (iii) does not depend on estimators,

the bound for (iii) follows from the same argument in Theorem D.1. Recall the definitions

of χ(A2), C2
n(g) I used in Theorem D.1. Following the proof of Theorem D.1 (Paragraph

“Symmetrization and proper cover”), I can write

(iii) ≤
∑

g∈{1,··· ,χ(A2)}

E
[
Eσ,ε̃

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

Riε̃i
Ii(π)

ei(π)

∣∣∣]|A,Z].
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I can now bound Eσ,ε̃

[
supπ∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)
Riε̃i

Ii(π)
ei(π)

∣∣∣] directly with Lemma D.8, with ε̃i in

lieu of Ωi in Lemma D.8 and Ii(π)/ei(π) in lieu of gi(·) in Lemma D.8, with upper bound

Un = 2/(γδn). Following the same argument as in Equation (43)∑
g∈{1,··· ,χ(A2)}

E
[
Eσ,ε̃

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

Riε̃i
Ii(π)

ei(π)

∣∣∣]|A,Z] ≤ c′
Γ
√
χ(A2

n)

γδn

√
Nn log(Nn)VC(Π)

ne
.

By Lemma D.5, χ(A2) ≤ 2N 2
n , for a universal constant c′ < ∞.

Rademacher complexity bounds for (iv) The bound for (iv) follows verbatim as the

bound for (ii), where, here, instead of conditioning on êi∈F j
k
as in Equation (54), I condition

on m̂i∈F j
k
. This is omitted for space constraints. The proof completes.

D.2.4 Proof of Theorem 4.1

Define W tr
A,Z(π) =

1
n

∑n
i=1 m

(
π(Xi), Ti(π), Zi, |Ni|

)
1
{
|Ni| ≤ logγ(κn)

}
the trimmed version

of welfare. Following Corollary 4,

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂
tr
κn
)
∣∣∣A,Z] ≤ 2E

[
sup
π∈Π

∣∣∣WA,Z(π)−W tr
n (π)

∣∣∣|A,Z]
≤ 2E

[
sup
π∈Π

∣∣∣W tr
A,Z(π)−W tr

n (π)
∣∣∣|A,Z]+ 2 sup

π∈Π

∣∣∣W tr
A,Z(π)−WA,Z(π)

∣∣∣. (57)

The bounds for the first component in the right-hand side of Equation (57) follows verbatim

the proof of Theorem D.1, since E[W tr
n (π)|A,Z] = W tr

A,Z(π), with the difference that the

overlap constant is γlogγ(κn)+1 under Assumption 2.3 (iii). For the second component,∣∣∣W tr
A,Z(π)−WA,Z(π)

∣∣∣ ≤ 1

n

n∑
i=1

m
(
π(Xi), Ti(π), Zi, |Ni|

)(
1− 1

{
|Ni| ≤ logγ(κn)

})
. (58)

Here, (58) = O
(

1
n

∑n
i=1 1

{
|Ni| > logγ(κn)

})
, by 2.2 (C) and Holder’s inequality.

D.2.5 Proof of Theorem 4.4

Define W (π) = EA′,Z′ [WA′,Z′(π)] and W (π̂mc,e) = EA′,Z′ [WA′,Z′(π̂mc,e)|π̂mc,e], where π̂mc,e ⊥
(A′, Z ′) by assumption. We can write, following similar steps as in Equation (45) with W (π)

in lieu of WA,Z(π), supπ∈Π W (π) − W (π̂mc,e) ≤ 2 supπ∈Π |W (π) − Wn(π,m
c, e)|. Therefore,

by taking expectations,

sup
π∈Π

W (π)− E[W (π̂mc,e)] = E
[
sup
π∈Π

W (π)−W (π̂mc,e)
]
≤ 2E

[
sup
π∈Π

|W (π)−Wn(π,m
c, e)|

]
= 2E

[
sup
π∈Π

∣∣∣Wn(π,m
c, e)−WA,Z(π) +WA,Z(π)− E[WA′,Z′(π)]

∣∣∣]
= 2E

[
sup
π∈Π

∣∣∣Wn(π,m
c, e)−WA,Z(π)

∣∣∣]︸ ︷︷ ︸
(A)

+2E
[
sup
π∈Π

∣∣∣WA,Z(π)− E[WA′,Z′(π)]
∣∣∣]︸ ︷︷ ︸

(B)

.

(59)

(A) can be bounded using directly Theorem D.1 and the law of iterated expectations.
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D.2.6 Proof of Proposition B.4

To show that Proposition B.4 I need to show that (i) the VC dimension of Π̃n is at most

VC(Π) up-to a constant factor; (ii) overlap holds for any class of policy π ∈ Π̃n, namely

ei(π) ∈ (γδn, 1− γδn). The rest of the proof then follows verbatim from Theorem 3.1.

First, for (i), note that by Theorem 13.1 in Devroye et al. (2013), the VC dimension of

the classifier π̃(x, d) = π(x)(1 − d) equals the VC dimension of π(x), namely VC(Π). By

Lemma 29.4 in Devroye et al. (2013) it follows that the VC dimension of Π̃n equals VC(Π).

