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Abstract

We propose a practical and robust method for making inferences on average treat-
ment effects estimated by synthetic controls. We develop a K-fold cross-fitting pro-
cedure for bias correction. To avoid the difficult estimation of the long-run variance,
inference is based on a self-normalized t-statistic, which has an asymptotically pivotal
t-distribution. Our t-test is easy to implement, provably robust against misspecifica-
tion, and valid with stationary and non-stationary data. It demonstrates an excellent
small sample performance in application-based simulations and performs well relative
to alternative methods. We illustrate the usefulness of the t-test by revisiting the effect
of carbon taxes on emissions.
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1 Introduction

We propose a simple and robust t-test for making inferences on average effects estimated
using synthetic control (SC) (Abadie and Gardeazabal, 2003; Abadie et al., 2010; Abadie,
2021). The t-test is easy to implement. For example, one can obtain (1 − α)-confidence
intervals as

estimated effect ± (1− α/2) quantile of t-distribution × standard error. (1)

We consider a setting with one treated unit, which is untreated for the first T0 periods
and treated for the remaining T1 periods, and N untreated control units. Let Y0t(1) and
Y0t(0) denote the (random) potential outcomes of the treated unit with and without the
treatment. Our object of interest is the average treatment effect on the treated unit (ATT)
in the post treatment period,

τ =
1

T1

T0+T1∑
t=T0+1

(Y0t(1)− Y0t(0)) .

The ATT provides an interpretable and easy-to-communicate summary measure of the effect
of the treatment. Average treatment effects on the treated units are popular target param-
eters in many causal inference problems because of their direct policy relevance. Like much
of the SC literature, we focus on settings with only one treated unit and many treated peri-
ods. In such settings, the average effect for the treated unit over time captures the impact
of the treatment rather than the average effect across many units. We also show how to
modify the proposed t-test to make inferences on the expected effect for the treated unit,
E (Y0t(1)− Y0t(0)), when researchers are willing to restrict treatment effect heterogeneity by
imposing stationarity and weak dependence of the treatment effect sequence.

Many existing inference methods for SC with a single treated unit focus on sharp null
hypotheses, such as the null hypothesis of no effect whatsoever, and per-period effects (e.g.,
Abadie et al., 2010; Firpo and Possebom, 2018; Cattaneo et al., 2021; Chernozhukov et al.,
2021). As pointed out by Imbens and Rubin (2015, p.81), sharp null hypotheses are “a
very useful starting point, prior to any more sophisticated analysis,” but rejecting sharp null
hypotheses is “not sufficient to inform policy decisions.” Per-period effects provide useful
information about the effect dynamics. But while we can make inferences about per-period
effects, they cannot be consistently estimated when there is only one treated unit, and the
resulting confidence intervals can be wide and uninformative. Moreover, reporting inferences
on many per-period effects might not be an effective way to communicate the overall impact
of the treatment when there are many treated periods, and often an interpretable one-
number summary is called for. The ATT provides such a summary, is a natural inferential
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target empirical work, and admits confidence intervals that take the “standard” form (1).
By contrast, the existing methods for inference on sharp nulls and per-period effects are
typically based on permutation or bootstrap approaches.

The main inferential challenge in SC applications is that Y0t(0) is unobserved for t >
T0. SC approximates this unobserved counterfactual using a weighted average of control
outcomes,

∑N
i=1 ŵiYit. The weights (ŵ1, . . . , ŵN) are estimated based on the pre-treatment

data and constrained to be positive and add up to one.
The natural SC estimator of the ATT is

τ̂SC =
1

T1

T0+T1∑
t=T0+1

(
Y0t −

N∑
i=1

ŵiYit

)
. (2)

In many SC applications, T0 is smaller than or comparable to N , and the data exhibit
persistence and dynamics. In such settings, there are two major challenges when using τ̂SC

to make inferences about τ . First, τ̂SC is biased due the error from estimating the high-
dimensional (relative to T0) weights, even under correct specification, and the bias can be
substantial under misspecification (Figure 1).1 This bias of τ̂SC precludes the application of
standard inference procedures.

Second, even in the ideal case where the true SC weights are known, estimating standard
errors is difficult since they depend on the long-run variance (LRV). It is well-known that
classical LRV estimators (e.g., Newey and West, 1987; Andrews, 1991) are not accurate
enough for reliable inference in small samples. Figure 2 shows that using the popular Newey-
West standard errors yields substantial undercoverage, especially when T0 is small.2

We develop an inference method that addresses both challenges and is motivated by an
asymptotic framework where T0, T1, N → ∞. To remove the bias of τ̂SC, we propose a
K-fold cross-fitting procedure. To avoid the difficult LRV estimation, we propose a self-
normalized t-statistic with an asymptotically pivotal t-distribution with K − 1 degrees of
freedom, which makes our method easy to implement. Self-normalization further induces
theoretical higher-order improvements and yields excellent small sample properties in our
simulations. Such higher-order improvements and excellent small sample properties are
important for a method relying on asymptotic approximations since T0 and T1 are often not
very large in SC applications. Our method is implemented in the R-package scinference

(https://github.com/kwuthrich/scinference).
Figure 1 shows that the distribution of the bias-corrected estimator is centered at the true

value (τ = 0) and well-approximated by a normal distribution, even under misspecification.
1In our context, correct specification refers to settings where the population SC estimator is unbiased.
2As pointed out in Müller (2007), any consistent estimator of LRV might suffer from robustness issues.
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Figure 2 shows that our t-test exhibits an excellent coverage accuracy, despite the small
sample sizes.

Figure 1: Bias of synthetic control and impact of debiasing
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Correct specification: Debiased SC estimator
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Misspecification: SC estimator w/o debiasing
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Misspecification: Debiased SC estimator
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Notes: Simulations with 50,000 repetitions. Y0t(0) = µ +
∑N

i=1 wiYit(0) + ut, Yit(0) = 2 · 1{i ≤ 3} + vit, vit
iid∼ N(0, 1),

{ut} is a Gaussian AR(1) process with coefficient 0.31, and (T0, T1, N) = (30, 16, 14) as in the empirical application. Correct
specification: (µ,w) = (0, (1/3, 1/3, 1/3, 0 . . . , 0)′). Misspecification: (µ,w) = (2, (1/3, 1/3, 1/3, 0 . . . , 0)′). Y0t(1) − Y0t(0) = 0

for t > T0. Debiasing based on K = 3.

The t-test is valid with stationary and non-stationary data. As a result, researchers do
not need to pre-test for nonstationarity and choose the inference method according to the
pre-test. This is important since nonstationarity is a common feature of SC applications.
Existing methods typically rely on assumptions on the type of nonstationarity (e.g., unit
root or deterministic trend) (e.g., Li, 2020). However, it is well-known that even the slight-
est misspecification in modeling nonstationarity (e.g., unit root vs. near unit root) yields
invalid inferences. Therefore, we take a different approach and do not make assumptions
about the exact nature of the nonstationarity. Instead, we restrict the heterogeneity in the
nonstationarity across units. That is, we require the units to be sufficiently similar, which is
a crucial contextual requirement in SC studies (Abadie, 2021). Avoiding assumptions about
the exact type of nonstationarity is important because one of the main reasons for using SC
is that the precise nature of the counterfactual trend is unknown.

With stationary data, the t-test is valid under under arbitrary misspecification. With non-
stationary data, we establish the validity of the t-test under two different settings. First, the
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Figure 2: Undercoverage with Newey-West standard errors

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

T0=15

AR(1) coefficient

C
ov

er
ag

e

t−Test (K=3)
Conventional Newey−West standard errors

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

T0=30

AR(1) coefficient

C
ov

er
ag

e

t−Test (K=3)
Conventional Newey−West standard errors

Notes: Simulations with 50,000 repetitions. Nominal coverage: 90%. Y0t(0) =
∑N

i=1 wiYit(0) + ut, {ut} is a Gaussian AR(1)
process, Y0t(1) − Y0t(0) = 0 for t > T0, and (T1, N) = (16, 14) as in the empirical application. We focus on the Oracle case
where w is known to abstract from the estimation error in ŵ. The LRV is estimated based on the pre-treatment data using the
NeweyWest command (R-package sandwich (Zeileis, 2004; Zeileis et al., 2020)) with pre-whitening.

t-test is valid under arbitrary misspecification when all units share a common nonstationarity.
Second, the t-test remains valid when units deviate from the common nonstationarity under
restrictions on the magnitude and heterogeneity of the deviations. The second result covers
many relevant types of nonstationarity, such as heterogeneous deterministic time trends and
certain forms of cointegration, but requires SC to be correctly specified.

