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Motivated by the increasing abundance of data describing real-world networks that exhibit dynamical features, we
propose an extension of the Exponential Random Graph Models (ERGMs) that accommodates the time variation of
its parameters. Inspired by the fast-growing literature on Dynamic Conditional Score models, each parameter evolves
according to an updating rule driven by the score of the ERGM distribution. We demonstrate the flexibility of score-
driven ERGMs (SD-ERGMs) as data-generating processes and filters and show the advantages of the dynamic version
over the static one. We discuss two applications to temporal networks from financial and political systems. First, we
consider the prediction of future links in the Italian interbank credit network. Second, we show that the SD-ERGM
allows discriminating between static or time-varying parameters when used to model the U.S. Congress co-voting
network dynamics.

The paper introduces an innovative, dynamic model for
temporal networks. The novel methodology is strongly in-
terdisciplinary, and the estimation of model parameters is
straightforward. We present two examples from financial
and political systems, supporting the approach’s flexibility
and showcasing its potential widespread applicability.

I. INTRODUCTION

A network is a useful abstraction for a system composed
of several single elements with some pairwise relations. The
simplified description of social, economic, biological, and
transportation systems, often very complex, in terms of nodes
and links, attracted and still attracts an enormous amount of
attention1–5. Formally, a network G is a pair (V,E) where V
is a set of nodes and E is a set of node pairs named links. The
nodes are labeled, and a link is identified by the pair of nodes
it connects (i, j). To each G, we can assign an adjacency ma-
trix Y such that Yi j = 1 if link (i, j) is present in E and Yi j = 0
otherwise. Links may have orientations. The corresponding
network is dubbed directed. If the elements of the adjacency
matrix are allowed to be different from 0 or 1, one speaks of
weighted networks. In the following, we will focus on di-
rected networks rather than consider the weighted variant.

Often, systems that are fruitfully described as networks
evolve in time. When the number of nodes and/or pairwise
interactions change over time, one usually speaks of tempo-
ral networks6–8. This paper will focus on temporal networks
where links evolve in discrete time. A temporal network is a
sequence of networks, each associated with an adjacency ma-
trix and observed at T different points in time. The whole time

series is given in terms of a sequence of matrices
{

Y (t)
i j

}T

t=1
.

We introduce an innovative approach to temporal networks
based on two main ingredients: (i) a parametric probabilis-
tic model, according to which one can sample a network re-
alization. A natural choice is the class of statistical models
for networks known as Exponential Random Graph Models
(ERGMs). (ii) A simple mechanism to induce dynamics on
the network sequence by introducing time variation on the
model parameters. The Dynamic Conditional Score (DCS)
approach provides a flexible candidate. Our extension of the
ERGM framework allows model parameters to change over
time in a score-driven fashion. We develop a new class of
temporal network models and show its versatility and effec-
tiveness in capturing time-varying features. The information
encoded in Ft−1 is exploited to filter the time-varying param-
eters (tvps) θ (t) at time t. We refer to this class as Score-
Driven Exponential Random Graph Models (SD-ERGMs). A
generic SD-ERGM can be used either as a data-generating
process (DGP) to sample synthetic sequences of graphs or as
an effective filter of latent tvps, regardless of the true DGP.

We are by no means the first to discuss models for tem-
poral networks. For a review of latent space temporal net-
work models, one can refer to Ref. 9 Extensions of the ERGM
framework for the description of temporal networks exist in
the literature. Two are the main streams. The first one, termed
TERGM, was pioneered in Ref. 10 and further explored in
Refs. 11–13. This approach builds on the ERGM but allows
the network statistics to define the probability at time t to
depend on current and previous networks up to time t −K.
This K-step Markov assumption is a defining feature of the
TERGMs. A second approach allows for the parameters of
the ERGM to be time-varying. A notable example is the
Varying-Coefficient-ERGM14, allowing for smooth parame-
ter time variation. The approach differs from ours in sev-
eral respects. Specifically, to infer parameter time-variation
at time t, it uses all the available observations, including those
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from future times t ′ > t15. Consequently, it cannot be used to
draw causal sequences of time-evolving networks. A related
but different approach16 considers the possibility of a random
evolution of node-specific parameters. As a crucial difference
with the SD-ERGM, the parameter evolution is driven by an
exogenous source of randomness. Following the language of
Ref. 17, the approach is parameter driven, while we consider
an observation driven dynamics. Finally, it is important to
mention that the social science literature has considered alter-
native frameworks for modeling temporal networks. Notable
examples are the Stochastic Actor Oriented model18 and the
Relational Event Model19. For an overview of contributions,
we refer to the literature therein.

The rest of the paper is organized as follows. In Section
II, we review some key concepts on ERGMs and observation-
driven models. In Section III, we introduce the new class of
models and validate it with extensive numerical experiments
for three specific instances of the SD-ERGM. Section IV
presents the results from an application to two real temporal
networks: The e-MID interbank network for liquidity supply
and demand and the U.S. Congress co-voting political net-
work. Section V draws the relevant findings.

II. MAIN BUILDING BLOCKS

The two main ingredients in our approach are the ERGMs,
a static class of network models well-known in physics, and
the DCSs, a recent development in time-series econometrics.

A. ERGM - Exponential Random Graph Models

A statistical network model can be specified by providing
the probability distribution over the set of possible adjacency
matrices20. If the distribution belongs to the exponential fam-
ily21, then the model is named ERGM, and its log-likelihood
takes the form

logP(Y) = ∑
s

θshs (Y)− log(K (θ)), (1)

where h are network statistics, θ is the vector of parameters
whose component θs is associated with the network statistic
hs (Y), and K (θ) = ∑{Y} eθshs(Y). The ERGMs literature is
vast and still growing22. The ERGM framework is intrinsi-
cally linked to the very well-known principle of maximum en-
tropy23 and its applications to statistical physics24. Indeed,
an ERGM with sufficient statistics h(θ) naturally arises when
looking for the probability distribution which maximizes the
entropy under a linear equality constraint on the statistics
h(θ)25,26. The sufficient statistics hs (Y), known as network
statistics, are functions of the adjacency matrix Y, whose en-
tries are binary random variables. The probability mass func-
tion (PMF) is defined by (1). The normalizing factor K (θ) is
often unavailable as a closed-form function of the parameters
θ .

In the following, we will focus on two specific examples
of ERGMs that describe distinct features of the network and

require different approaches to parameter inference. The first
one is meant to capture the heterogeneity in the number of
connections each node can have, and it allows for straightfor-
ward maximum likelihood estimation (MLE)27. It is known
as beta model, fitness model, and configuration model25–30.
The second one is an ERGM having as statistic the Geomet-
rically Weighted Edgewise Shared Partners (GWESP). That
is a network statistic describing transitivity in the formation
of links, i.e., the tendency of connected nodes to have com-
mon neighbors and belongs to a family of network statistics
referred to as curved exponential random graphs, proposed in
Refs. 31 and 32 and discussed in Ref. 33. In the latter case,
the inference is complicated because the normalizing factor in
(1) is not available in closed form. In such cases, there are
two standard approaches to ERGM inference, both consisting
of maximizing alternative functions that are known to share
the same optimum as the exact likelihood. In Appendix A, we
provide more details on the beta model and GWESP ERGMs
definitions as long as more details on the associated inference
procedures.

B. Score-Driven Models

The second main ingredient of this work is the class of
DCS models34,35, also known as Generalized Autoregressive
Score models36. In the language of Ref. 17, DCSs belong to
observation-driven models. Let us consider a sequence of ob-

servations
{

y(t)
}T

t=1
, where each y(t) ∈RM , and a conditional

probability density P
(

y(t)| f (t)
)

, that depends on a vector of

tvps f (t) ∈ RK . Defining the score as

∇
(t) =

∂ logP
(

y(t)| f (t)
)

∂ f (t)′
, (2)

a Score-Driven model assumes that the recursive relation

f (t+1) = w+β f (t)+αS(t)
∇
(t), (3)

rules the time evolution of f (t), with w, α and β are static pa-
rameters, w being a K dimensional vector and α and β K×K
matrices. S(t) is a K×K scaling matrix usually chosen as a
power of the inverse of the Fisher information matrix associ-
ated with P

(
y(t)| f (t)

)
.