Second, for (ii), for π̃(x, d) = π(x)(1− d) + d

P
(
Di = π̃(Xi, Di)|Zi, Ri = 1

)
=

P (Di = 1|Zi, Ri = 1) if π(Xi) = 1

1 otherwise.

It follows that P
(
Di = π̃(Xi, Di)|Zi, Ri = 1

)
≥ min{P (Di = 1|Zi, Ri = 1), P (Di =

0|Zi, Ri = 1)} ∈ (γ, 1 − γ). Similarly, I can show that P
(
Di = π̃(Xi, Di)|Zi, Ri = 0, Rf

i =

1
)

∈ (γ, 1 − γ) and P (Ti = t|Zi, Ri = 1, Rk∈Ni
, Zk∈Ni

, |Ni|) ≥ δn almost surely for any

t ∈ Tn, under Assumption 2.3 (ii). Intuitively, because I always treat those units also treated

in the experiment, overlap for π̃ ∈ Π̃n is guaranteed, under overlap in the experiment. It

follows that the propensity score ei(π̃) = e(π̃(Xi, Di), Ti(π̃), Zi, Zk∈Ni
, Rk∈Ni

, |Ni|), π̃ ∈ Π̃n

satisfies the overlap conditions imposed in Assumption 2.3. Finally, it is easy to show that

Lemma 2.1 directly holds also for any π̃ ∈ Π̃n, following verbatim the proof of Lemma 2.1,

reweighting for ei(π̃). The rest of the proof follows verbatim the one of Theorem 3.1 once we

define the policy as Di + (1 −Di)π(Xi), and the outcomes evaluated at the new policy are

r
(
Di+(1−Di)π(Xi), Ti(π), Zi, |Ni|, εi

)
with Ti(π) = gn

(∑
k∈Ni

Dk+(1−Dk)π(Xk), Zi, |Ni|
)
.

D.3 Lemmas

Lemma D.2. The following holds: χ(An) ≤ χ(AM
n ) ≤ MNM

n for all n ≥ 1.

Proof of Lemma D.2. The first inequality follows by Definition D.3. The second inequality

follows by Brook’s Theorem (Brooks, 1941), since the maximum degree under AM
n is bounded

by Nn +Nn ×Nn + · · ·+
∏M

s=1Nn ≤ MNM
n .

Lemma D.3. For i ∈ {1, · · · , n} consider functions fi : Tn 7→ [−Un, Un] for some Un > 0,

and Tn ⊆ Z. Then for any i ∈ {1, · · · , n}, n ≥ 1, fi(t) is 2Un-Lipschitz in t.

Proof of Lemma D.3. For any t, t′ ∈ Z,
∣∣∣fi(t) − fi(t

′)
∣∣∣ ≤ 2Un for t ̸= t′, by the triangular

inequality. Since Tn ⊆ Z is discrete,
∣∣∣fi(t)− fi(t

′)
∣∣∣ ≤ 2Un|t− t′|.
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Lemma D.4. For any i ∈ {1, · · · , n}, let Xi ∈ X be an arbitrary random variable and F a

class of uniformly bounded functions with envelope F̄ . Let Ωi|X1, · · · , Xn be random variables

independently but not necessarily identically distributed, where Ωi ≥ 0 is a scalar. Assume

that for some u > 0, E[Ω2+u
i |Z] < B, ∀i ∈ {1, · · · , n}. In addition, assume that for any

fixed points xn
1 ∈ X n, for some Vn ≥ 0, for all n ≥ 1,

∫ 2F̄

0

√
log
(
M1

(
η,F(xn

1 )
))

dη <
√
Vn.

Let σi be i.i.d Rademacher random variables independent of (Ωi)
n
i=1, (Xi)

n
i=1. Then for a

constant 0 < CF̄ < ∞ that only depend on F̄ and u, for all n ≥ 1∫ ∞

0

E
[
sup
f∈F

∣∣∣ 1
n

n∑
i=1

σif(Xi)1{Ωi > ω}
∣∣∣|X1, · · · , Xn

]
dω ≤ CF̄

√
BVn

n
.

Proof of Lemma D.4. The proof follows verbatim the proof of Lemma A.5 in Kitagawa and

Tetenov (2019), with two small differences that do not affect the argument of the proof: I

must control the Rademacher complexity using the Dudley’s entropy integral bound (instead

of the VC dimension), and Ωi are independent but not necessarily identically distributed

random variables. Given that the argument follows verbatim the one of Lemma A.5 of

Kitagawa and Tetenov (2019), the proof is omitted for space constraints.25

Lemma D.5. Take any k ≥ 2. Let F1, · · · ,Fk be classes of bounded functions with VC

dimension v and envelope F̄ < ∞. Let

Jn =
{
f1(f2 + ...+ fk), fj ∈ Fj , j = 1, · · · , k

}
, Jn(x

n
1 ) =

{
h(x1), · · · , h(xn);h ∈ Jn

}
.

For arbitrary fixed points xn
1 ∈ X n, for any n ≥ 1, k ≥ 2, v ≥ 1,

∫ 2F̄

0

√
log
(
M1

(
η,J (xn

1 )
))

dη <

cF̄
√

k log(k)v for a constant cF̄ < ∞ that only depends on F̄ .