A by-product of our method is improved asymptotic efficiency over difference-in-differences
(DID). We show that the asymptotic variance of the bias-corrected SC estimator is no larger
than that of DID, irrespective of whether the SC model is correctly specified or not. More-
over, the t-test is valid when the common trends assumption underlying DID is violated and
thus also more robust than DID.

We illustrate the usefulness of our method by revisiting Andersson (2019a)’s analysis of
the effect of a carbon tax on emissions between 1990 and 2005 in Sweden. In this applica-
tion, the ATT captures the average effect of the carbon tax on emissions — a one-number
summary of the overall effect that Andersson (2019a, p.14) explicitly mentions. The t-test
provides robust confidence intervals for this parameter. The estimated ATT is negative and
significant. Our findings complement and corroborate the inference results in Andersson
(2019a), which are based on the permutation test of Abadie et al. (2010).

The t-test demonstrates an excellent small sample performance in simulations calibrated
based on the empirical application and performs well relative to existing alternatives such
as DID, subsampling (Li, 2020), and synthetic DID (SDID) (Arkhangelsky et al., 2021).

Finally, we provide recommendations for practice. We discuss when to use the t-test and
what to consider when implementing it in applications.
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1.1 Related literature

We contribute to the literature by proposing methods for making inferences on the ATT and
expected treatment effects based on SC in settings with one or few treated units. The closest
papers to ours are Li (2020) and Arkhangelsky et al. (2021). Here we compare and contrast
the proposed t-test with their contributions. See Section 5 for a simulation comparison and
Section 7 for guidance on which method to choose in applications.

Li (2020) proposes a subsampling approach to inference in SC settings with a small
number of controls (N is assumed to be fixed).3 They derive the asymptotic distribution of
the SC estimator of E(αt) using a projection framework with stationary, trend-stationary,
and unit root data. For inference, they propose a subsampling procedure. They note that
√
T1(τ̂

SC − E(αt)) can be decomposed into two parts, A1 and A2. Since only A1 depends
on the estimated SC weights, subsampling is only required for this part, and A2 can be
approximated using the bootstrap. Li (2020) establishes the validity of this procedure for
the case where the SC prediction errors and {αt−E(αt)} are serially uncorrelated. When the
data are trend-stationary, they recommend detrending before applying the inference method.

Our t-test differs from Li (2020) in several important aspects. We allow for a large
number of control units (N can grow with (T0, T1)) and explicitly correct for the bias of SC
using a cross-fitting approach. This leads to a self-normalized t-statistic and an inference
procedure with higher-order improvements that does not require pre-processing the data to
make them stationary. The t-test also avoids subsampling, which may not perform well in
small samples.

Arkhangelsky et al. (2021) propose synthetic DID (SDID), which combines ideas from
DID and SC. In our notation, their estimator of the ATT, τ̂SDID, is given by

(τ̂SDID, µ̂, α̂, β̂) = argmin
τ,µ,α,β

N∑
i=0

T0+T1∑
t=1

(Yit − µ− αi − βt −Ditτ)
2ŵSDID

i λ̂SDID
t , (3)

where Dit is the treatment indicator, ŵSDID are unit weights that balance the pre-treatment
trends of treated and control units, and λ̂SDID are time weights that balance the pre- and
post-treatment periods. SDID thus adds time weights and unit fixed effect to the SC
method. Both of these additions help reduce the bias of standard SC and improve robust-
ness. Arkhangelsky et al. (2021) establish consistency and asymptotic normality of SDID
under a latent factor model for the potential outcomes. To make inferences with one treated
unit, they build on ideas in Conley and Taber (2011) to propose a placebo variance estimator

3Here we describe Li (2020)’s method in the context of the SC estimator τ̂SC. We note that their theory
also covers more general SC estimators, such as SC estimators without the adding-up constraint.
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that relies on homoskedasticity across units.4

Our t-test differs from SDID with respect to the underlying model, the debiasing strategy,
and the inference method. The t-test is developed based on a linear prediction model, which
can be motivated by but does not rely on factor models. We use a cross-fitting approach
that directly removes the bias if the bias is stable over time. To make inferences, we exploit
stationarity over time and build on the cross-fitting structure to construct a self-normalized
t-statistic that avoids estimating the LRV, is theoretically valid across a variety of settings,
and enjoys higher-order improvements.

Throughout the paper, we focus on SC estimators of the counterfactual. However, our
method only requires ℓ2-consistency of the estimator of the weights, which can be established
for many penalized regression estimators. Therefore, our paper further contributes to the
literature on inference methods based on standard and penalized regression estimators mo-
tivated by asymptotics where T0, T1 → ∞. Building on the framework of Hsiao et al. (2012),
Li and Bell (2017) propose a least squares method for making inferences on the expected
treatment effect based on estimators of the LRV when the data are stationary. Carvalho
et al. (2018) propose a Lasso-based method for making inferences on the ATT based on LRV
estimators under sparsity when the data are stationary.5 Masini and Medeiros (2020) study
the asymptotic distribution of counterfactual estimators based on least squares when the
data are non-stationary. They show that the limiting distribution is generally nonstandard
and depends on T0/T1. They propose a subsampling method for inference when T0 ≈ T1.
Compared to this strand of the literature, our t-test is generic in that it accommodates a
wide range of penalized and unpenalized regression estimators, is valid under general forms
of nonstationarity, does not rely on estimating the LRV, and enjoys higher-order improve-
ments. Moreover, the debiased ATT estimator is asymptotically normal across all settings
we consider, which, together with the self-normalized t-statistic, makes the proposed method
easy to implement.

Focusing on average effects over time and expected effects, we complement the existing
procedures for testing sharp null hypotheses about the treatment effect trajectory {Y0t(1)−
Y0t(0)}T0+T1

t=T0+1 and making inferences on per-period effects (e.g., Abadie et al., 2010; Firpo and
Possebom, 2018; Cattaneo et al., 2021; Ben-Michael et al., 2021; Chernozhukov et al., 2021;
Masini and Medeiros, 2021; Shaikh and Toulis, 2021).6 Within that strand of literature, our

4An appealing feature of SDID is that it naturally accommodates multiple treated units. For such settings,
Arkhangelsky et al. (2021) propose a bootstrap and a jackknife method for inference.

5In Section 4.1, they consider an extension to trending regressors but do not provide inference methods
for high-dimensional settings.

6The time series permutation approach of Chernozhukov et al. (2021) can be extended to test hypotheses
about the ATT by collapsing the data across time, provided that T0 ≫ T1. More recently, Cattaneo et al.
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paper is most closely related to Ben-Michael et al. (2021), given our focus on bias correction.
Ben-Michael et al. (2021) propose a debiasing approach based on an outcome model and
suggest using a conformal prediction approach for making inferences on per-period effects,
building on Chernozhukov et al. (2021). Finally, it is worthwhile noting that the t-test relies
on a sampling-based framework in which the potential outcomes are viewed as random,
whereas some of the approaches for testing sharp null hypotheses (e.g., Abadie et al., 2010;
Firpo and Possebom, 2018) are motivated from a design-based perspective.

1.2 Notation

Let 1p denote a p×1 dimensional vector of ones. For q ≥ 1, we denote the ℓq-norm of a vector
as ∥ · ∥q. For a matrix A, we denote ∥A∥∞ = ∥vec(A)∥∞, where vec(A) is the column-wise
vectorization of A. We write a ≲ b to denote a ≤ cb for some constant c > 0 that does not
depend on the sample size. We write a ≍ b to denote a ≲ b and b ≲ a. For a set A, |A| is
the cardinality of A.