The parameter updating rule can be intuitively motivated
by general assumptions based on information theory princi-
ples. One can assume that the network behavior varies based
on surprise: The more an observation of the network’s state,
i.e., the adjacency matrix, is “unexpected", the more the rela-
tions between its components will change. The most common
measure of surprise is minus the logarithm of the likelihood
of observing the current state conditional on the level of the
model parameters. As a second principle, one assumes that
the reaction to surprise is to adapt to it, making what had been
unexpected at that moment less surprising in the future. This
implies that the parameters change to minimize the surprise,
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i.e., increase the log-likelihood of the last observation and thus
move along the steepest direction the gradient provides. Then,
the updated parameter value will be a linear combination of
the current value and the log-likelihood score.

The structure of the conditional observation density deter-
mines the score, from which the dependence of f (t+1) on the
vector of observations y(t) follows. When the model is viewed
as a DGP, the update results in stochastic dynamics precisely
thanks to the random occurrence of y(t). When the score-
driven recursion is regarded as a filter, the update rule in (3)

is used to obtain a sequence of filtered
{

f̂ (t)
}T

t=1
. In this set-

ting, one estimates the static parameters by maximizing the
log-likelihood of the whole sequence of observations.

A second look at eq. (3) reveals the similarity of the score-
driven recursion with the iterative step from a Newton algo-
rithm, whose objective function is precisely the log-likelihood
function. As mentioned above, at each step, the score pushes
the parameter vector along the log-likelihood steepest direc-
tion. Moreover, there are motivations, grounded on the varia-
tion of the Kullback-Leibler divergence, for the optimality of
the score-driven updating rule37, as we review in Appendix B.

Many well-known econometrics models can be ex-
pressed as Score-Driven models. Famous examples are the
Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model38, the Exponential GARCH model39, the
Autoregressive Conditional Duration model40, and the Mul-
tiplicative Error Model41. The introduction of this framework
in its full generality opened the way to applications in various
contexts.

Before moving to the most crucial section, let us mention
two relevant technical aspects for the applications discussed in
the paper: the computation of the confidence bands of the fil-
tered parameters and testing for the parameter temporal varia-
tion. We postpone the technical discussion to Appendix B for
brevity.

III. SCORE-DRIVEN EXPONENTIAL RANDOM GRAPHS

This section describes the methodological innovation intro-
duced by the manuscript. We present the general SD-ERGM
framework, discuss the score-driven approach’s applicability
to three different ERGMs in detail, and validate their perfor-
mances with extensive numerical simulations.

We apply the score-driven methodology to ERGMs to al-
low any of the parameters θs in (1) to have a stochastic evolu-
tion driven by the score of the static ERGM model, computed
at different points in time. This approach results in a frame-
work for describing temporal networks, more than in a sin-
gle model, in the same way ERGM is considered a modeling
framework for static networks.

Conceptually, applying the score-driven approach is pretty

straightforward. Given the observations
{

Y (t)
i j

}T

t=1
, we can

apply the update rule in (3) to all or some elements of θ , each
of which is associated with a network statistic in (1). To do
this, we need to compute the derivative of the log-likelihood
at every time step, i.e., for each adjacency matrix Y(t). For the

general ERGM, the elements of the score take the form

∇
(t)
s (θ) = hs

(
Y(t)

)
− ∂ logK (θ)

∂θs
,

and the vector of tvps evolves according to (3) with f (t) re-
placed by θ (t). Hence, conditionally on the value of the pa-
rameters θ (t) at time t and the observed adjacency matrix Y(t),
the parameters at time t +1 are deterministic. When used as a
DGP, the SD-ERGM describes stochastic dynamics because,
at each time t, the adjacency matrix is not known in advance
but must be randomly sampled from P

(
Y(t)|θ (t)

)
and used to

compute the score. When the sequence of networks
{

Y(t)
}T

t=1
is observed, the static parameters (w,β,α), that best fit the
data, can be computed via MLE. Taking into account that each
network Y(t) is independent of all the others conditionally on
the value of θ (t), the log-likelihood can be written as

logP
({

Y(t)
}T

t=1
|w,β ,α

)
=

∑
T
t=1 logP

(
Y(t)|θ (t)

(
w,β ,α,

{
Y(t ′)

}t−1

t ′=1

))
. (4)

The computation of the normalizing factor and its derivative
with respect to the parameters is essential for the SD-ERGM.
Not only does it enter the definition of the update, but it is also
required to optimize (4).

Our primary motivation for introducing the SD-ERGM is
to describe the time evolution of a sequence of networks using
the evolution of the parameters of an ERGM. From the context
or previous studies of static networks in terms of ERGM, we
assume we know which statistics are more appropriate in de-
scribing a given network. Hence, we do not discuss the choice
of statistics in the context of temporal networks but refer the
reader to Refs. 42–44 for examples of feature selection and
goodness-of-fit evaluation.

In this final paragraph, we anticipate the SD extensions of
ERGMs with given statistics detailed in the following pages.
The first example allows for the exact computation of the
likelihood, but the number of parameters can become sig-
nificant for a large network. The second example discusses
how an SD-ERGM can be defined when the log-likelihood is
not known in closed form. Using extensive numerical simula-
tions, we show that SD-ERGMs are very efficient at recover-
ing the paths of tvps when the DGP is known, and the score-
driven model is employed as a misspecified filter. Moreover,
we show the first application of the Lagrange Multiplier (LM)
test45 in assessing the time-variation of ERGM parameters.

A. Score-Driven Beta Model

Our first specific example is the Score-Driven version of
the beta model, introduced in Sec. II A and further discussed
in Appendix A. We start with this model because of its wide
applications and relevance in various streams of literature and
because the likelihood of the ERGM and its score can be com-
puted exactly. Moreover, the number of local statistics, the
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degrees, and parameters can become very large for large net-
works. Since we must describe the dynamics of many param-
eters, this last feature challenges any time-varying parameter
version of the beta model. At the end of this Section, we will
show how the SD framework allows for a parsimonious de-
scription of such high-dimensional dynamics.

As anticipated, the SD-beta model is defined by applying
(3) to each of the

−→
θ and

←−
θ parameters. Among the pos-

sible choices, we use as scaling the diagonal matrix S(t)i j =

δi jI
(t)
i j
−1/2

, where I(t) = E[∇(t)∇(t)′], i.e., we scale each el-
ement of the score by the square root of its variance. It is
widespread, in score-driven models with numerous tvps, to
restrict the matrices α and β of (3) to be diagonal. In this
work, we consider a version of the score update having only
three static parameters (ws,βs,αs) for each dynamical param-
eter θs. The resulting update rule for the beta model is

←−
θ

(t+1)
s = win

s +β in
s
←−
θ

(t)
s +α in

s
∑i

(
Y (t)

is −p(t)is

)
√

∑i p(t)is

(
1−p(t)is

)
−→
θ

(t+1)
s = wout

s +β out
s
−→
θ

(t)
s +αout

s
∑i

(
Y (t)

si −p(t)si

)
√

∑i p(t)si

(
1−p(t)si

) , (5)

where the superscripts in and out indicate the first and second
half of the parameter vectors, respectively. To simplify the in-
ference procedure, we consider a two-step approach. First, we
fix the node-specific parameters wi to target the unconditional
means of

←−
θ and

−→
θ resulting from an ERGM with static pa-

rameters. Conditionally on the target values, we estimate the
remaining parameters α in, αout, β in, and β out. We verified
that the bias introduced by the two-step procedure is negli-
gible, and results remain similar when the joint estimation is
performed.

1. SD-ERGMs as filters: Numerical Simulations

As mentioned in the Introduction, SD-ERGMs (as other
observation-driven models, e.g., GARCH) can be seen as
DGPs or predictive filters46 since tvps follow one-step-ahead
predictable processes. In this Section, we show the ability
of the ERGMs in the latter setting. Specifically, we simulate
generic non-stationary evolution for temporal network param-
eters θ (t). We then use the SD-ERGM to filter the paths of the
parameters and evaluate its performances. It is important to
note that the parameters’ simulated dynamics differ from the
score-driven ones specified for the estimation.