Proof of Lemma D.5. Without loss of generality let F̄ ≥ 1 (since if less than one the envelope

is also uniformly bounded by one). Let F−1,n(x
n
1 ) = {f2(xn

1 ) + ... + fk(x
n
1 ), fj ∈ Fj, j =

2, ..., kn}. By Devroye et al. (2013), Theorem 29.6, M1

(
η,F−1,n(x

n
1 )
)
≤
∏k

j=2M1

(
η/(k −

1),Fj(x
n
1 )
)
. By Theorem 29.7 in Devroye et al. (2013),

M1

(
η,Jn(x

n
1 )
)
≤

k∏
j=2

M1

( η

2(k − 1)F̄
,Fj(x

n
1 )
)
M1

( η

2F̄
,F1(x

n
1 )
)
. (60)

By standard properties of covering numbers, for a generic set H, N1(η,H) ≤ N2(η,H). It

follows (60) ≤
∏k

j=2 M2

(
η

2(k−1)F̄
,Fj(x

n
1 )
)
M2

(
η
2F̄

,F1(x
n
1 )
)
. I now apply a uniform entropy

bound for the covering number. By Theorem 2.6.7 of Van Der Vaart and Wellner (1996),

25The reader may refer to a technical note that collects lemmas from past literature available at dviviano.
github.io/projects/note preliminary lemmas.pdf for details or Appendix E below.
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we have that for a universal constant C < ∞ (that without loss of generality we can assume

C ≥ 1), M2

(
η

2(k−1)F̄
,Fj(x

n
1 )
)
≤ C(v + 1)(16e)(v+1)

(
2F̄ 2(k−1)

η

)2v
which implies that

log
(
M1

(
η,Jn(x

n
1 )
))

≤
kn−1∑
j=1

log
(
M2

( η

2F̄ (k − 1)
,Fj(x

n
1 )
))

+ log
(
M2

( η

2F̄
,F1(x

n
1 )
))

≤ k log
(
C(v + 1)(16e)v+1

)
+ k2v log(2CF̄ 2(k − 1)/η).

Since
∫ 2F̄

0

√
k log

(
C(v + 1)(16e)v+1

)
+ kn2v log(2CF̄ 2(k − 1)/η)dη ≤ cF̄

√
k log(k)v for a

constant cF̄ < ∞, the proof completes.

We discuss the Ledoux and Talagrand (2011)’s inequality for the case of interest here.

Lemma D.6. For all i ∈ {1, · · · , n}, let ϕi : R 7→ R be such that |ϕi(a)− ϕi(b)| ≤ L|a− b|
for all a, b ∈ R, with ϕi(0) = 0, and arbitrary L > 0. Then, for any n ≥ 1, L > 0, any

Un ⊆ Rn,Kn ⊆ {0, 1}n, with u = (u1, · · · , un) ∈ Un, α = (α1, · · · , αn) ∈ Kn,

1

2
Eσ

[
sup

u∈Un,α∈Kn

∣∣∣ 1
n

n∑
i=1

σiϕi(ui)αi

∣∣∣] ≤ LEσ

[
sup

u∈Un,α∈Kn

∣∣∣ 1
n

n∑
i=1

αiσiui

∣∣∣].
Proof of Lemma D.6. The proof follows closely the one of Theorem 4.12 in Ledoux and

Talagrand (2011) while dealing with the additional α vector. We provide here the main

argument and refer to Ledoux and Talagrand (2011) for additional details. First, note that

if Un is unbounded, there will be settings such that the right hand side is infinity and the

result trivially holds. Therefore, let Un be bounded. We aim to show that

E
[

sup
u∈U2,α∈K2

α1u1 + σ2ϕ(u2)α2

]
≤ E

[
sup

u∈U2,α∈K2

α1u1 + Lσ2u2α2

]
. (61)

If Equation (61), it follows that

E
[

sup
u∈U2,α∈K2

α1ϕ1(u1)σ1 + σ2ϕ(u2)α2|σ1
]
≤ E

[
sup

u∈U2,α∈K2

α1ϕ1(u1)σ1 + Lσ2u2α2

∣∣∣σ1].
Because σ1ϕ(u1) simply transforms U2, and we can iteretively apply this result.

I first prove Equation (61). Define for a, b ∈ {0, 1}2, I(u, s, a, b) := 1
2

(
u1a1 + a2ϕ(u2)

)
+

1
2

(
s1b1 − b2ϕ(s2)

)
. I want to show that the right hand side in Equation (61) is larger than

I(u, s, a, b) for all u, s ∈ U2 and a, b ∈ {0, 1}2. Since I am taking the supremum of I(u, s, a, b)

over u, s, a, b, I can assume without loss of generality (as in Ledoux and Talagrand, 2011)

u1a1 + a2ϕ(u2) ≥ s1b1 + b2ϕ(s2), s1b1 − b2ϕ(s2) ≥ u1a1 − a2ϕ(u2). (62)

I can now define four quantities of interest

q1 = b1s1 − b2ϕ(s2), q2 = b1s1 − Ls2b2, q′1 = a1u1 + La2u2, q′2 = a1u1 + a2ϕ(u2).
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I consider four different cases, similarly to Ledoux and Talagrand (2011) and argue that for

any value of (a1, a2, b1, b2) ∈ {0, 1}4, 2I(u, s, a, b) = q1 + q′2 ≤ q′1 + q2.