2 A t-test for synthetic controls

2.1 Setup and object of interest

We consider a synthetic control setup with one treated unit, N control units, and T periods
(e.g., Abadie et al., 2010; Doudchenko and Imbens, 2016; Kellogg et al., 2021). The treated
unit is untreated for the first T0 periods and treated for the remaining T − T0 = T1 periods.
The control units remain untreated throughout. The potential outcomes with and without
the treatment are Yit(1) and Yit(0), respectively. In the main text, we assume that the
treatment status is fixed and label the treated unit as i = 0 and the control units as i =
1, . . . , N . In Appendix A, we provide sufficient conditions under which the t-test remains
valid when the treatment status is random and selection is based on past outcomes or latent
variables in factor models. Observed outcomes are given by Yit = Yit(0)+αit1{i = 0, t > T0},
where αit := Yit(1)− Yit(0) is the treatment effect for unit i in period t.

The existing inference approaches for SC and related methods with one (or few) treated
units differ regarding the identification assumptions they rely on and what is assumed to
be random and fixed, respectively. We consider a setting where the potential outcomes are
random and the treatment effect sequence can be either random or fixed.7

(2023) extended the method in Cattaneo et al. (2021) to accommodate more general treatment effects,
including ATT over time and across units in staggered adoption designs.

7Similar settings are considered by Li (2020), Arkhangelsky et al. (2021), Ben-Michael et al. (2021),
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Our main goals are to estimate and construct confidence intervals for the ATT,

τ =
1

T1

T∑
t=T0+1

α0t. (4)

When {α0t} and thus τ are random, these confidence intervals are not confidence intervals
in the traditional sense, but should be interpreted as prediction intervals (Cattaneo et al.,
2021; Chernozhukov et al., 2021; Cattaneo et al., 2023). See Sections 2.2 and 3.1 for further
discussions. To simplify the exposition, we sometimes suppress the subscript “0” and write
αt = α0t whenever there is no ambiguity.

The ATT is an interpretable and easy-to-communicate summary measure of the impact
of the treatment when treatment effects are heterogeneous over time. For example, in our
reanalysis of Andersson (2019a), the ATT captures the average per-period effect of a carbon
tax on emissions in Sweden between 1990, when the tax was introduced, and 2005, when
the EU started its emissions trading system. Andersson (2019a, p.14) explicitly mentions
the ATT when discussing the empirical results. In settings with only one treated unit, the
ATT in (4) is equivalent, for example, to the treatment effects considered by Carvalho et al.
(2018), Arkhangelsky et al. (2021), and Cattaneo et al. (2023).

Remark 1. The proposed method can be applied to make inferences on the ATT over subperi-
ods of the post-treatment period, T s = {T0+1+r, . . . , T−s}, where r, s ≥ 0, |T s|−1

∑
t∈T s αt.

Our asymptotic theory requires that |T s| → ∞, so that |T s| needs to be large enough for the
asymptotic approximations to be accurate.

Remark 2. In settings where researchers are willing to restrict treatment effect heterogene-
ity over time and assume that the treatment effect sequence {αt} is stationary and weakly
dependent, the expected treatment effect, E(αt), is a natural alternative to the ATT (e.g., Li
and Bell, 2017; Li, 2020). We propose a modification of our method for making inferences
on E(αt) in Appendix B.3.

2.2 Implementing the t-test

To remove the bias of SC, we employ a K-fold cross-fitting procedure, where K is fixed.
We discuss the choice of K in Section 3.2. We choose K consecutive blocks from the pre-
treatment period: H1

⋃
H2

⋃
· · ·
⋃
HK ⊆ {1, . . . , T0}. Define r = min{⌊T0/K⌋ , T1} and let

Cattaneo et al. (2021), Chernozhukov et al. (2021), Ferman (2021), Ferman and Pinto (2021), and Cattaneo
et al. (2023). An alternative and complementary strand of the literature focuses on design-based inference,
treating the potential outcomes as fixed and leveraging assumptions on the assignment process (e.g., Abadie
et al., 2010; Firpo and Possebom, 2018).
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Hk = {(k − 1)r + 1, . . . , kr} for 1 ≤ k ≤ K.8 For simplicity, we assume that T0/K is an
integer. For k = 1, . . . , K, compute

τ̂k =
1

T1

T∑
t=T0+1

(
Y0t −

N∑
i=1

ŵi,(k)Yit

)
− 1

|Hk|
∑
t∈Hk

(
Y0t −

N∑
i=1

ŵi,(k)Yit

)
, (5)

where ŵ(k) = (ŵ1,(k), . . . , ŵN,(k))
′ is obtained by applying SC to the data in H(−k) :=

{1, . . . , T0} \ Hk. This construction ensures that under weak dependence, ŵ(k) is approx-
imately independent of the data in Hk

⋃
{T0 + 1, . . . , T}, which allows us to establish the

theoretical validity of our procedure under weak conditions.
The basic idea behind the construction of estimator (5) is as follows. The first com-

ponent, T−1
1

∑T
t=T0+1

(
Y0t −

∑N
i=1 ŵi,(k)Yit

)
, corresponds to the natural SC estimator τ̂SC in

(2) with ŵ replaced by ŵ(k). This estimator is biased (see Figure 1). The second compo-
nent, |Hk|−1

∑
t∈Hk

(
Y0t −

∑N
i=1 ŵi,(k)Yit

)
, is an estimator of the bias of this estimator in the

pre-treatment period. Under the assumptions specified below, the bias is the same in the
pre-treatment and the post-treatment period. As a result, subtracting the second component
removes the bias.

For concreteness, we consider the following canonical SC estimator (e.g., Doudchenko
and Imbens, 2016) in the main text:

ŵ(k) ∈ argmin
w∈WSC

∑
t∈H(−k)

(
Y0t −

N∑
i=1

wiYit

)2

, (6)

where WSC :=
{
w : wi ≥ 0,

∑N
i=1wi = 1

}
.9 We study the theoretical properties of the

classical SC estimator of Abadie et al. (2010) in Appendix B.2. The t-test only requires an
ℓ2-consistent estimator of the weights. Therefore, it also works in conjunction with many
other SC estimators and penalized regression estimators; see Remark 4.

The final estimator of the ATT is simply the average of τ̂1, . . . , τ̂K ,

τ̂ =
1

K

K∑
k=1

τ̂k. (7)

To avoid the difficult estimation of the LRV, we construct a scale-free test statistic. The
idea is to form a ratio in which the numerator and the denominator are both scaled by the
long-run standard deviation. Specifically, we construct a quantity based on τ̂1, . . . , τ̂K :

TK =

√
K (τ̂ − τ)

σ̂τ̂
, (8)

8Here, we choose to use the first K blocks. Other choices such as the last K blocks are also valid.
9The argmin may not be unique if T0 − r < N . In this case, we can take ŵ(k) to be any element in the

argmin set.
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where

σ̂τ̂ =

√
1 +

Kr

T1

√√√√ 1

K − 1

K∑
k=1

(τ̂k − τ̂)2.

In Sections 3 and 4 we show that TK has an asymptotic t-distribution with K − 1 degrees
of freedom as T0, T1 → ∞. Note that σ̂τ̂/

√
K is different from standard errors based on

asymptotic normality and consistent estimators of the variance. In our framework σ̂τ̂ is a
random variable since K is fixed, as in the classical statistical analysis of t-tests based on a
fixed number of Gaussian variables.

The t-statistic (8) differs from the standard t-statistic by the factor
√

1 +Kr/T1 in
the denominator. This rescaling is necessary in our context because the τ̂1, . . . , τ̂K are not
asymptotically independent since they share a common component coming from the average
over the post-treatment period. The common component cancels out in the denominator but
not in the numerator of TK . Therefore, to account for this common component and show
that the test statistic TK has an asymptotic t-distribution, we need to divide the numerator
by
√

1 +Kr/T1. We refer to the proof of Theorem 2 for a formal discussion.
The asymptotic t-distribution of TK suggests the following (1−α) confidence interval for

τ :
IK(1− α) =

[
τ̂ − tK−1(1− α/2)

σ̂τ̂√
K
, τ̂ + tK−1(1− α/2)

σ̂τ̂√
K

]
, (9)

where tK−1(1−α/2) is the (1−α/2)-quantile of a student t-distribution with K − 1 degrees
of freedom. The interpretation of IK(1 − α) depends on whether τ is fixed or random.
If τ is fixed, IK(1 − α) can be interpreted as a conventional confidence interval; if τ is
random, IK(1 − α) can be interpreted as a prediction interval (as in Cattaneo et al., 2021;
Chernozhukov et al., 2021; Cattaneo et al., 2023). For simplicity, we will refer to IK(1− α)

as a confidence interval throughout.