In practice, at each time t, we sample the adjacency matrix
from the PMF of an ERGM with parameters47 θ̄ (t), evolv-
ing according to known temporal patterns that define differ-
ent DGPs. We then use the realizations of the sampled adja-
cency matrices to filter the patterns. We consider a sequence
of T = 250 time steps for a network of 10 nodes, each with

parameters
←−
θ i

(t)
and
−→
θ i

(t)
evolving with predetermined pat-

terns. We test four different DGPs. The first one is a naive
case with constant parameters θ

(t)
= θ 0. The elements of θ 0

TABLE I. RMSEs (on a percentage base) of the filtered paths av-
eraged over all tvps and all Monte Carlo replicas of the numerical
experiment. Left column: results from the cross-sectional estimates
of the beta model; right column: score-driven beta model results.
Each row corresponds to one of the four DGPs.

DGPs Average RMSE

beta model SD-beta model

Const 1.75 0.20

Sin 2.76 0.34

Steps 2.46 0.28

AR(1) 1.82 0.24

are chosen to ensure heterogeneity in the expected degrees
of the nodes under the static beta model. For the remaining
three DGPs, half of the parameters are static, and half are
time-varying, evolving with either a deterministic sinusoidal
function, a deterministic step function, or a stochastic AR(1)
dynamics. More details on the definition of such DGPs are
given in the Appendix C.

In the following, we benchmark the performance of the SD-
ERGMs with that of a sequence of cross-sectional estimates
of static ERGMs, i.e., one ERGM estimated for each t. We
quantify the performance of the two approaches computing

the Root Mean Square Error 1
T

√
∑t

(
θ̄
(t)
s − θ̂

(t)
s

)2
, that de-

scribes the distance between the known simulated path and
the filtered. We then average the RMSE across all the tvps and
100 simulations and report the results in Table I. These results
confirm that the SD beta model outperforms the standard beta
model in recovering the true time-varying pattern. Notably,
this holds even when the DGP is inherently nonstationary, as
in the case of the DGP, where each parameter has a step-like
evolution. Indeed, the results of this Section and Section III B
confirm that, while the SD update rule (3) defines a stationary
DGP34, using SD models as filters, we can effectively recover
nonstationary parameters’ dynamics. Our last numerical sim-
ulations for the SD beta model explore its applicability and
performance for networks of increasing size. We explore this
setting for two reasons. The first one is that networks with a
large number of nodes describe many real systems. The sec-
ond reason is that we want to compare the performance of
our approach with that of the standard beta model in regimes
where the latter is known to perform better under suitable con-
ditions. Indeed, as mentioned in Appendix A, asymptotic re-
sults on the single observation estimates27 guarantee that, if
the network density remains constant as N grows, the accuracy
of the cross-sectional estimates increases. We want to check
numerically that, within the regime of dense networks, the ac-
curacy of the static and SD versions of the beta model reaches
the same level. To check whether the SD approach provides
any advantage for large networks, we perform numerical ex-
periments similar to the previous ones but in a different and
more realistic regime of sparse networks, i.e., keeping the av-
erage degree constant. Moreover, to ease the computational
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FIG. 1. Left panel: average density as a function of the number of
nodes N in the dense (dashed line) and sparse (solid line) regimes.
Right panel: average RMSE of the filtered parameters with respect
to the simulated DGP in both the dense (dashed lines) and sparse
(solid lines) regimes. The average RMSE from the ERGM is plotted
in blue, while the one from the SD-ERGM is in red.

burden for the estimates, we consider a restricted version of
the SD-Beta model, as detailed in Appendix C 1, having only
one set of parameters

(
β in,β out,α in,αout

)
for the whole net-

work, instead of one set per each node.
This analysis considers only one dynamical DGP and many

different values of N. Among the DGPs used above, we focus
on the one with smooth and periodic time variation. Most im-
portantly, we set a maximum degree attainable for a node and
let it depend on N in two distinct ways, each corresponding
to a different density regime: one generating sparse networks
and the other dense ones. It is worth noticing that the asymp-
totic results of Ref. 27 are expected to hold only in the dense
case. The average densities for different values of N in the
two regimes are shown in the left panel of Figure 1. Then,
for both regimes and each value of N, we compute the aver-
age RMSE across all tvps and all Monte Carlo replicas. In
the right panel of Figure 1, the average RMSEs for different
values of N indicate that, also for large networks, the SD ver-
sion of the beta model attains better results compared with the
cross-sectional estimates. As expected, both approaches reach
the same accuracy in the dense network regimes as long as N
becomes larger. However, in the more realistic sparse regime,
the performance of the SD-ERGM remains much superior for
both small and large network dimensions.

B. Pseudo-Likelihood SD-ERGM

As mentioned earlier, the dependence of the normalizing
function on the θ parameters is often unknown. This fact pre-
vents us from computing the score function and directly ap-
plying the update rule (3) to a large class of ERGMs. To cir-
cumvent this obstacle, instead of the unattainable score of the
exact likelihood, we propose to use the score of the pseudo-
likelihood, discussed in Sec. II A, that we refer to as pseudo-
score

∂ logPL
(

Y(t)|θ
)

∂θ
(t)′
s

= ∑
i j

δ
s
i j

(
Y (t)

i j −
1

1+ e−∑l θlδ
l
i j

)
, (6)

in place of the exact score in the definition of the SD-ERGM
update (3). Additionally, we use the pseudo-likelihood for
each observation Y(t) in (4) to infer the static parameters.

Our approach, based on the score of the pseudo-likelihood,
requires as input the change statistics for each function
hs

(
Y(t)

)
48. In the following, we show that the update based

on the pseudo-likelihood score effectively filters the path of
tvps. Remarkably, this is true even when the probability dis-
tribution in the DGP is exact, i.e., when we sample from the
exact likelihood and then use the SD-ERGM based on the
pseudo-likelihood to filter.

1. SD-ERGM for Transitivity and Network Density

In this section, we discuss numerical simulations for an
ERGM whose normalization is not known in closed form,
which we also apply to real data in Section IV B. We show the
concrete applicability of the SD-ERGM approach based on
the pseudo-score and its performance as a filter compared with
the cross-sectional MCMC estimates of the standard ERGM.
The models we consider have two statistics. The first one is
the total number of links present in the network. The second
statistic is the GWESP, introduced in Section II A. The ERGM
is thus defined by

∑
s

θshs

(
Y(t)

)
= θ1 ∑

i j
Y (t)

i j +θ2GWESP
(

Y(t)
)
. (7)

To test the efficiency of the SD-ERGM, we simulate a known
temporal evolution for the parameters and, at each time step,
we sample the exact PMF from the resulting ERGMs. Finally,
we use the observed change statistics for each time step to
estimate two alternative models: a sequence of cross-sectional
ERGMs and the SD-ERGM. In what follows, we indicate the
values from the DGP of parameter s at time t as θ̄

(t)
s .

We investigate four DGPs similar to those analyzed in Sec-
tion III A. We sample and estimate the models 50 times for
each DGP. Figure 2 compares the cross-sectional estimates
and the score-driven filtered paths. Table II reports the RMSE
of the GWESP tvps, averaged over the different realizations
for the whole sequence t = 1,2, . . . ,T . The SD-ERGM outper-
forms the cross-sectional ERGM estimates for all the inves-
tigated time-varying patterns. Moreover, when the constant
DGP is considered, i.e., θ̄

(t)
1 = θ̄1 and θ̄

(t)
2 = θ̄2, the average

RMSE of the SD-ERGM is larger but comparable, than the
correctly specified ERGM that uses all the longitudinal obser-
vations to estimate the parameters. The latter result confirms
that the SD-ERGM is a reliable and consistent choice even
for the static case. It is worth noticing that, for sampling and
cross-sectional inference, we employed the R package ergm
that uses state-of-the-art MCMC techniques for both tasks49

(for a description of the software). Hence, we compared
the SD-ERGM based on the approximate pseudo-likelihood
– both in the definition of the time-varying parameter update
and inference of the static parameters – with a sequence of
exact cross-sectional estimates that are in general known to
be better performing than the pseudo-likelihood alternative,
as mentioned in Section II A. Even if the cross-sectional es-
timates are based on the exact likelihood, while the SD ap-
proach is based on an approximation, the SD-ERGM remains
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FIG. 2. Filtered paths of the parameters of the ERGM in (7) with
tvps. The path from the true DGP is in black. The blue dots are
the cross-sectional ERGM estimates, and the red lines are the SD-
ERGM filtered paths.