Case 1 Start from the case a2u2, s2b2 ≥ 0. We know that ϕ(0) = 0, so that |b2ϕ(s2)| ≤ Lb2s2.

Now assume that a2u2 ≥ b2s2. In this case q1 − q2 = Lb2s2 − b2ϕ(s2) ≤ La2u2 − a2ϕ(u2) =

q′1 − q′2 since |a2ϕ(u2) − b2ϕ(s2)| ≤ L|a2u2 − b2s2| = L(a2u2 − b2s2). To see why this last

claim holds, note that for a2, b2 = 1, then the results hold by the condition a2u2 ≥ b2s2

and Lipschitz continuity. If instead a2 = 1, b2 = 0, the claim trivially holds. While the case

a2 = 0, b2 = 1, then it must be that s2 = 0 since we assumed that a2u2 ≥ 0, b2s2 ≥ 0 and

a2u2 ≥ b2s2. Thus q1 − q2 ≤ q′1 − q′2. If instead b2s2 ≥ a2u2, then use −ϕ instead of ϕ and

switch the roles of s, u giving a similar proof.

Case 2 Let a2u2 ≤ 0, b2s2 ≤ 0. The proof is as Case 1, switching the signs where necessary.

Case 3 Let a2u2 ≥ 0, b2s2 ≤ 0. Then a2ϕ(u2) ≤ La2u2, since a2 ∈ {0, 1} and by Lipschitz

properties of ϕ, −b2ϕ(s2) ≤ −b2Ls2 so that a2ϕ(u2)− b2ϕ(s2) ≤ a2Lu2 − b2Ls2.

Case 4 Let a2u2 ≤ 0, b2s2 ≥ 0. Then the claim follows symmetrically to Case 3.

The conclusion of the proof follows verbatim the one in Ledoux and Talagrand (2011).

Lemma D.7. Let Π, Π′ be two function classes, each with VC dimension v, and π : X 7→
{0, 1} for any π ∈ Π,Π′. For i ∈ {1, · · · , n}, take arbitrary (Xk∈Ni

, Xi), Xi ∈ X ,Ωi ∈
R, Ri ∈ {0, 1}, adjacency matrix A, and functions fi : Z 7→ [−Un, Un], for a positive

constant Un > 0. Assume that E[|Ωi|3|(Ri)
n
i=1, (Xi)

n
i=1, A] < B, for some B < ∞, and

(Ωi)
n
i=1|(Ri)

n
i=1, (Xi)

n
i=1, A are independent but not necessarily identically distributed. Let

σ1, · · · , σn be i.i.d. Rademacher random variables, independent of
[(

Xi, Ri,Ωi

)n
i=1

, A
]
. Then

for a universal constant c0 < ∞, for any n ≥ 1, v = VC(Π) = VC(Π′)

EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Rifi

( ∑
k∈Ni

π2(Xk)
)
π1(Xi)σiΩi

∣∣∣] ≤ c0Un

√√√√vBNn log(Nn)
n∑

i=1

Ri. (63)

Proof of Lemma D.7. First, note that since Ri ∈ {0, 1}, and we take the expectation condi-

tional on (Ri)
n
i=1, we can interpret the sum in Equation (63) as a sum over elements

∑n
i=1 Ri

many elements. Also, note that from Lemma D.3, we have that fi(t) is 2Un-Lipschitz in t.

First decomposition First, we add and subtract the value of the function fi(0) at zero.

The left hand side in Equation (63) equals

EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσi

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0) + fi(0)

)
Ωiπ1(Xi)

∣∣∣]
≤ EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσi

(
fi

( ∑
k∈Ni

π2(Xk)
)
− f(0)

)
Ωiπ1(Xi)

∣∣∣]︸ ︷︷ ︸
(1)

+EΩ,σ

[
sup
π1∈Π

∣∣∣ n∑
i=1

Riσifi(0)Ωiπ1(Xi)
∣∣∣]︸ ︷︷ ︸

(2)

.

(64)
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First, I bound (1). I write

(1) = EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσi

(
fi

(∑
kNi

π2(Xk)
)
− fi(0)

)
|Ωi|sign(Ωi)π1(Xi)

∣∣∣]
= EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
|Ωi|π1(Xi)

∣∣∣] (65)

where σ̃i = sign(Ωi)σi which are i.i.d. Rademacher random variables independent of (Ωi, Xi, Ri)
n
i=1, A,

since P (σ̃i = 1|Ω) = P (σisign(Ωi) = 1|Ω) = 1/2. Using the fact that |Ωi| ≥ 0, I have

(65) = EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− f(0)

)∫ ∞

0
1{|Ωi| > ω}dωπ1(Xi)

∣∣∣]
≤ EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∫ ∞

0

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣dω]
≤
∫ ∞

0
EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣]dω.
(66)

Next, I use the law of iterated expectation to first take the expectation over σ̃ (conditional

on Ω) and then take the expectation over Ω. I also divide and multiplied by Un. I obtain

(66) ≤ Un

∫ ∞

0
EΩ

[
Eσ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i
1

Un

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣]]dω.
(67)

Lipschitz property Let ϕi(t) =
1
Un

(fi(t)−fi(0)). Here, ϕi is Lipschitz in t, with Lipschitz

constant equal to 1. In addition, ϕi(0) = 0. By Lemma D.626,

Eσ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i
1

Un

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣]
≤ 2Eσ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