Remark 3. The construction of TK is related to Ibragimov and Müller (2010) with two
important differences. First, {τ̂k} naturally arise from our cross-fitting procedure for bias
correction. Second, the τ̂ks share a common component and, consequently, are not asymp-
totically independent (Theorem 1). Nevertheless, we are able to show that, after scaling the
denominator by

√
1 +Kr/T1, TK has an asymptotic t-distribution under the null hypothe-

sis (Theorem 2). Our construction of TK is also related to the Fama and MacBeth (1973)
variance estimator (e.g., Cattaneo et al., 2020).
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3 Theoretical properties with stationary data

Here, we show that our t-test is valid with stationary data, robust to misspecification, and
more efficient than DID. We consider inference in a repeated sampling framework under
asymptotics where T0, T1 → ∞, and our results also allow for N → ∞.

3.1 Asymptotic theory

Following the SC literature, we predict Y0t(0) for t > T0 using a linear combination of
(Y1t(0), . . . , YNt(0)). Defining Yt(0) := Y0t(0), Yt := Y0t, and Xt := (Y1t(0), . . . , YNt(0))

′, the
linear prediction model can be written as

Yt(0) = X ′
tw∗ + ut, 1 ≤ t ≤ T, (10)

where the pseudo-true SC weights are defined as w∗ := argminw∈WSC E(Yt(0)−X ′
tw)

2 and
the pseudo-true residuals or prediction errors are ut := Yt(0)−X ′

tw∗.10 We interpret model
(10) as a statistical or predictive model and not as a structural model.11 A major advantage
of this interpretation is that it allows SC to be misspecified and the pseudo-true weights
w∗ to be different from the true (infeasible) SC weights.12 Allowing for misspecification is
important in practice. For example, under a linear factor model for the potential outcomes,
SC does not recover the true weights and is biased in general (e.g., Ferman and Pinto, 2021).
More generally, the true model might be nonlinear. The proposed inference method is valid
in both of these cases and also accommodates many other forms of misspecification. In the
main text, we assume that the predictive relationship is stable over time. In Appendix B.1,
we show that the t-test can accommodate certain forms of time-varying weights.

Throughout this section, we maintain the following standard stationarity assumption.
We establish the properties of our method with non-stationary data in Section 4.

Assumption 1. {(Yt(0), Xt)}Tt=1 is covariance-stationary.

By simple algebra, Assumption 1 gives us the following observation.

Lemma 1. Let Assumption 1 hold. Then, for 1 ≤ k ≤ K,

τ̂k − τ =

(
1

T1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)
+

(
1

|Hk|
∑
t∈Hk

X̃t −
1

T1

T∑
t=T0+1

X̃t

)′

∆(k),

10If the best linear predictor is well-defined and satisfies the SC constraints so that w∗ =

[E(XtX
′
t)]

−1E(XtYt(0)) ∈ WSC , then E(Xtut) = 0. However, in practice, WSC could be “too small”
such that [E(XtX

′
t)]

−1E(XtYt(0)) /∈ WSC and E(Xtut) ̸= 0.
11See, for example, Cattaneo et al. (2021) and Chernozhukov et al. (2021) for similar interpretations.
12Starting with the seminal paper by Abadie et al. (2010), the true SC weights have often been defined

via a factor model for the potential outcomes.
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where X̃t = Xt − E(Xt) and ∆(k) = ŵ(k) − w∗.

To establish the asymptotic properties of our method, we need to show that the second
term in Lemma 1 is negligible. For that, we impose additional assumptions.

We start by imposing ℓ2-consistency of the SC estimator ŵ(k).

Assumption 2. max1≤k≤K ∥ŵ(k) − w∗∥2 = oP (1).

We state Assumption 2 in terms of the pseudo-true SC weights w∗ := argminw∈WSC E(Yt(0)−
X ′

tw)
2. The results in Theorems 1 and 2 below continue to hold as long as the estimators

ŵ(k) converge to any time-invariant vector of weights.
The following lemma verifies Assumption 2 for the SC estimator ŵ(k). It allows N to be

large relative to T0.

Lemma 2. Suppose Assumption 1 and the following conditions hold.

1. max1≤k≤K ∥µ̂(−k)−µ∥∞ = oP (1), where µ = EXtYt(0) and µ̂(−k) = |H(−k)|−1
∑

t∈H(−k)
XtYt(0).

2. max1≤k≤K ∥Σ̂(−k) − Σ∥∞ = oP (1) and λmin(Σ) ≥ c, where Σ = EXtX
′
t and Σ̂(−k) =

|H(−k)|−1
∑

t∈H(−k)
XtX

′
t.

Then, we have that max1≤k≤K ∥ŵ(k) − w∗∥2 = oP (1). In particular,

max
1≤k≤K

∥ŵ(k) − w∗∥22 ≤
8∥Σ̂(−k) − Σ∥∞ + 2∥µ̂(−k) − µ∥∞

c
.

The first condition in Lemma 2 holds under weak serial dependence, mild conditions
on the tail of the distribution of the variables, and conditions on N . For example, when
the entries of Xt and Yt(0) are sub-Gaussian, we can allow for logN = o(

√
T0); when the

entries of Xt and Yt(0) have bounded qth moment for q > 2, then we can typically allow for
N = o(T

q/4
0 ). This feature is essential because N and T0 have a similar order of magnitude in

many SC applications. The second condition requires the eigenvalues of Σ(−k) to be bounded
away from zero to achieve identification of the pseudo-true SC weights. We emphasize that
Lemma 2 does not impose any sparsity assumptions on the weights.

We also impose weak dependence assumptions on the data. Define ũt := ut −E(ut) and

σ2 = limT→∞E
(
T−1/2

∑T
t=1 ũt

)2
.

Assumption 3. Suppose the following conditions hold.

1. There exists a constant κ1 > 0 such that for any A ⊆ {1, . . . , T}, the largest eigenvalue

of E
[
|A|−1

(∑
t∈A X̃t

)(∑
t∈A X̃t

)′]
is bounded above by κ1.
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2. There exists a sequence ρT > 0 such that P (max1≤t≤T ∥X̃t∥∞ ≤ ρT ) → 1.

3. The data {(Xt, ũt)}Tt=1 are β-mixing with coefficient satisfying βmix(γT ) → 0 for some
sequence γT satisfying 0 < γT < r/2 and ρTγT = oP (min{

√
T0,

√
T1}), where r =

min{⌊T0/K⌋ , T1}.

4. {ũt}Tt=1 satisfies max1≤t≤T E|ũt|q = O(1) and βmix(i) ≲ i−η for some constants q > 2

and η > q/(q − 2) and σ2 > 0.

The weak dependence is stated in terms of β-mixing, which holds for a large class of
stochastic processes. Stationarity and β-mixing conditions are commonly imposed for time
series data. These conditions are satisfied in various Markov chains and hidden Markov
models, including ARMA, GARCH, and many stochastic volatility models (e.g., Carrasco
and Chen, 2002; Meyn and Tweedie, 2012). Note that the β-mixing and moment conditions
in Assumption 3 rule out unit-root or near-unit-root processes.

The following theorem establishes the asymptotic distribution of the component estima-
tors. Let gc0,K = K1{c0 < 1}+ (K/c0)1{1 ≤ c0 ≤ K}+ 1{c0 > K}.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Suppose that T0, T1 → ∞ and that T0/T1 →
c0 for some c0 ∈ [0,∞]. Then,

√
min{T0, T1}


τ̂1 − τ

...
τ̂K − τ

 d→


√

min{c0, 1}ξ0 −
√
gc0,Kξ1

...√
min{c0, 1}ξ0 −

√
gc0,KξK

σ,

where ξ0, . . . , ξK are independent N(0, 1) random variables.