TABLE II. First four columns: RMSEs for the filtered paths of the
tvps, averaged over 50 repetitions, for the evolutions of Figure 2. The
last three columns describe the accuracy of the test for dynamics in
the parameters, considering the DGPs in Figure 2, as well as alterna-
tive DGPs where only one parameter is time-varying. We report the
percentage of times that the LM test correctly identifies the parame-
ter as time-varying (or static in the case of the first DGP). The chosen
threshold for the p-values is 0.05.

DGP Average RMSE LM Test

ERGM SD-ERGM % Correct Results
θ
(t)
1 θ

(t)
2 θ

(t)
1 θ

(t)
2

(
θ
(t)
1 ,θ2

) (
θ1 ,θ

(t)
2

)
Const 0.02 0.1 0.0006 0.004

Sin 0.02 0.04 0.003 0.005 94% 93%

Steps 0.02 0.03 0.01 0.001 92% 96%

AR(1) 0.02 0.2 0.007 0.01 93% 90%

the best-performing solution. This provides further evidence
of the advantages of SD-ERGM as a filtering tool. Finally, the
last column of Table II reports the percentage number of times
the LM test of45 applied to the SD-ERGM correctly classi-
fies the parameters as time-varying (or static for the constant
DGP). The test performs correctly in all the cases considered.

2. Comparison of Pseudo and Exact Likelihood SD-ERGM

To further investigate the proposed SD-ERGM and its ver-
sion based on the pseudo-likelihood, in this section, we focus
on the ERGM having the total number of links and the total

number of mutual links as network statistics:

∑
s

θshs

(
Y(t)

)
= θL ∑

i j
Y (t)

i j +θM ∑
i j

Y (t)
i j Y (t)

ji . (8)

The static version of this model is known as reciprocity p⋆

model50. This model is relevant for our discussion because it
allows us to compare the SD time-varying extension based on
the pseudo-likelihood with the one based on the exact likeli-
hood. Indeed, it is simple enough that the normalizing func-
tion is known in closed form, but it has enough structure that
its pseudo-likelihood differs from its exact likelihood. The
model results in dyads, i.e., pairs of mutual links (Ai j,A ji), be-
ing independent, while the pseudo-likelihood amounts to as-
suming independent links. Moreover, since its partition func-
tion is available in closed form, such a model can be sampled
efficiently without resorting to MCMC methods. This allows
us to run extensive numerical simulations in reasonable time
to investigate the properties of the confidence bands proposed
by Ref. 51 in the context of SD-ERGM models.

In this section, we will refer to the pseudo-likelihood-based
SD-ERGM as PML-SD-ERGM and to the exact likelihood
case as ML-SD-ERGM. We compare the capacity of the two
models, used as filters, to recover misspecified dynamics us-
ing the same approach as in the previous sections, i.e., we
simulate a known DGP for θ

(t)
L and θ

(t)
M . We focus on a DGP

where θL and θM follow two independent AR(1) processes,
as the one discussed in III A. Each AR(1) has Φ1 = 0.98 and
ε ∼ N (0,σ) with σ = 0.005. The Φ0 parameters are chosen
such that, on average, the network density equals 0.3, and the
fraction of reciprocated pairs is 0.075. We select this value
because it is between the maximum and minimum fraction of
reciprocated links possible for a network of density 0.3, 0 and
0.3(N2−N)/2, respectively. When comparing results for dif-
ferent network sizes, we keep the density fixed for all network
sizes N, thus exploring a dense regime52. In our numerical
experiment, we first sample sequences of synthetically gen-
erated observations repeatedly from different specifications
of the DGP. We then estimate the PML and ML versions of
the SD-ERGM on those observations and filter the tvps. Fi-
nally, we quantify their accuracy, with the average RMSE,
across 50 samples with respect to the simulated DGP. In Ta-
ble III, we report the RMSE for both PML-SD-ERGM and
ML-SD-ERGM, divided by the RMSE of the cross-sectional
standard ERGM, for various combinations of network size N
and number of observations T . It emerges that both versions
of SD-ERGM strongly outperform the cross-sectional ERGM.
Moreover, the performances of PML-SD-ERGM are similar
to the ones of the exact ML-SD-ERGM.

In the final part of this section, we investigate the possibil-
ity of using the method of Ref. 51, that we describe in Ap-
pendix B, to define confidence bands for the parameters fil-
tered with SD-ERGM. The authors characterize the approxi-
mation error when the SD approach filters a set of latent pa-
rameters whose true DGP is an auto-regressive process. While
we refer to the original manuscript for the details, we point
out that their procedure rests upon the assumption that the
SD filter approximates the true underlying DGP. The authors
prove that this approximation becomes exact in the limit of
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TABLE III. RMSEs of ML-SD-ERGM and PML-SD-ERGM, rela-
tive to that of the cross-sectional ERGM. The averages are obtained
over 50 repetitions for the AR(1) DGP described in the text. For each
value of T and N, we report the RMSE of the SD-ERGMs divided
by the RMSE of the cross-sectional ERGM.

PML-SD-ERGM ML-SD-ERGM

T
N 50 100 500 50 100 500

100 0.016 0.011 0.006 0.015 0.011 0.006

300 0.015 0.011 0.006 0.014 0.011 0.007

600 0.014 0.012 0.007 0.014 0.011 0.006

TABLE IV. Coverages of the 95% confidence bands averaged over
50 repetitions, for the AR(1) DGP, described in the text, and N = 100.

T ML-SD-ERGM PML-SD-ERGM

300 99.1 % 99.9 %

3000 94.5% 95.7 %

small variance for the latent parameters. Hence, the confi-
dence bands obtained with their method are theoretically guar-
anteed to be reliable only in this limit. In practice, assessing
whether the application of the confidence bands is justified
for a given value of the variance of the DGP is appropriate.
Numerical experiments can do this to determine their cover-
age with a simulated DGP. For example, for the model and
the DGP considered in this section, we check the coverage
of the confidence bands obtained and report the results in Ta-
ble IV, for N = 100. We find that the coverage of the confi-
dence bands, for both ML-SD-ERGM and PML-SD-ERGM,
approaches the nominal value in the limit of large T , while for
short time series, their coverages are higher than the nominal
value. Hence, in small samples, they should be interpreted as
having a confidence of at least their nominal values.

IV. APPLICATIONS TO REAL DATA

After analyzing synthetic data, this section presents two
applications to real temporal networks. Our goal is to show
the value of SD-ERGM as a methodology to model temporal
networks, irrespective of the specific system that a researcher
wants to investigate. The two real networks that we consider
have been the object of multiple studies in different streams
of literature. They have been investigated in the context of
ERGMs using different network statistics. We first consider a
network of credit relations among Italian banks. The second
real-world application focuses on a network of interest for the
social and political science community, namely the network
of U.S. senators cosponsoring legislative bills.

A. Link Prediction in Interbank Networks

Our first empirical application is to data from the electronic
Market of Interbank Deposit (e-MID). In this market, banks
can extend loans to one another for a specified term and/or col-
lateral. Interbank markets are an important point of encounter
for banks’ supply and demand of extra liquidity. In particu-
lar, e-MID has been investigated in many papers16,53–55. Our
dataset contains the list of all credit transactions on each day
from June 6, 2009, to February 27, 2015. Our analysis inves-
tigates the interbank network of overnight loans aggregated
weekly. We follow the literature and disregard the size of the
exposures, i.e., the weights of the links. We thus consider a
link from bank j to bank i present at week t if bank j lent
money overnight to bank i, at least once during that week, ir-
respective of the amount lent. This results in a set of T = 298
weekly aggregated networks. For a detailed dataset descrip-
tion, we refer the reader to Ref. 55.

In recent years, the amount of lending in e-MID has sig-
nificantly declined. In particular, it abruptly decreased at the
beginning of 2012 due to important unconventional measures
(Long Term Refinancing Operations) by the European Central
Bank that guaranteed an alternative source of liquidity to Eu-
ropean banks. The evident non-stationary nature of the evolu-
tion of the interbank network is of extreme interest to us. As
mentioned in Sections III A and III B, one of the key strengths
of SD-ERGM, used as a filter, is precisely the ability to re-
cover such non-stationary dynamics.