( ∑
k∈Ni

π2(Xk)
)
1{|Ωi| > ω}π1(Xi)

∣∣∣]. (68)

I can therefore write

(67) ≤ 2Un

∫ ∞

0
EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

( ∑
k∈Ni

π2(Xk)
)
1{|Ωi| > ω}π1(Xi)

∣∣∣]dω.
26Conditional on X,A,Ω, I invoke Lemma D.6 with (π1(Xi)1{|Ωi| > ω})ni=1 in lieu of (α1, · · · , αn) ∈ Kn ⊆

{0, 1}n in the statement of Lemma D.6, since π1(Xi)1{|Ωi| > ω} is binary. Here (
∑

k∈Ni
π2(Xk))

n
i=1 is in

lieu of (u1, · · · , un) ∈ Un in Lemma D.6. The spaces Kn,Un in Lemma D.6, here are those defined (given
Ω, X,A), by π1(Xi)1{|Ωi| > ω}, π1 ∈ Π and (

∑
k∈Ni

π2(Xk))
n
i=1, π2 ∈ Π′, respectively.
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Function reparametrization I now consider a reparametrization of the function class.

Define X̃i ∈ XNn = (Xi, Xk∈Ni
, ∅, · · · , ∅), where for the entries h > |Ni|+1, X̃

(h)
i = ∅, denot-

ing the hth entry of X̃i. Without loss of generality, let π(∅) = 0. Define πj ∈ Πj a function

class of the form πj(X̃i) = π(X̃
(j)
i ), π ∈ Π′ for j > 1 and π1(X̃i) = π(X̃

(1)
i ), π ∈ Π, i.e.,

equal to π applied to the jth entry of the vector X̃i. Since this is a trivial reparametrization,

VC(Πj) = VC(Π) (= VC(Π′) by assumption) for all j ∈ {1, · · · ,Nn}.27 I can write

Un

∫ ∞

0
EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

( ∑
k∈Ni

π2(Xk)
)
1{|Ωi| > ω}π1(Xi)

∣∣∣]dω
≤ Un

∫ ∞

0
EΩ,σ̃

[
sup

π̃1∈Π1,··· ,π̃Nn∈ΠNn

∣∣∣ n∑
i=1

Riσ̃i

(Nn−1∑
k=1

π̃k+1(X̃i)
)
1{|Ωi| > ω}π̃1(X̃i)

∣∣∣]dω
= Un

∫ ∞

0
EΩ,σ̃

[
sup
π̃∈Π̃n

∣∣∣ n∑
i=1

Riσ̃iπ̃(X̃i)1{|Ωi| > ω}
∣∣∣]dω

where Π̃n =
{
π1

(∑Nn−1
j=2 πj+1

)
, πj ∈ Πj, j = 1, · · · ,Nn

}
. I now apply Lemma D.5, using

the fact that VC(Πj) = VC(Π) = VC(Π′), for any j ∈ {1, · · · ,Nn}. By Lemma D.5,

for any n ≥ 1, the Dudley’s integral of the function class Π̃n is uniformly bounded by

C
√

Nn log(Nn)VC(Π), for a finite universal constant C. By Lemma D.4, since I am summing

over
∑n

i=1 Ri elements (conditional on (R1, · · · , Rn)), for a universal constant C̄ ′ < ∞

Un

∫ ∞

0
EΩ,σ̃

[
sup
π̃∈Π̃n

∣∣∣ n∑
i=1

Riσ̃iπ̃(X̃i)1{|Ωi| > ω}
∣∣∣]dω ≤ C̄ ′Un

√√√√BNnVC(Π) log(Nn)
n∑

i=1

Ri.

Term (2) Next, I bound the term (2) in Equation (64). Similar to (1),

EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσifi(0)Ωiπ(Xi)
∣∣∣] ≤ UnEΩ,σ̃

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσ̃i|
fi(0)

Un
Ωi|π(Xi)

∣∣∣]
≤ Un

∫ ∞

0
EΩ,σ̃

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσ̃i1{|fi(0)Ωi|/Un > ω}π(Xi)
∣∣∣]dω.

Since Π has finite VC dimension, by Theorem 2.6.7 of Van Der Vaart and Wellner (1996) (the

argument is the same as in Lemma D.5),
∫ 2

0

√
M1(η,Π(xn

1 ))dη < C
√
VC(Π) for a universal

constant C, and for any xn
1 ∈ X n. Since EΩ[|fi(0)Ωi/Un|3] ≤ B (fi(0)/Un ∈ [−1, 1]) we can

apply Lemma D.4, with |fi(0)Ωi|/Un in lieu of |Ωi| in Lemma D.4, and obtain

Un

∫ ∞

0
EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσi1{|fi(0)Ωi|/Un > ω}π(Xi)
∣∣∣]dω ≤ C ′Un

√√√√BVC(Π)
n∑

i=1

Ri

for a universal constant C ′ < ∞. The proof completes.

27See e.g., Theorem 29.4 in Devroye et al. (2013).
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The following lemma is a direct corollary of Lemma D.7.