The proof of Theorem 1 proceeds in two steps. First, observe that ŵ(k) − w∗ is approxi-
mately independent of the data in Hk

⋃
{T0 + 1, . . . , T} under weak dependence of the data

(Assumption 3). Consequently, ℓ2-consistency of ŵ(k) can be used to bound the second term
in Lemma 1, so that

τ̂k − τ −

(
1

T1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)
= oP

(
1√

min{T0, T1}

)
. (11)

Second, under stationarity, we can replace ut in (11) by ũt, which is mean-zero by construc-
tion. As a consequence, the desired result follows from a CLT. The common component ξ0
corresponds to the post-treatment average, and ξ1, . . . , ξK correspond the averages over the
blocks in the pre-treatment period.

Theorem 1 imposes no restrictions on the relative magnitude of T0 and T1, accommodating
a wide range of applications. This feature adds useful robustness since researchers do not have
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to choose between different asymptotic approximations and inference procedures depending
on the relative magnitude of T0 and T1.

The next theorem establishes the asymptotic distribution of the ATT estimator and TK .

Theorem 2. Let the assumptions in Theorem 1 hold. Then (i)√
min{T0, T1}(τ̂ − τ)

d→ N(0, (min{c0, 1}+ gc0,KK
−1)σ2)

and (ii) TK
d→ tK−1, where the random variable tK−1 has a standard t-distribution with K−1

degrees of freedom.

Part (i) of Theorem 2 is a direct consequence of Theorem 1 and establishes the asymptotic
normality of the ATT estimator. Making inferences directly based on this result requires
estimating the LRV σ2, which is difficult in small sample settings. We therefore use the
self-normalized test statistic TK , which allows us to avoid estimating the LRV. Part (ii)
demonstrates that TK has an asymptotically pivotal student t-distribution withK−1 degrees
of freedom. This result is useful from a practical perspective as one does not have to simulate
non-standard critical values, nor rely on subsampling or permutation distributions.

The result in Part (ii) is different from classical results on t-statistics because the compo-
nent estimators τ̂1, . . . , τ̂K are not asymptotically independent due to presence of the common
component ξ0 in the asymptotic distribution in Theorem 1. However, the common compo-
nent cancels out in the denominator of the t-statistic so that numerator and denominator
are asymptotically independent and TK has an asymptotic t-distribution after rescaling the
denominator to account for the presence of ξ0 in the numerator.

The following corollary of Theorem 2 formally establishes the (1−α) coverage guarantee
of the confidence interval IK(1− α) defined in (9).

Corollary 1. Let the assumptions in Theorem 1 hold. Then, P (τ ∈ IK(1− α)) → 1− α.

In light of Corollary 1, we can interpret IK(1−α) as a confidence interval if τ is fixed and
as a prediction interval if τ is random. Thus, our framework provides a unified framework,
encompassing both leading cases discussed in the literature.

Remark 4. Theorem 1 only requires ℓ2-consistency of ŵ(k) (Assumption 2). As a result, the
t-test is generic and can be used in conjunction with the many other ℓ2-consistent estimators
available in the literature (e.g., Lasso). This is similar to the double machine learning (DML)
literature (Chernozhukov et al., 2018), where the first-order asymptotics of the final estimator
depend on the influence function in the debiasing process, but not on the properties of the
estimators of the nuisance parameters, beyond a rate requirement. We emphasize that unlike
the DML literature, the t-test does not have any rate requirements.
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Remark 5. The alternative fixed-b approach (e.g., Kiefer et al., 2000; Kiefer and Vogelsang,
2002a,b; Jansson, 2004; Kiefer and Vogelsang, 2005; Sun et al., 2008) does not naturally
arise from the cross-fitting procedure and encounters extra technical difficulty due to the error
from estimating the high-dimensional weights. The usual justification for the fixed-b approach
is its higher-order improvement in Gaussian location models. Our procedure achieves the
same property in this setting; see Appendix D.

Remark 6. The sign-based randomization test of Canay et al. (2017) is an alternative to
the conventional t-test (e.g., Ibragimov and Müller, 2010), provided that K is large enough.
In our setting, the randomization test cannot be directly applied due to the dependence be-
tween the component estimators τ̂1, . . . , τ̂K. However, the structure of our problem makes
it possible to decorrelate the component estimators without estimating the LRV, so that the
randomization test can be applied after decorrelation. Specifically, Theorem 1 shows that√

min{T0, T1}(τ̂1 − τ, . . . , τ̂K − τ)′
d→ N(0,Σ), where Σ = σ2Σ̃ with Σ̃kk = min{c0, 1}+ gc0,K

and Σ̃kl = min{c0, 1} for k ̸= l. Because Σ̃ does not depend on σ, and σ enters as a
multiplicative factor, one can decorrelate τ̂1, . . . , τ̂K without estimating the LRV.13

3.2 Choosing K

The test statistic TK and its limiting distribution depend on K. Choosing K seems unavoid-
able; it is inherent to the cross-fitting procedure required for bias correction. The choice of
K is subject to a trade-off between the expected length of the confidence intervals and their
finite sample coverage properties.

Figure 3 illustrates this trade-off. It shows that choosing a larger K will lead to shorter
confidence intervals but may impact the coverage accuracy of our method. The reason for
the loss in coverage accuracy is that we are constructing the bias correction term in (5) by
averaging over a shorter time period, which lowers the quality of the normal approximation
in Theorem 1 and leads to increased finite sample dependence between the blocks. See, for
example, Ibragimov and Müller (2010, Section 2.3) for a related discussion in the context of
the standard t-test with dependent data.

To formalize the trade-off between coverage accuracy and length, it is helpful to analyze
the asymptotic efficiency of the confidence intervals in (9) by comparing the expected asymp-
totic length for a fixed K to the limiting case where K → ∞. While our theory requires K

13Canay et al. (2017) show that the sign-based randomization test outperforms the t-test when there is
heterogeneity in the variances of the component estimators. However, in the presence of such heterogeneity,
decorrelating τ̂1, . . . , τ̂K would require estimating the LRV for each component estimator, which is difficult
in small samples.
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Figure 3: Trade-off between coverage accuracy and length when choosing K
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Notes: Simulations with 20,000 repetitions based on DGP1 described in Section 5. Because the trade-off is more relevant and
pronounced when the persistence is higher, we show results for ρu = 0.6 for the purpose of illustration (ρu = 0.31 in Section
5). Nominal coverage: 1− α = 0.9. We set (T1, N) = (16, 14) as in the empirical application and vary T0 and K.

to be fixed, the case where K → ∞ is a useful theoretical benchmark.
The length of the confidence interval (9) is L = tK−1(1 − α/2)σ̂τ̂/

√
K. In Appendix E,

we show that
√

min{T0, T1}L
d→ L, with

E(L) = 2σtK−1(1− α/2)
1√

K
√
K − 1

√
1 + min{c0, K}√gc0,K

√
2

Γ(K/2)

Γ((K − 1)/2)
, (12)

where Γ(·) denotes the Gamma function. Using Stirlings’s approximation of the Gamma
function, we obtain the following limiting length as K → ∞,

E(L) ≈ 2σΦ−1(1− α/2)
√

min{c−1
0 , 1}

√
1 + c0, (13)

where Φ−1(·) is the quantile function of the standard normal distribution. See Appendix E
for detailed derivations. The relative asymptotic efficiency (RAE) can then be computed as
the ratio of (13) and (12),

RAE =
Φ−1(1− α/2)

√
min{c−1

0 , 1}
√
1 + c0

tK−1(1− α/2) 1√
K
√
K−1

√
1 + min{c0, K}√gc0,K

√
2 Γ(K/2)
Γ((K−1)/2)

, (14)

and is a function of α, c0, and K only. Table 1 shows the RAE for c0 = T0/T1 = 30/16, as
in the empirical application in Section 6.

Table 1 shows that choosing K = 3 almost doubles the RAE relative to K = 2. However,
this choice can be conservative: increasing K to 4, 5, or even 6 improves RAE by 12, 19, and
22 percentage points, respectively. The RAE gains from increasing K further are decreasing.
Importantly from a practical perspective, one can achieve a very high RAE without choosing
a large K: choosing K = 9 already yields confidence intervals with more than 90% RAE.
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Table 1: Relative asymptotic efficiency

K 2 3 4 5 6 7 8 9 10

RAE 32.65 63.56 75.86 82.08 85.79 88.23 89.97 91.26 92.25

Notes: RAE: relative asymptotic efficiency as defined in (14). Results are shown for α = 0.1

and c0 = 30/16, as in the empirical application.