In the following, we use the SD beta model for link fore-
casting. Specifically, we consider the version with a re-
stricted number of static parameters discussed at the end of
Sec. III A 1. We divide the data set into two samples. We
consider rolling windows of 100 observations and estimate
the parameters αout, β out, α in and β in on each one of those
rolling windows. For each window, we test the forecasting
performances up to 8 steps ahead (i.e., roughly two months).
The forecast works as follows. Assuming that at time t, the
last date of the rolling window, we have filtered the value for

the parameters
←−
θ

(t)
and
−→
θ

(t)
, we plug the estimated static

parameters and the matrix Y(t) in the SD update and compute

the tvps
←−
θ

(t+1)
and
−→
θ

(t+1)
. From the latter, we readily obtain

the forecast of the adjacency matrix

E
[

Y(t+1)|
←−
θ

(t+1)
,
−→
θ

(t+1)
]
,

where t + 1 is the first date of the test sample. The K-
step-ahead forecast for the SD-ERGM model is obtained
by simulating the SD dynamics up to t + K 100 times56,

thus obtaining
−→
θ

(t+K)

n and
←−
θ

(t+K)

n for n = 1, . . . ,100, and
then taking the average of the expected adjacency matrices

1
100 ∑nE

[
Y(t+K)|

←−
θ

(t+K)

n ,
−→
θ

(t+K)

n

]
. Given the forecast values,

we compute the rate of false positives and false negatives.
Then, we drop the first element from the train set and add the
first element of the test sample. We repeat the forecasting ex-
ercise, estimating the SD-ERGM parameters on the new train
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FIG. 3. Left panel: ROC curves for one-step-ahead link forecasting.
The green and orange ROC curves describe the one-step-ahead fore-
casting with SD and cross-sectional AR(1) beta model, respectively.
The blue curve corresponds to the forecast based on the ERGM at
the previous time step. Right panel: AUC for the multi-step-ahead
forecast.

set and testing the performance of the new test sample. We
name this procedure a rolling estimate and iterate it until the
test sample contains the last eight elements of the time series.

Given a forecast for the adjacency matrix, we evaluate the
accuracy of the binary classifier by computing the Receiving
Operating Characteristic (ROC) curve. All results are col-
lected and presented in Fig. 3. The left panel reports the
ROC curve for one-step-ahead link forecasting obtained ac-
cording to the SD-ERGM rolling estimate. The panel also
shows three other curves based on the static beta model.
Specifically, the green curve results from a naive prediction,
where a link tomorrow is forecasted, assuming that the t + 1
ERGM parameter values are equal to those estimated at time
t. Once the sequence of cross-sectional estimates of the static

ERGM is completed, we take the estimated values
←̂−
θ

(t)
and

−̂→
θ

(t)
as observed and model their evolution with an auto-

regressive model of order one, AR(1). That amounts to assum-

ing
←̂−
θ

(t+1)
= c0 +c1

←̂−
θ

(t)
+ε(t), where c0 and c1 are the static

parameters of the AR(1), and ε(t) is a sequence of i.i.d. normal
random variables with zero mean and variance σ2. A similar
equation holds for the out-degree parameters. Using the ob-
servations from the training sample, we estimate the param-
eters c0, c1, and σ2 and use them for a standard AR(1) fore-
casting exercise on the test sample. The results correspond
to the orange curve. It is important to stress that while the
SD-ERGM forecast requires one static and one time-varying
estimation on the train set, we must estimate the static param-
eters for each date in the train sample in the latter procedure.

The left plot of Fig. 3 shows that the naive one-step-ahead
forecast, despite its simplicity, provides a reasonable result.
The best performance corresponds, however, to the forecast
based on the SD-ERGM. The AR(1) static ERGM improves
on the naive forecast and is slightly worse than the SD-ERGM.
However, as commented before, it is more computationally
intensive. More importantly, the right panel of Fig. 3 presents
a multi-step-head forecasting analysis result. It emerges that
the naive forecast’s performance (blue curve), tested up to K =
8, rapidly deteriorates. In contrast, the SD-ERGM multi-step
forecast remains the best performing57.

FIG. 4. Estimates for the tvps associated with the number of
links and the GWESP statistics. Blue dots correspond to the cross-
sectional ERGM estimates. The red lines are the estimates from
the SD-ERGM, with the corresponding 95% confidence intervals de-
noted by the red-shaded regions.

B. Temporal Heterogeneity in U.S. Congress Co-Voting
Political Network

Networks describing the U.S. Congress’ bills have been the
object of multiple studies12,14,58–62. It is thus an appropri-
ate real system for our second application of the SD-ERGM
framework. In particular, we want to show that the update rule
based on the pseudo-score defined in (6) can be concretely
applied to a real network and draws a different picture when
compared to the sequence of cross-sectional ERGM estimates.
To build the network, we use the freely available data of vot-
ing records in the US Senate63 covering the period from 1867
to 2015, for a total of 74 Congresses. We define the network
of co-voting following Refs. 64 and 14, where a link between
two senators indicates that they voted in agreement on over
75% of the votes among those held in a given senate when
they were both present. This procedure results in 74 networks,
one for each Congress, starting from the 40th. We consider
the SD-ERGM with the two network statistics discussed in
Section III B for this empirical application. As defined in (7),
parameter θ

(t)
1 is associated with the number of edges, while

θ
(t)
2 with the GWESP statistic. The fact that the number of

nodes is not constant over time is not a problem for our ap-
plication since we do not consider statistics associated with
single nodes. That case – as, for instance, considering the de-
grees of the beta model – would require the number of tvps to
be different at each time step.

As we did for the numerical simulations and the previous
empirical application, we compare our framework with a se-
quence of standard ERGMs. This empirical exercise does not
aim to conclude the specific network at hand. We aim to show
that the two approaches return a qualitatively different pic-
ture. The choice between the alternative models and combi-
nations of statistics—possibly based on model selection tech-
niques—is beyond the scope of our exercise.

Using the test for temporal heterogeneity based on SD-
ERGM, only the parameter θ2 turns out to be time-varying.
Testing the null hypothesis that each parameter is static, we
obtain a p-value of 0.1 for the link density and 10−4 for
GWESP. To check whether the sequence of cross-sectional
estimates is consistent with the hypothesis that the param-
eters remain constant, we estimate the values θ c

1 , θ c
2 from
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an ERGM using all observations. This amounts to compute
θ c = arg max

θ

∑
74
t=1 logP

(
Y(t),θ

)
. Then, for each sequence

of cross-sectional estimates θ
(t)
1 and θ

(t)
2 , we test the hypoth-

esis of them being normally distributed around the constant
values with unknown variance. The p-values resulting from
the t-tests are 1.4× 10−6 and 0.03 for parameters θ1 and
θ2, respectively. This simple test confirms that the two ap-
proaches imply quantitatively different parameter behaviors.
This emerges from Fig. 4 that reports the estimates from the
SD-ERGM (thick red lines), with their respective 95% con-
fidence intervals (shaded red bands), as well as the cross-
sectional ERGM estimates – one per date (blue dots) or using
the entire sample (dashed blue line).

To compute the confidence bands as in Ref. 51, we numeri-
cally checked whether the data is compatible with a DGP with
a small variance. In practice, we first estimate the SD-ERGM.
Then we quantify the variance of the latent parameters by es-
timating an AR(1) on the filtered time series65. Finally, we
repeatedly simulate such an AR(1) DGP, similarly to what is
done at the end of section III B 2, and check the coverage of
the confidence bands. We find that, for the current application,
the coverage of the confidence bands is 99.9%, hence larger
than the nominal value. These simulation-based results sup-
port the reliability of the approximate SD filter and provide a
conservative estimate of the confidence bands. This allows us,
for example, to deduce that the data is not compatible with a
model where one of the two parameters is zero.