Lemma D.8. Let π ∈ Π, be a function class, with π : X 7→ {0, 1}. For i ∈ {1, · · · , n}, take
arbitrary (Xk∈Ni

, Xi), Xi ∈ X ,Ωi ∈ R, Ri ∈ {0, 1}, adjacency matrix A, and functions gi :

Z×{0, 1} 7→ [−Un, Un], for a positive constant Un > 0. Assume that E[|Ωi|3|(Ri)
n
i=1, (Xi)

n
i=1, A] <

B, for some B < ∞, and (Ωi)
n
i=1|(Ri)

n
i=1, (Xi)

n
i=1, A are independent but not necessarily

identically distributed. Let σ1, · · · , σn be i.i.d. Rademacher random variables, independent

of
[(

Xi, Ri,Ωi

)n
i=1

, A
]
. Then for a universal constant c0 < ∞, for any n ≥ 1

EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), π(Xi)
)
σiΩi

∣∣∣] ≤ c0Un

√√√√VC(Π)BNn log(Nn)
n∑

i=1

Ri. (69)

Proof of Lemma D.8. By Lemma D.3, gi(t, 1), gi(t, 0) are 2Un-Lipschitz in t. It follows

EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), π(Xi)
)
σiΩi

∣∣∣]
≤ EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), 1
)
π(Xi)σiΩi

∣∣∣]+ EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), 0
)
(1− π(Xi))σiΩi

∣∣∣]
(70)

It follows

(70) ≤ EΩ,σ

[
sup

π1∈Π,π2∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π2(Xk), 1
)
π1(Xi)σiΩi

∣∣∣]
+ EΩ,σ

[
sup

π′
1∈Π,π′

2∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π′
2(Xk), 0

)
(1− π′

1(Xi))σiΩi

∣∣∣].
By Lemma 29.4 in Devroye et al. (2013), the VC dimension of the function class 1 −
π, π ∈ Π equals the VC(Π). By Lemma D.7 each term in Equation (70) is bounded by

CUn

√
VC(Π)BNn log(Nn)

∑n
i=1 Ri, for a universal constant C < ∞.

Lemma D.9. Let K∗ be as in Algorithm 3 (Equation 31). Then K∗ ≤ χ(A2) almost surely.

Proof of Lemma D.9. To prove the claim it suffices to show that a partition such that the

constraints in Equation (31) holds exists, and such a partition has size at most χ(A2), for all

possible realizations of R = (R1, · · · , Rn). As a first step, observe that for fixed K, binary

variables Gj,k ∈ {0, 1}, j ∈ {1, · · · , n}, k ∈ {1, · · · , K}, with
∑K

k=1Gj,k = 1∀j ∈ {1, · · · , n},
K∑
k=1

n∑
j=1

1{j ∈ Ni or Ni ∩Nj ̸= ∅}Gj,kGi,k = 0 implies
K∑
k=1

n∑
j=1

RiRj1{j ̸∈ Ii}Gj,kGi,k = 0.

Namely,
∑K

k=1

∑n
j=1 1{j ∈ Ni or Ni ∩ Nj ̸= ∅}Gj,kGi,k = 0 is a stricter constraint than∑K

k=1

∑n
j=1RiRj1{j ̸∈ Ii}Gj,kGi,k = 0, in Equation (31), for all R1, · · · , Rn, Ri ∈ {0, 1}
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(because Ri is binary). I can therefore bound the solution to the optimization problem in

Equation (31) as follows

K∗ ≤ arg min
K∈Z

min
G∈{0,1}n×K

K

such that
K∑
k=1

n∑
j=1

1{j ∈ Ni or Ni ∩Nj ̸= ∅}Gj,kGi,k = 0, and
K∑
k=1

Gi,k = 1∀i.
(71)

The right-hand side in Equation (71) equals χ(A2) by definition of smallest proper cover.

D.3.1 Identification

Proof of Lemma 2.1. Let e
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
= ei(π), Ii(π) = 1{Ti(π) =

Ti, π(Xi) = Di}. Under Assumption 2.1, I can write

E
[
Ri

Ii(π)

ei(π)
Yi

∣∣∣A,Z] = E
[
Ri

Ii(π)

ei(π)
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z]. (72)

Under Assumption 2.3 (i,ii),

(72) = E
[RiIi(π)

ei(π)
|A,Z

]
× E

[
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z].
By Assumption 2.3 (i), E

[RiIi(π)

ei(π)
|A,Z

]
= E

[
RiE

[Ii(π)
ei(π)

|A,Z, (Ri)j ̸=i, Ri = 1
]]

=
ne

n
.

Lemma D.10. Let Assumptions 2.1, 2.3 hold. Then

1

ne

n∑
i=1

E
[
Ri

1{Ti(π) = Ti, d = Di}

ec
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)(Yi −mc
(
π(Xi), Ti(π), Zi, |Ni|

))∣∣∣A,Z]

+
1

ne

n∑
i=1

E
[
Rim

c
(
π(Xi), Ti(π), Zi, |Ni|

)∣∣∣A,Z] = 1

n

n∑
i=1

E
[
r
(
(π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z]
if either ec = e or (and) Assumption 2.2 (A) holds with mc = m.