The RAE formula captures one side of the trade-off. The other side of the trade-off,
coverage accuracy, can be assessed using application-based simulations. The simulations
reported in this paper (based on Andersson (2019a)) and in an earlier version (Chernozhukov
et al. (2022), based on Abadie and Gardeazabal (2003)) suggest that K = 3 works well when
T0 is small. When T0 is moderate or large, the coverage accuracy remains excellent even for
larger values of K, which justifies choosing larger values of K.

An important determinant of the coverage accuracy is the degree of persistence in the
prediction errors {ut}: the more persistent the prediction errors, the lower the coverage
accuracy. A simple approach for gauging the persistence in {ut} is to fit an AR(1) model to
the SC residuals in the pre-treatment period, as we do in Section 5. Assessing the persistence
in this way is a helpful first step in evaluating coverage accuracy and an essential input for
application-based simulations.

In summary, K = 3 is a useful starting point in typical SC applications where T0 is small.
If the estimated persistence in {ut} is relatively low and simulations indicate a good coverage
accuracy, choosing K = 4 improves the efficiency of the t-test. If T0 is moderate or large, K
can often be chosen to achieve 80% RAE or even 90% RAE without affecting the coverage
properties too much.

3.3 Debiased synthetic control is more efficient than difference-in-

differences

Here we show that bias-corrected SC is more efficient than DID.14 To illustrate, suppose that
T0 < T1. The DID estimator of the ATT can be written as (e.g., Doudchenko and Imbens,
2016),

τ̂DID =
1

T1

T∑
t=T0+1

(Yt −X ′
twDID)−

1

T0

T0∑
t=1

(Yt −X ′
twDID) ,

14The recent work by Bottmer et al. (2021) complements our results by studying the efficiency of SC
methods under design-based uncertainty.
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where wDID :=
(

1
N
, . . . , 1

N

)′. For simplicity, suppose that E(Yt(0)) = 0 and E(Xt) = 0 and
assume that the data are iid. Then a CLT gives√

T0(τ̂
DID − τ)

d→ N(0, (c0 + 1)σ2
DID), σ2

DID = E (Yt(0)−X ′
twDID)

2
.

For SC, the previous results imply√
T0(τ̂ − τ)

d→ N(0, (c0 + 1)σ2
SC), σ2

SC = E(Yt(0)−X ′
tw∗)

2,

where w∗ = argminv∈WSC E(Yt(0)−X ′
tw)

2. To show that the SC estimator is more efficient
than DID, it suffices to note that

σ2
∗ = E(Yt(0)−X ′

tw∗)
2 = min

w∈WSC
E(Yt(0)−X ′

tw)
2 ≤ E (Yt(0)−X ′

twDID)
2
= σ2

DID.

The above inequality shows that the magnitude of the efficiency gain is determined by
σ2

DID−σ2
∗, which depends on the true data-generating process. We note that the results in this

section are asymptotic. In small samples, the uncertainty from estimating the weights can
mask the asymptotic efficiency improvements, especially when these efficiency improvements
are relatively small, i.e., when σ2

DID − σ2
∗ is small.

4 Theoretical properties with non-stationary data

In many applications the data are non-stationary. An important rationale for applying SC
is that the precise structure of the nonstationarity is unknown such that one has to rely on
controls to identify counterfactual trends. Therefore, unlike the existing literature (e.g., Li,
2020), we do not make assumptions on the exact form of nonstationarity and instead restrict
the heterogeneity in the nonstationarity across units. In essence, we require the units to
be sufficiently homogeneous, which is an important contextual requirement in SC studies
(Abadie, 2021).

4.1 Unrestricted common nonstationarity

We start by establishing the validity of our procedure under the following general class of
nonstationary processes. As in Section 3, we allow for arbitrary misspecification.

Assumption 4. For 1 ≤ t ≤ T , Yt(0) = Vt(0) + θt and Xt = Zt + 1Nθt, where θt ∈ R is an
unrestricted stochastic process and {(Vt(0), Zt)}Tt=1 is covariance-stationary.

Assumption 4 requires that the potential outcomes for the treated unit and all control
units can be decomposed into a common non-stationary component θt and a stationary
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component. Importantly, {θt} can be an arbitrary stochastic process (e.g., a deterministic
trend, random walk, or general ARIMA process) such that researchers are not required to
impose further restrictions on the nonstationarity as long as it is shared among units. This
feature adds very useful robustness. Even for low-dimensional problems it is well-known that
the slightest misspecification in modeling nonstationarity (e.g., unit root vs. near unit root)
can yield invalid inferences.15

To derive the asymptotic properties of our method under Assumption 4, we exploit the
specific structure of the SC estimator and the constraints on the weights. First, the estimated
and the pseudo-true SC weights satisfy 1′

N ŵ(k) = 1′
Nw∗ = 1. Therefore, under Assumption

4, we have a version of Lemma 1 with X̃t replaced by Z̃t, which is stationary.
Second, ŵ(k) is ℓ2-consistent under Assumption 4. Since WSC ⊂ {w : 1′

Nw = 1}, the
estimated and the pseudo-true SC weights can be expressed in terms of the stationary parts
of the potential outcomes, (Vt(0), Zt):

ŵ(k) = argmin
w∈WSC

∑
t∈H(−k)

(Yt(0)−X ′
tw)

2 = argmin
w∈WSC

∑
t∈H(−k)

(Vt(0)− Z ′
tw)

2 (15)

w∗ := argmin
w∈WSC

E(Yt(0)−X ′
tw)

2 = argmin
w∈WSC

E(Vt(0)− Z ′
tw)

2 (16)

Therefore, if the conditions in Lemma 2 hold with (Yt(0), Xt) replaced by (Vt(0), Zt), consis-
tency of ŵ(k) follows. The following lemma states the formal result.

Lemma 3. Suppose that the assumptions of Lemma 2 hold with (Yt(0), Xt) replaced by
(Vt(0), Zt). Then Assumption 2 holds.

Finally, by (15), ŵ(k) is only a function of {Zt}t∈H(−k)
under Assumption 4. Thus, under

weak dependence of {Zt}, ŵ(k) − w is approximately independent of {Zt}t∈Hk
⋃
{T0+1,...,T}, so

that the asymptotic properties of our method can be established using similar arguments as
in the proofs of Theorems 1 and 2.

Theorem 3. Let Assumptions 2, 3 with Xt replaced by Zt, and 4 hold. Suppose that T0/T1 →
c0 for some c0 ∈ [0,∞]. Then (i) TK

d→ tK−1 and (ii) P (τ ∈ IK(1− α)) → 1− α.

Theorem 3 formally guarantees the validity of the confidence interval IK(1 − α) when
the data exhibit a common unrestricted nonstationarity.

15For example, there is a large literature on making inference on the scalar parameter β in Yt = Xtβ+Ut,
where Xt = ρXt−1 +Zt and ρ = 1+ c/T . The key difficulty is that the asymptotic distribution of the usual
t-statistic for β depends on c, but c cannot be consistently estimated (e.g., Phillips, 2014). Hence, using a
unit root process (c = 0) for the dynamics of xt is not robust to barely undetectable misspecification (e.g.,
local-to-unity c < 0).
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4.2 Deviations from common nonstationarity

Here we study a more general setting that allows for deviations from the common nonsta-
tionarity. Unlike in the previous sections, we do not allow SC to be misspecified. Consider
the following assumption.

Assumption 5. Assume that Xt = 1Nθt + Zt + βξt, 1 ≤ t ≤ T , where θt is an unrestricted
stochastic process, E(Zt) = 0, ξt is a non-stationary process, β ∈ RN is an arbitrary vector.
Assume that {θt}Tt=1, {Zt}Tt=1, and {ξt}Tt=1 are mutually independent. Moreover, Yt(0) =

X ′
tw + ut, 1 ≤ t ≤ T , where E(ut) = 0, w ∈ WSC.