V. CONCLUSIONS

In this paper, we proposed a framework for describing tem-
poral networks that extends the well-known Exponential Ran-
dom Graph Models. In the new approach, the parameters
of the ERGM have stochastic dynamics driven by the con-
ditional likelihood score. If the latter is unavailable in closed
form, we showed how to adapt the score-driven updating rule
to a generic ERGM by resorting to the conditional pseudo-
likelihood. In this way, our approach can describe the dy-
namic dependence of the PMF from virtually all the network
statistics usually considered in ERGM applications. We in-
vestigated two specific ERGM instances using an extensive
Monte Carlo analysis of the SD-ERGM reliability as a filter
for tvps. The chosen examples allowed us to highlight the ap-
plicability of our method to models with a large number of
parameters and to models for which the normalization of the
PMF is not available in closed form. The numerical simula-
tions proved the clear superior performance of the SD-ERGM
over a sequence of standard cross-sectional ERGM estimates.
This is true not only in the sparse network regime but also
in the dense case when the number of nodes is far from the
asymptotic limit. Finally, we run two empirical exercises on
real network data. The first application to the e-MID inter-
bank network showed that the SD-ERGM provides a quan-
tifiable advantage in a link forecasting exercise over different
time horizons. The second example of the U.S. Congress co-
voting political network enlightened that the ERGM and the

SD-ERGM could provide a significantly different picture de-
scribing the parameter dynamics.

Our work opens several possibilities for future research.
First, the applicability of the test for parameter instability
in the context of SD-ERGM with multiple network statistics
could be investigated much further. This would require an in-
depth analysis of the multi-collinearity issues intrinsic to the
ERGM context. Second, the SD-ERGM could be applied to
multiple instances of real-world temporal networks. An in-
teresting application would be the study of networks describ-
ing the dynamical correlation of neural activity in different
parts of the brain66. In this context, applying the static ERGM
has already proven highly successful67. The last future de-
velopment we plan to explore is extending the score-driven
framework to the description of weighted temporal networks.
Regretfully, this setting deserves more attention in the litera-
ture68. Still, it is of extreme relevance, particularly from the
financial stability perspective and its implications for systemic
risk.
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as in eq. (1) defines an ERGM. To begin with, let us mention
the first and probably most famous example of this class: the
Erdös-Rényi model69. In this model, for a given number of
nodes N, each of the possible N (N−1)/2 links70 is present
with constant probability p, equal for all links. The probabil-
ity to observe the adjacency matrix Y is

P(Y) = ∏
i< j

pYi j (1− p)(1−Yi j) .

In the context of exponential distributions, it is possible to
consider more general structures for the probability of a link
to be present and even depart from the assumption that each
link is independent of the others. Examples of more general
ERGMs have been first proposed in Ref. 29, under the name
of log-linear, or p⋆, models. For instance, the p1 model is
defined by the PMF

logP(Y) = ∑
i j
[Yi jYjiρi j +Yjiφi j]− log(K (ρ,ϕ)),

where ρ and ϕ are two matrices of parameters, and K (ρ,ϕ)
is a normalization factor, also known as partition function in
the statistical physics literature. This model can be estimated
in parsimonious specifications, e.g., φi j = φi + φ j, known
as sender plus receiver effect, and ρi j = ρ that describes
the tendency to reciprocate links. Additionally, p1 models
can be enriched with dependencies on node attributes71 or
predetermined (exogenous or endogenous) covariates Xi j

72.
The requirement of independence among dyads has been re-
laxed since Ref. 73 to take into account neighborhood effects,
such as the tendency to form 2 stars, quantified by the func-
tion h2-stars = ∑i jk YikYjk or triangles htriangles = ∑i jk YikYk jYji.
These functions are examples of network statistics, i.e., func-
tions of the adjacency matrix, that play a central role in
ERGMs.

1. The Beta Model

The first example we consider is quite simple but, at
the same time, largely employed in different streams of
literature25–30. The range of applications for this model is so
broad that researchers were often not aware of previous works
using the same model. For this reason, it can be found un-
der at least three different names: beta model, fitness model,
and configuration model. They all refer to a probability dis-
tribution that can be rewritten as an ERGM where each node i
has two parameters:

−→
θ i, that captures the propensity of node

i to form outgoing connections and
←−
θ i those incoming. It is

standard to indicate the number of connections a node has as
its degree. For the directed network case considered here, we
have – for node i – out-degree

−→
D i and in-degree

←−
D i defined

as

−→
D i = ∑

j
Yi j ,

←−
D i = ∑

j
Yji .

With these definitions, and since it is possible to compute the
normalization factor K

(←−
θ ,
−→
θ

)
, the PMF reads

logP(Y) =
N

∑
i=1

(←−
θ i
←−
D i +

−→
θ i
−→
D i

)
−∑

i j
log
(

1+ e
←−
θ i+
−→
θ j
)
.

(A1)
In the main text, we extensively use the beta model’s score to
define its score-driven extension. Hence, we show its explicit
expression here for the reader’s convenience. Defining, for
ease of notation,

pi j =
1

1+ e−
←−
θ i−
−→
θ j

we can write the score as

∇

(←−
θ ,
−→
θ

)
=


∂ logP

(
Y|
←−
θ ,
−→
θ

)
∂
←−
θ

∂ logP
(

Y|
←−
θ ,
−→
θ

)
∂
−→
θ

=



∑i (Yi1− pi1)
...

∑i (YiN− piN)

∑i (Y1i− p1i)
...

∑i (YNi− pNi)


The beta model is often used when the degree heterogeneity

is expected to play a prominent role in explaining the presence
or absence of links. It is worth noticing that the static version
of the beta model, in the directed case, is not identified. In-
deed, the probabilities remain unchanged after the application
of the following transformation

←−
θ →

←−
θ + c

−→
θ →

−→
θ − c .

The issue can be tackled74 by choosing one identification re-
striction that eliminates the possibility of shifting all parame-
ters by an arbitrary constant. This is essential to compare the
parameter values estimated for the same network at different
times. In all our investigations, both the numerical simula-
tions and the empirical applications, we enforce the following
condition:

∑
i

←−
θ i = ∑

i

−→
θ i.

It is worth noticing that different choices are available, e.g.,
∑i
←−
θ = 0 or

−→
θ i = 0. However, and most importantly, the re-

sults presented in the paper do not change significantly when
the identification condition changes. It is also important to
notice that the MLE can be performed using a fixed point al-
gorithm, described for example in74, that reaches the optimal
solution quickly. Moreover, we point out interesting results
on the asymptotic behavior of the maximum likelihood esti-
mates for

(←−
θ ,
−→
θ

)
when the number of nodes increases. In-

deed, consistency results have been proved in Ref. 27 for the
undirected case and in Ref. 74 for the directed case75,76. A
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necessary condition for these results to hold is that the net-
work density remains constant as N increases. An alternative,
and often more realistic, possibility is that the average degree
remains constant when N increases, implying that the den-
sity decreases as77 1/N. Networks belonging to this density
regime are named sparse. Notably, to our knowledge, no con-
sistency results are known for large N in the sparse regime.

2. GWESP Statistic and Pseudo-Likelihood Estimation

Here, we give some details on an example of a network
statistic for which we cannot compute the partition function
and the associated inference procedures. We focus on the
GWESP.

It is well known that when network statistics involve prod-
ucts of matrix elements78, this is often the case. This lack
of analytical tractability has arguably been the main obsta-
cle in estimating ERGMs and understanding their properties.
Moreover, it is nowadays well known that, when dealing with
ERGMs, the use of network statistics involving products of
matrix elements, such as the number of triangles, requires
some care to avoid statistical issues79,80. The main prob-
lem, with consequences on estimation, simulation, and inter-
pretability of ERGMs, is degeneracy. An ERGM is degen-
erate if it concentrates a significant portion of its probabil-
ity on a small set of configurations, typically the uninterest-
ing graphs completely connected or void of links. When this
phenomenon occurs, estimating the model becomes very hard,
and often, the estimated model does not provide a meaningful
description of real networks. A great effort has been dedicated
to investigating this problem and characterizing degeneracy81.
A family of network statistics that, while describing proper-
ties of the whole network, is not plagued by degeneracy has
been proposed in Refs. 31 and 32 and discussed in Ref. 33.
This family is called curved exponential random graphs, and
one example of curved statistics is the GWESP. This function
has recently been applied extensively to describe transitivity
in social networks33. It captures the tendency of nodes to form
triangles without the degeneracy issues that emerge when the
direct triangle count is used as a statistic in ERGM. To get an
intuition of the formula defining GWESP, let us consider two
nodes connected by an edge and count the number of nodes to
which they are connected, i.e., the number of neighbors they
share. Let us indicate with ESPk (Y) the number of edgewise
shared partners, i.e., connected node pairs82 that share exactly
k neighbors in the network described by Y. Then GWESP is
defined as

GWESP(Y) = eλ
n−2

∑
k=1

[
1−
(

1− e−λ

)k
]

ESPk (Y) .