Proof of Lemma D.10. Define eci(π) = ec
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
, Ii(π) = 1{Ti(π) =

Ti, π(Xi) = Di},mc
i = mc(π(Xi), Ti(π), Zi, |Ni|). Whenever ec = e, the result directly follows

from Lemma 2.1. Let now mc = m and Assumption 2.2 (A) hold. Then (since the indicators

R are independent of ε by Assumption 2.2)

E
[RiIi(π)

eci (π)

(
Yi −mc

i (π)
)∣∣∣A,Z] = E

[
Ri

Ii(π)

eci (π)

(
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)
−mi(π)

)∣∣∣A,Z]
= E

[
Ri

Ii(π)

eci (π)

∣∣∣A,Z]× E
[(

r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)
−mi(π)

)∣∣∣A,Z] = 0.

By Assumption 2.3 (i), 1
ne

∑n
i=1 E

[
Rimi(π)

∣∣∣A,Z] = 1
n

∑n
i=1m(π(Xi), Ti(π), Zi, |Ni|).
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D.4 Proofs for “Additional extensions”

D.4.1 Proof of Proposition B.1

Define k(i) the partition k ∈ {1, · · · , K∗} associated with unit i under Algorithm 3 and j(i)

the fold j within partition k(i) associated with i under Algorithm 3. Recall the definition

of ϕm
s (i) = 1{k(s) = k(i), j(s) ̸= j(i)} is Section B.1. Note that ϕm

s (i) are random variables

since they depend on sampled indicators R1, · · · , Rn. By Lemma D.9, K∗ ≤ χ(A2).

For each partition k, Algorithm 3 creates J folds with the same number of units. I can

write
∑n

s=1Rsϕ
m
s (i) ≥

⌊
J−1
J

∑n
s=1Rs1{k(s) = k(i)}

⌋
where I take the floor function for cases

where J is not a multiple of the number of sampled units in the partition k(i). We have

1

n

n∑
i=1

E
[(

1 +
n∑

s=1

Rsϕ
m
s (i)

)−2ζm
|Ri = 1, A, Z

]
≤ 1

n

n∑
i=1

E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{k(s) = k(i)}
)−2ζm}

|Ri = 1, A, Z
]
.

(73)

Worst-case partition Next, I replace the (random) partitions k ∈ {1, · · · , K∗} with

worst-case non-random partitions. Denote kw(i) ∈ {1, · · · , χ(A2)} the worst-case partition

kw(·) ∈ arg max
k(i)∈{1,··· ,χ(A2)},i∈{1,··· ,n}

1

n

n∑
i=1

E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{k(s) = k(i)}
)−2ζm}

|Ri = 1, A, Z
]

such that k(i) ̸= k(j),∀j ∈ Ni or Ni ∩Nj ̸= ∅,
χ(A2)∑
k=1

1{k(i) = k} = 1, ∀i ∈ {1, · · · , n}.

(74)

Here, kw(·) always exists by definition of χ(A2).28 In addition, kw does not depend on the

realized R by construction. I claim that

(73) ≤ 1

n

n∑
i=1

E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{kw(s) = kw(i)}
)−2ζm}

|Ri = 1, A, Z
]

︸ ︷︷ ︸
(I)

(75)

Equation (75) holds for two reasons: (i) K∗ ≤ χ(A2) by Lemma D.9; (ii) I can show that

the constraint in Equation (74) is a stricter constraint than the constraint in Equation (31)

for any realization of (R1, · · · , Rn) (see the proof of Lemma D.9 for details).

28Existence is satisfied if a feasible solution to Equation (74) exists. One example is the smallest proper
cover Cn(A2) as in Definition D.1 for the adjacency matrix A2. This satisfies the constraints in Equation
(74) by definition. A proper cover always exists (e.g., if the network is fully connected, χ(A2) = n).
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Upper bound on (I) Take any i ∈ {1, · · · , n} such that 1{kw(s) = kw(i)} = 1 for some

s ̸= i. It follows from Cribari-Neto et al. (2000) (equation at the bottom of Page 274)

(I) ≤ (
J − 1

J
)−2ζmE

[(
1 +

∑
s ̸=i

Rs1{kw(s) = kw(i)}
)−2ζm

|Ri = 1, A, Z
]

(∵ Ri = 1)

≤
(J−1

J )−2ζm(
ne
n

∑
s̸=i 1{kw(s) = kw(i)}

)2ζm +O
( 1

(
∑

s ̸=i 1{kw(s) = kw(i)})2ζm+1

)
(∵ ne/n = α ∈ (0, 1), J = O(1)).

(76)

In the right-hand-side (first equation) we added one since kw(i) = kw(s) for s = i. If instead

there is no s ̸= i, such that 1{kw(s) = kw(i)} = 1, then trivially (I) = O(1).