Assumption 5 considers deviations from Assumption 4. The deviations are driven by the
non-stationary process ξt. Assumption 5 does not impose any restrictions on the vector β.
This allows us to accommodate many leading examples of non-stationary data. For example,
the control units can have different deterministic trends. Moreover, Assumption 5 allows for
any cointegration system whose nonstationarity is driven by θt and ξt. The case with multiple
ξt’s would be much more complicated since the analysis would need to take into account the
correlation among them and whether they diverge at the same rate; we leave this extension
for future research.

The following assumption restricts the relative magnitude of T0, T1, and N , as well as
the magnitude of the deviation process ξt.

Assumption 6. Assume T1 ≪ T0/ logN . Suppose that∑T
t=T0+1 ξt√∑
t∈H(−k)

ξ2t
= OP (T1T

−1/2) and
∑

t∈Hk
ξt√∑

t∈H(−k)
ξ2t

= OP (T1T
−1/2).

With a common nonstationarity, no restrictions on the relative magnitude of T0 and T1 are
required (Section 4.1). However, to accommodate deviations form a common nonstationarity,
we require T0 to be much larger than T1. The restriction on the magnitude of ξt can be verified
for many non-stationary processes including unit roots and polynomial trends; see Appendix
F for details.

Assumptions 5 and 6 allow for general non-stationary trends and deviations without im-
posing specific structures on the dynamics. This is important in practice because procedures
that rely on specific assumptions on the nonstationarity are typically not robust against
deviations from these assumptions, and even the slightest misspecification can yield invalid
inferences, as discussed above.

Finally, we impose conditions on the stationary component Zt.
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Assumption 7. Let Assumption 3 hold with Xt replaced by Zt. In addition, suppose that
the following conditions hold.

1. ∥
∑

t∈H(−k)
Ztut∥∞ = OP (

√
T0 logN)

2. ∥
∑

t∈H(−k)
Ztξt∥∞/

√∑
t∈H(−k)

ξ2t = OP (
√
logN)

3. (
∑

t∈H(−k)
utξt)/

√∑
t∈H(−k)

ξ2t = OP (1)

4. ∥
∑

t∈H(−k)
(ZtZ

′
t − EZtZ

′
t)∥∞ = OP (

√
T0 logN)

The next theorem establishes the asymptotic validity of the proposed inference method
when there are sparse deviations.

Theorem 4. Let Assumptions 5, 6, and 7 hold and suppose that we use the SC estimator
(6). Then, for 1 ≤ k ≤ K,

√
T1(τ̂k − τ) =

1√
T1

T∑
t=T0+1

ut −
1√
|Hk|

∑
t∈Hk

ut + oP (1).

Moreover, TK
d→ tK−1 and P (τ ∈ IK(1− α)) → 1− α.

To our knowledge, Theorem 4 guarantees the inference validity of SC under the most
general available conditions without imposing a specific structure on the dynamics of the
nonstationarity.

Remark 7. DID is generally inconsistent under deviations from a common nonstationarity.
For example, suppose that there is a linear trend (ξt = t). The DID estimator would have a
bias of T1(T0+(T1+1)/2)(w′β−N−11′

Nβ). Thus, DID is inconsistent unless w′β−N−11′
Nβ =

o(T−1T−1
1 ).

5 Application-based simulations

It is important to understand the advantages and limitations of the t-test in practice. Here
we present simulation evidence demonstrating when it works well and when it does not.
We calibrate the simulations to the empirical application in Section 6, where we revisit the
analysis of the effect of carbon taxes on emissions in Andersson (2019a). We show results
for (T0, T1, N) = (30, 16, 14) as in Andersson (2019a). In Appendix H, we further investigate
the performance of the t-test with T0 = 150, because the theoretical results in Section 4.2
require T0 to be much larger than T1, and the performance with T1 ∈ {10, 12, 14, 16}. All
simulations were carried out in R (R Core Team, 2023).
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We generate the treated outcome as

Yt(0) = µ+X ′
tw + ut, ut = ρuut−1 + vt, vt

iid∼ N(0, σ2
v), 1 ≤ t ≤ T,

and set αt = τ = 0. The parameters (µ,w) vary across DGPs, and σ2
v and ρu are obtained

by fitting an AR(1) model to the empirical SC residuals. The degree of persistence in {ut} is
relatively low: ρu = 0.31. To generate the control outcomes, we fit a factor model with four
factors to the detrended data and let Yit(0) = θit+L

′
iFt+ηit, where θit is a unit-specific non-

stationary component that varies across DGPs, Ft = (F1t, . . . , F4t)
′, Fst

iid∼ N(0, σ2
Fs
), ηit =

ρiηit−1+ ϵit, and ϵit ∼ N(0, σ2
ϵi
). (L1, . . . , LN), (σ2

F1
, . . . , σ2

F4
), (ρ1, . . . , ρN), and (σ2

ϵ1
, . . . , σ2

ϵN
)

are obtained from and estimated based on the factor model fitted to the data.
We consider three stationary and six non-stationary DGPs; see Table 2. DGP1–DGP3

satisfy the assumptions in Section 3. DGP4–DGP5 satisfy the conditions in Section 4.1 since
1′
Nw

MIS = 1, and DGP6–DGP7 satisfy the assumptions in Section 4.2. DGP8 and DGP9
allow for studying the performance of the t-test in settings not covered by our theory. While
the nonstationarity in DGP8 satisfies Assumption 5, which allows for unit-specific trends,
our theory does not allow for misspecification when there are deviations from a common
nonstationarity. DGP9 captures a setting where the deviations are driven by multiple non-
stationary processes, whereas Assumption 5 requires {ξt} to be a scalar-valued process.

Table 2: DGPs

Stationary DGPs

DGP1 µ = 0, w = wSC, θit = 0 SC weights
DGP2 µ = 0, w = wDID, θit = 0 DID weights
DGP3 µ = 2, w = wMIS, θit = 0 Misspecified

Non-stationary DGPs

DGP4 µ = 2, w = wMIS, θit = t Common linear trend & misspecification

DGP5 µ = 2, w = wMIS, θit = θt, θt = θt−1 + ξt, ξt
iid∼ N(0, 1) Common random walk & misspecification

DGP6 µ = 0, w = wSC , θit = t+ 1 {i = 1} · t Common trend & deviation
DGP7 µ = 0, w = wSC , θit = θ1t + 1 {i = 1} · θ2t, Common random walk & deviation

θ1t = θ1t−1 + ξ1t, ξ1t
iid∼ N(0, 1),

θ2t = θ2t−1 + ξ2t, ξ2t
iid∼ N(0, 1)

DGP8 µ = 0, w = wMIS, θit = i+ i · t Heterogeneous trends & misspecification

DGP9 µ = 0, w = wSC, θit = i+ θit−1 + ξit, ξit
iid∼ N(0, 1) Random walks with heterogeneous drifts

Notes: wSC: SC estimate of w. wDID = (1/N, . . . , 1/N)′, wMIS = (−3, 3, 1, . . . , 0)′ (such that 1′
NwMIS = 1, which ensures

that DGP4–DGP5 satisfy the assumptions in Section 4.1).

We compare the t-test to four alternative methods for making inferences on the ATT:
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(i) DID with K-fold cross-fitting, (ii) subsampling inference based on τ̂SC (Li, 2020),16 (iii)
SDID (Arkhangelsky et al., 2021) implemented using the R-package synthdid (Hirshberg,
2023), and (iv) K-fold cross-fitting based on the true w (Oracle). In Appendix H.3, we also
compare the t-test to the widely-used permutation approach by Abadie et al. (2010).

Table 3 shows the bias, coverage, and average length for all methods and DGPs. The
nominal coverage is 1− α = 0.9. Under stationarity, our t-test exhibits an excellent perfor-
mance, even when T0 = 30. Under correct specification, bias, coverage, and average length
of the confidence intervals are similar to the Oracle. Consistent with our theory, the t-test
effectively removes the bias under misspecification. Misspecification does not affect cover-
age accuracy but leads to wider confidence intervals because it increases the variance of the
prediction errors.