In the following, we will be stuck to the usual approach in the
literature, treating the parameter λ as fixed and known, i.e.,
λ = 0.5.

As mentioned in the main text, there are two standard ap-
proaches to ERGM inference when the partition function is
not available in closed form. The first possibility50 is to

maximize an objective function obtained from a sufficiently
large sample drawn from the PMF with an arbitrary (but
close enough to the true one) parameter. As a consequence
of the non-independence of the links in the general ERGM,
sampling from (1) necessary relies on Markov Chain Monte
Carlo (MCMC) approaches49 (for a description of a popular
software that implements it). The computational burden of
MCMC-based estimation can be prohibitive for graphs that
are large enough. For this reason, a second approximate in-
ference procedure, known as Maximum Pseudo-Likelihood
Estimation (MPLE), first proposed for ERGMs in the semi-
nal work of Ref. 83, is often used in empirical applications.
MPLE is based on optimizing the pseudo-likelihood func-
tion, defined from link-specific variables (one for each ele-
ment of the adjacency matrix) named change statistics. Given
an ERGM, the change statistic for the link between node j
and i, associated with network statistic hs is δ s

i j = hs

(
Y+

i j

)
−

hs

(
Y−i j

)
, where Y+

i j is a matrix such that Y+
i j = 1 and it is equal

to Y in all other elements. Similarly, Y−i j has Y−i j = 0 and it is
equal to Y in all other entries. Given these definitions, the
pseudo-likelihood reads

PL(Y) = ∏
i j

π
Yi j
i j (1−πi j)

(1−Yi j) (A2)

where πi j =
(

1+ e−∑s θsδ s
i j
)−1

.
Pseudo-likelihood inference is of crucial importance when

applying our methodology to any ERGM. Obtaining the
pseudo-likelihood estimates is much faster than the MLE
based on MCMC and easy to implement since the pseudo-
likelihood boils down to the likelihood of a logistic regression.
Then, it can be efficiently maximized with standard software
for logistic regressions. However, the analogy with logistic re-
gression is typically pushed too far. It has become widespread
malpractice to associate with MPLEs the confidence intervals
obtained from the maximum-likelihood theory for logistic re-
gressions that are known to be theoretically unjustified, as al-
ready noted in Refs. 83 and 80, and thoroughly discussed in
Ref. 84. It is nowadays common knowledge that such a naive
approach to MPLE inference results in a systematic underes-
timation of confidence intervals’ width85–87. More principled
methods to estimate uncertainties of MPLEs, based on non-
parametric and parametric bootstrap, have been proposed in
Refs. 86 and 87, respectively. These contributions showed
that the computational convenience of MPLE for ERGMs can
be reconciled with a reliable estimation of statistical uncer-
tainties.

Appendix B: Score-Driven Models

Several are the reasons for the flexibility of a score-driven
approach and its success in time-series modeling. Here, we re-
view some key concepts mentioned in the main text that might
prove useful to readers unfamiliar with the relative literature.

Score-Driven models have been introduced as Dynamic
Conditional Score models by Ref. 35 and Generalized Au-
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toregressive Score models by Ref. 34. Given a sequence of

observations
{

y(t)
}T

t=1
, where each y(t) ∈ RM , and a condi-

tional probability density P
(

y(t)| f (t)
)

, depending on a vector

of tvps f (t) ∈RK , a Score-Driven model assumes that the time
evolution of f (t) is ruled by the recursive relation (3).

In practical applications, the static parameters of (3) must
be estimated. As detailed in Ref. 35, the likelihood of Score-
Driven models can be readily expressed in closed form using
the so-called prediction error decomposition. In a univari-
ate setting, Ref. 88 works out the required regularity condi-
tions, ensuring the consistency and asymptotic normality for
the maximum likelihood estimators of the parameter values.

There are motivations, originating in information theory,
for the optimality of the score-driven updating rule. In
Ref. 37, the authors consider a true and unobserved DGP
y(t) ∼ P

(
y(t)| f (t)

)
. They assume a given and, in general, mis-

specified conditional observation density P̃(t) = P̃
(
. | f̃ (t)

)
,

and consider the Kullback-Leibler (K-L) divergence

DK L

(
P(t), P̃(t+1)

)
=
∫

A
P
(

y| f (t)
)

log
P
(

y| f (t)
)

P̃
(
y| f̃ (t+1)

) dy,

where A⊆R. Building on the minimum discrimination infor-
mation principle89, they argue that when the new observation
yt becomes available, f̃ (t+1) should ideally be such that the up-
dated density P̃(t+1) is as close as possible to the true density
P(t). Given that the real DGP is unknown, an optimal update
that minimizes DK L cannot be defined in practice. For this
reason,37 focus on the improvements of DK L that an updat-
ing step produces irrespectively of the true DGP. One way of
quantifying the improvement for a parameter update from f̃ (t)

to f̃ (t+1) is to consider the realized variation of DK L

∆t|t ≡DK L

(
P(t), P̃(t+1)

)
−DK L

(
P(t), P̃(t)

)
=
∫

A P
(

y| f (t)
)

log
P̃(y| f̃ (t))

P̃(y| f̃ (t+1))
dy .

Based on this definition, a parameter update is realized K-L
optimal when ∆t|t < 0 for every

(
y(t), f̃ (t), f (t)

)
. The authors

prove that, under reasonable assumptions, the updating rule
(3) based on the score of P̃(t+1) is locally realized K-L opti-
mal. For more details and alternative definitions of optimal-
ity, we direct the reader to the original work and the more
recent Ref. 90. For our definition of the SD-ERGM, we want
to stress that realized optimality defines a class of updates; it
does not represent a single update with a unique functional
form. For instance, ∆t|t defined above is specific to the chosen
P̃. A different choice of P̃, e.g., one inspired by the pseudo-
likelihood specification, translates into an alternative optimal
choice for the update. In general, there can be infinite realized
Kullback-Leibler optimal updates. We remark that from the
information-theoretic perspective of Ref. 37, an update based
on the pseudo-score, as we propose in the main text, is not
only admissible but also realized K-L optimal, i.e., at each

step, it diminishes the K-L distance of the pseudo-PMF, which
assume independence of links, from the PMF of the true and
unobserved DGP.

Any filtering tool should provide an estimation of the un-
certainty and confidence bands for the estimates. Ref. 91 dis-
cussed methods to quantify the uncertainty associated with
the Score-Driven filters when the DGP is a Score-Driven
model. Specifically, they proposed a simulation-based method
to define in-sample confidence bands around the filtered tvps.
Their procedure starts from the maximum likelihood esti-

mate of the static parameters, given observations
{

y(t ′)
}t−1

t ′=1
.