Sum over all partitions Summing over all χ(A2) partitions, we obtain

(75) ≤
χ(A2)∑
k=1

∑n
i=1 1{kw(i) = k}

n
E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{kw(s) = k}
)−2ζm}]

≤ O(χ(A2)/n)︸ ︷︷ ︸
(A)

+O
( χ(A2)∑

k=1

(∑n
i=1 1{kw(i) = k}

n

)1−2ζm( J

(J − 1)ne

)2ζm)
+O

( 1
n

χ(A2)∑
k=1

(1 +
∑
s ̸=i

1{kw(i) = k})−2ζm
)

︸ ︷︷ ︸
(B)

where (B) correspond to cases where partitions kw(i) contain at least two elements (and

bounded as in Equation (76))29, and (A) corresponds to partitions with only one element,

whose overall number is at most χ(A2) (since there are at most χ(A2) many partitions, and

for such partitions
∑n

i=1 1{kw(i)=k}
n

= 1/n). For (B) we write

(B) ≤ O
(
χ(A2)

( 1

χ(A2)

χ(A2)∑
k=1

∑n
i=1 1{kw(i) = k}

n

)1−2ζm( J

(J − 1)ne

)2ζm)

+O
(
χ(A2)

1

n
(

1

χ(A2)

χ(A2)∑
k=1

n∑
i=1

1{k(i) = k})1−2ζm
)

(∵ x−2ζm ≤ x1−2ζm for x ≥ 1, concave x1−2ζm).

It follows that (B) ≤ χ(A2)
(

J
(J−1)ne

)2ζm
+ O(χ(A2)n−2ζm) (∵

∑χ(A2)
k=1

∑n
i=1 1{k(i) = k} =

n). From D.2, χ(A2) ≤ 2N 2
n , which completes the proof for the conditional mean after simple

rearrangement (since the bound for (A) follows directly from Lemma D.2). The argument

follows verbatim for Bn(A,Z), taking into account 1/δ2n, and omitted for brevity.
29For the first component in (A) we sum over all i ∈ {1, · · · , n} instead of n − 1 elements since the last

term is absorbed in O(1).
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D.4.2 Proof of Proposition B.2

Denote Eπ[·] the expectation conditional on
{
Di = π(Xi)

}n

i=1
, let R = (Ri)

n
i=1. We have

Eπ

[
r
(
Si,
∑
k∈Ni

Sk, Zi, |Ni|, εi
)∣∣∣A,Z

]
= E

[
r
(
Si(π),

∑
k∈Ni

Sk(π), Zi, |Ni|, εi
)∣∣∣A,Z,R], (77)

where Si(π) = hθ

(
π(Xi),

∑
k∈Ni

π(Xk), Zi, |Ni|, νi
)
. It follows that Equation (77) equals∑

s∈{0,··· ,|Ni|}

E
[
r(d, s, Zi, |Ni|, εi)

∣∣∣Si(π) = d,
∑
k∈Ni

Sk(π) = s, Z,A
]

︸ ︷︷ ︸
(i)

×P
(
Si(π) = d,

∑
k∈Ni

Sk(π) = s
∣∣∣A,Z,R)︸ ︷︷ ︸

(ii)

.

Since (εj)
n
j=1 ⊥

(
Z,A, (εDj

, νj, Rj)
n
j=1

)
, I can show (i) = E

[
r(d, s, Zi, |Ni|, εi)

∣∣∣Si = d,
∑

k∈Ni
Sk =

s, Z,A,R
]
. Consider now (ii). Observe that by indepedence and exogeneity of (νj)

n
j=1,

(ii) = P
(
Si(π) = d

∣∣∣A,Z,R)× ∑
u1,··· ,ul:

∑
v uv=s

|Ni|∏
k=1

P
(
S
N

(k)
i
(π) = uk

∣∣∣A,Z,R).
Using exogeneity of νi, I have

P
(
Si(π) = d

∣∣∣A,Z,R) = P
(
Si = d

∣∣∣Zi, |Ni|, Di = π(Xi),
∑
k∈Ni

Dk =
∑
k∈Ni

π(Xk), Zk∈Ni
, Zi

)
.

Similar reasoning also applies to neighbors’ selected treatments, omitted for brevity.

D.4.3 Proof of Proposition B.3

First, we show that E
[
W̃n(π,m

c, e)
∣∣∣A,Z,A′, Z ′

]
= WA′,Z′(π). Let Li = L(Zi, Zk∈Ni

, |Ni|)
and similarly L′

i = L′(Zi, Zk∈Ni
, |Ni|). Let T ′

i , Z
′
i, |Ni|′ be the neighbors’ exposure, covariates

and number of neighbors of i in the target population. Following Lemma D.10 below, by

exogeneity of (R1, · · · , Rn) (Assumption 2.3 (i,ii))

RiE
[Ii(π)
ei(π)

(
Yi −mc

i (π)
)
+mc

i (π)
∣∣∣A,Z,R1, · · · , Rn

]
= RiE

[
r
(
(π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z]
= Rim

(
π(Xi), Ti(π), Zi, |Ni|

)
.

Therefore, it follows that

E
[
W̃n(π,m

c, e)
∣∣∣A,Z] = 1

n

n∑
i=1

L′
i

Li
m
(
π(Xi), Ti(π), Zi, |Ni|

)
=

1

n

n∑
i=1

m
(
π(X ′

i), T
′
i (π).Z

′
i, |Ni|′

)
,

The last equality follows by construction of L′
i, Li. Sn(A

′, Z ′) ⊆ Sn(A,Z) guarantees that

there are no individuals in the target population outside the sample population’s support.

Because E[W̃n(π,m
c, e)|A,Z,A′, Z ′] = WA′,Z′(π), the same argument of the proof of

Theorem D.1 holds, with the difference that the Lipschitz constant in the proof of Theorem

D.1 multiplies by L̄A,Z,n.
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