Given the MLE estimate, the method prescribes to repeatedly
sample new parameters (w,β,α)i from a multivariate normal,
centered around the MLE estimates, and variance-covariance
matrix estimated with the Huber-White estimator92,93. Then
one uses each sample to filter a different sequence of tvps,
from the same time series of observations, thus obtaining a

sample of filtered paths f̂ (t)i = f̂ (t)i

(
wi,βi,αi,

{
y(t ′)

}t−1

t ′=1

)
for i = 1, . . . ,K, where K is the number of samples. Finally,
each time t, one uses the obtained distribution f̂ (t)i to calcu-
late the appropriate percentiles defining the confidence bands.
While this construction is intuitive and easy to implement in
practice, it is meant to capture only the uncertainty due to the
estimation of the static parameters, often referred to as param-
eter uncertainty. Hence, the confidence bands reliably quan-
tify uncertainty only when the DGP is score-driven. In other
words, these bands do not consider what is known as filtering
uncertainty. This is the uncertainty because, in general, we
do not know the true DGP and the score-driven filter may be
regarded only as an approximate filter. Recently, Ref. 51 in-
vestigated the approximation error made by applying a score-
driven filter to a time-varying parameter model following a
different DGP. They found that, for a class of DGPs where the
parameters follow an auto-regressive process, the approxima-
tion becomes exact in the limit of a small variance of the latent
parameters. Moreover, they proposed a method to define con-
fidence bands, inspired by Ref. 94, that accounts for filtering
and parameter uncertainty in Score-Driven filters. While we
refer to their paper for the derivation details, here we briefly
describe the key steps of the procedure. The total conditional
variance of the latent parameters is decomposed as the sum of
two terms. One term captures the parameter uncertainty sim-
ilarly to the approach of Ref. 91. The other term captures the
filtering uncertainty and can be written in terms of the static
parameters (w,β,α) and the scaling matrix S(t) from (3) as
P(t) = β−1αS(t). In practice, the procedure consists of sam-
pling (w,β,α)i and obtaining a distribution of filtered paths,
as in91. Then for each time step t the variance of the latent pa-

rameters is obtained as 1
K ∑i

(
f̂ (t)i − f̂ (t)

)2
+ 1

K ∑iβ
−1
i αiS

(t)
i ,

where f̂ (t) is the path filtered using the maximum likelihood
estimates.

Finally, we review the main idea behind the test for tempo-
ral parameter variation of Ref. 45. The method consists of a
Lagrange Multiplier (LM) test for the parameter α that multi-
plies the score in the one-dimensional version of the recursion
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(3). The null hypothesis H0 is that the parameter f (t) is static,
i.e., β = α = 0, corresponding to w. As explained in Ref. 95,
the LM statistic for the hypothesis H0, versus the alternative
α = β ̸= 0, can be conveniently obtained from an auxiliary
regression. To allow for a coefficient β different from α , one
can use the same arguments as in Ref. 96. As discussed in
Ref. 45, the LM statistic can be written as the explained sum
of squares from the regression

1 = cw∇
(t)
w + cα S(t−1)

∇
(t−1)
w ∇

(t)′
w + residual,

where cw and cα are regression coefficients that can be esti-
mated with any statistical software. It is worth noticing that,
under the null, the score of the conditional density with re-
spect to f (t) is equal to the score with respect to w. From
standard asymptotic theory, it follows that the LM statistic is
distributed as a χ2 with one degree of freedom. For a detailed
test description, we refer the reader to Ref. 45.

Appendix C: Details of Numerical Simulations

The main text refers to a set of DGPs used for numerical
simulations. Although the different numerical experiments
that we presented differ in the meaning and number of pa-
rameters, in every experiment, each of the parameters can be
constant or evolve according to one of the following dynami-
cal DGPs:

• abrupt change of half the parameters at t = T/2, i.e., for

odd s we have θ
(t)
s = θ 1s for t ≤ T/2 and θ

(t)
s = θ 2s for

t > T/2, while for even s it is θ
(t)
s = θ 0s for t = 1 . . .T ;

• smooth periodic variation for half the pa-
rameters, i.e., for odd s we have θ

(t)
s =

θ 0s +
(
θ 2s −θ 1s

)
sin(4πt/T +φs) for t = 1 . . .T ,

where the φs are randomly chosen for each node, while
for even s it is θ

(t)
s = θ 0s for t = 1 . . .T ;

• autoregressive of order 1 (AR(1)), i.e., for odd s we
have θ

(t)
s = Φ0s +Φ1θ

(t−1)
s + ε(t) for t = 1 . . .T , where

Φ1 = 0.99, Φ0s is chosen such that the unconditional
mean is equal to θ0s , ε ∼ N (0,σ) and σ = 0.1. As in

the previous cases, for even s we keep θ
(t)
s = θ 0s for

t = 1 . . .T .

The dynamics considered are such that element s of vector
θ remains bounded between θ1s and θ2s . The values of θ1 and
θ2 are fixed to allow fluctuations in the in and out degrees of
the nodes, as follows. The vector θ 0 is obtained by first gener-
ating two-degree sequences (in and out) such that the degrees
linearly interpolate between a minimum degree Dm = 3 and a
maximum of DM = 8. Then, we need to ensure that the degree
sequence is graphicable, i.e., such that it exists one matrix of
zeros and ones from which it can be obtained. We iteratively
match links that make up the out-degree sequence with those
that make up the in-degree sequence, starting with the largest

FIG. 5. Temporal evolution of one randomly selected parameter for
the considered DGPs. The black line is the true path of the parameter
of the DGP, the red ones are those filtered using the SD-beta model,
and the blue dots correspond to the cross-sectional estimates of the
beta model.

in- and out-degrees. In practice, we start with an empty ma-
trix, select the largest out-degree, and set the matrix element
between this node and the node with the largest in-degree to
one. If, at some point, we cannot entirely allocate a given
out-degree, we disregard the leftover links outgoing from that
node and move to the next one. This procedure amounts to
populating the adjacency matrix until no more links can be al-
located. The degree sequence associated with this adjacency
matrix is guaranteed to be graphicable. The numerical values
of θ 0 follow from the estimation of the static beta model. Fi-
nally, to gain additional heterogeneity in the amplitude of the
fluctuations, we define N values evenly spaced between 0.4
and 1, i.e., cs for s = 1 . . .N. We use them to define

θ 1s = θ 0s + cs
(
θ 0s+1 −θ 0s

)
θ 2s = θ 0s − cs

(
θ 0s+1 −θ 0s

)
.

Figure 5 shows the temporal evolution for one randomly
chosen parameter of the beta model for all the DGPs, together
with the paths filtered from the observations using the SD beta
model and the sequence of cross-sectional static estimates.
The score-driven filtering and cross-sectional estimation are
repeated over 100 simulated network sequences. As discussed
in the main text, the paths filtered with the SD beta model are,
on average, much more accurate than those recovered from a
standard beta model.

1. SD-Beta Model for large N

In one of the numerical simulations we presented in the
main text, we consider networks of increasing size. Here, we
present some additional details on how the DGPs are defined
for networks of increasing size. Practically, we have to fix the
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vectors θ 0s , θ 1s , and θ 2s in a similar way, with the only differ-
ence being the numerical values for Dm and DM . Specifically,
in the sparse case we keep for each N Dm = 10 and DM = 40.
In the dense case, we set DM = 0.8N, i.e., both the maximum
degree and the average degree increase.

One peculiarity of the beta model is that the number of pa-
rameters, i.e., the length of the vectors

←−
θ and

−→
θ , increases

with the number of nodes. Consistently, when we use the
score-driven extension described so far, the length of the vec-
tors w, α , and β increases too.

Recall that the numerical values of θ0, θ1, and θ2 are cho-
sen to fix the values of average degrees over time and the am-
plitude of their fluctuations, as described in Appendix C. For
each value of N, we choose them to guarantee heterogeneity
in the degrees across nodes and significant fluctuation in time.
Most importantly, we set a maximum degree attainable for a
node and let it depend on N in two distinct ways, each corre-
sponding to a different density regime: one generating sparse
networks and the other dense ones. It is crucial to notice that
the asymptotic results of Ref. 27 are expected to hold only in
the dense case.

In the first numerical experiment testing the SD-beta model
as a misspecified filter, we estimated a total of 60 parameters,
6 static parameters for each one of the ten nodes, 3 for the
time-varying in-degree and 3 for the time-varying out-degree.
Here, we present the further parameter restriction mentioned
in the main text that proved useful when the number of nodes
increases. Specifically, we assume that the parameters αout

and β out are common to all out-degree tvps
−→
θ

(t)
. Similarly,

all in-degree tvps
←−
θ

(t)
share the same α in and β in. The coeffi-

cients win
s and wout

s remain node specific. The resulting update
rule is

←−
θ

(t+1)
s = win

s +β in←−θ
(t)
s +α in ∑i

(
Y (t)

is −p(t)is

)
√

∑i p(t)is

(
1−p(t)is

)
−→
θ

(t+1)
s = wout

s +β out−→θ
(t)
s +αout ∑i

(
Y (t)

si −p(t)si

)
√

∑i p(t)si

(
1−p(t)si

) .
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