When there is a common nonstationarity, the t-test performs well and is fully robust to
misspecification, consistent with our theory. When there are deviations from the common
nonstationarity and T0 = 30, it may exhibit some undercoverage, especially if there is also
misspecification (for example, under DGP8, which is not covered by our theory). This is
expected since our theoretical results under deviations from nonstationarity require T0 to be
much larger than T1. As shown in the Appendix H.1, when T0 = 150, the t-test works well
under all DGPs covered by our theory. The results for DGP8 and DGP9 even suggest that
if T0 is large enough, the t-test remains quite robust in settings not covered by our theory.

The t-test performs well compared to the alternative methods. It is more robust than
DID, which exhibits large biases under deviations from a common nonstationarity, and can
yield substantially shorter confidence intervals than DID (DGP6–DGP9).17 Subsampling
undercovers even under correct specification when the bias is negligible. When SC is mis-
specified, τ̂SC is typically biased (see also Figure 1), which can result in zero coverage. The
t-test demonstrates a better coverage accuracy overall, and removes the bias due to misspec-
ification. Finally, while SDID is nearly as effective at removing the bias as cross-fitting, it
exhibits undercoverage due to the confidence intervals being too short or overcoverage due
to the confidence intervals being too long under most DGPs. When interpreting the results
of this simulation comparison, it is important to note that SDID with one treated unit relies

16Our R-implementation is based on Matlab code obtained from Kathleen Li. We take the subsample size
to be (2/3) · T0, corresponding to the middle choice of m = 60 in Section 5 of Li (2020).

17We note that our application-based DGPs are quite favorable to DID: even when the data are stationary
and SC is correctly specified, the DID confidence intervals are not much wider than those from the t-test.
This finding suggests that the asymptotic efficiency gains from using the t-test are limited under these
specific DGPs. By contrast, in simulations based on Abadie and Gardeazabal (2003), we found that the
DID confidence intervals can be much wider than those from the t-test, even when DID is theoretically valid
(Chernozhukov et al., 2022, Section 5).
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on cross-sectional variation and homoskedasticity for inference, whereas the t-test relies on
time series variation. These two sets of assumptions are non-nested. See Sections 1.1 and
7.1 for further discussions.

Table 3: Simulation results with (T0, T1, N) = (30, 16, 14)

Bias×10 Coverage Average length CI

K SC DID SuSa SDID Oracle SC DID SuSa SDID Oracle SC DID SuSa SDID Oracle

DGP1 (stationary, SC weights)

3 0.00 0.01 -0.00 -0.01 0.00 0.91 0.90 0.77 0.92 0.89 0.09 0.11 0.03 0.10 0.07
4 -0.00 -0.01 -0.00 -0.01 -0.00 0.90 0.89 0.77 0.92 0.89 0.07 0.09 0.03 0.10 0.06

DGP2 (stationary, DID weights)

3 -0.00 -0.00 -0.00 -0.01 -0.00 0.90 0.89 0.76 0.93 0.89 0.09 0.07 0.04 0.10 0.07
4 -0.00 -0.00 -0.00 -0.01 -0.00 0.91 0.89 0.76 0.93 0.89 0.07 0.06 0.04 0.10 0.06

DGP3 (stationary, misspecified)

3 -0.00 -0.02 19.99 -0.05 0.00 0.90 0.90 0.00 0.69 0.89 0.68 0.63 0.32 0.10 0.07
4 0.02 0.02 19.99 -0.05 0.00 0.90 0.90 0.00 0.69 0.89 0.56 0.53 0.32 0.10 0.06

DGP4 (common linear trend, misspecified)

3 -0.00 -0.01 20.01 -0.01 -0.00 0.89 0.90 0.00 0.71 0.90 0.67 0.63 0.32 0.10 0.08
4 0.02 -0.00 20.01 -0.01 -0.00 0.89 0.89 0.00 0.71 0.90 0.56 0.53 0.32 0.10 0.06

DGP5 (common random walk, misspecified)

3 0.02 0.01 19.98 0.02 0.00 0.90 0.90 0.00 0.72 0.89 0.68 0.63 0.32 0.10 0.07
4 0.04 0.02 19.98 0.02 -0.00 0.89 0.89 0.00 0.72 0.89 0.56 0.53 0.32 0.10 0.06

DGP6 (common linear trend & deviation, SC weights)

3 -0.07 -16.43 -0.09 -0.03 -0.00 0.81 1.00 0.74 1.00 0.89 0.08 4.08 0.04 18.83 0.07
4 -0.05 -15.71 -0.09 -0.03 0.00 0.78 0.00 0.74 1.00 0.88 0.06 2.52 0.04 18.83 0.06

DGP7 (common random walk & deviation, SC weights)

3 -0.00 0.05 0.00 0.04 -0.00 0.88 0.77 0.75 0.98 0.90 0.10 0.79 0.04 2.61 0.07
4 -0.00 -0.01 0.00 0.04 0.00 0.86 0.64 0.75 0.98 0.89 0.07 0.54 0.04 2.61 0.06

DGP8 (heterogeneous trends, misspecified)

3 -0.02 -345.03 -0.00 -0.74 0.00 0.59 1.00 0.80 1.00 0.89 0.33 85.77 0.42 10.59 0.07
4 0.04 -329.97 -0.00 -0.74 -0.00 0.64 0.00 0.80 1.00 0.89 0.35 52.90 0.42 10.59 0.06

DGP9 (random walks with heterogeneous drifts, SC weights)

3 -0.02 -369.70 0.00 0.01 -0.00 0.92 1.00 0.81 1.00 0.90 0.53 91.81 0.21 15.05 0.08
4 0.01 -353.62 0.00 0.01 0.00 0.82 0.00 0.81 1.00 0.90 0.26 56.76 0.21 15.05 0.06

Notes: Simulation design based on the empirical application as described in the main text. Simulations are based
on 5,000 repetitions, except for SDID for which we use 200 repetitions due to the placebo procedure being compu-
tationally expensive. CI: Confidence interval. Nominal coverage: 1− α = 0.9.

6 Estimating the impact of carbon taxes on emissions

In this section we revisit the SC analysis of the causal effect of carbon taxes on CO2 emissions
in Andersson (2019a). Andersson exploits the introduction of a carbon tax on transport fuels
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during the early 1990s in Sweden, using J = 14 OECD countries as control units.18 The
outcome variable of interest measures CO2 emissions from transport (in metric tons per
capita). The data are annual panel data from 1960–2005.19 Andersson uses data up to 2005
because the EU emissions trading system started in that year. The pre-treatment period is
1960–1989, and the post-treatment period is 1990–2005, so that (T0, T1) = (30, 16).

Figure 4 displays the raw data. It shows a drop right before 1990 and reduced growth in
emissions afterward. We apply the t-test to investigate whether this drop and reduced growth
are due to the carbon tax and compare the results to other methods. All computations were
performed in R (R Core Team, 2023).

Figure 4: Raw data on emissions per capita (Andersson, 2019a,b)
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We start by assessing the validity of the t-test using the placebo test, which is discussed in
more detail in Appendix B.1. We split the pre-treatment period into a placebo pre-treatment
period, {1, . . . , T̃0}, and a placebo post-treatment period, {T̃0 + 1, . . . , T0}. Under the null
hypothesis that the assumptions underlying our method are valid, the confidence intervals
should contain zero. Table 4 shows the placebo ATT estimates and the confidence intervals
for K = 3 and T̃0 ∈ {18, 21} (to ensure a long-enough time period for estimating the weights
and divisibility by K = 3). The placebo estimates are smaller in magnitude than the actual
effect estimates in Table 5 below, and the confidence intervals include zero. Thus, we do not
reject the validity of the assumptions underlying the t-test.

18The countries are: “Australia, Belgium, Canada, Denmark, France, Greece, Iceland, Japan, New Zealand,
Poland, Portugal, Spain, Switzerland, and the United States” (Andersson, 2019a, p.9).

19The data are available in the replication package (Andersson, 2019b).
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Table 4: Results placebo test

T̃0 ATT 90%-CI

18 0.01 -0.18 0.19
21 0.10 -0.21 0.41

Notes: Table shows point esti-
mates and 90% confidence in-
tervals for the placebo test de-
scribed in Appendix B.1.

Table 5 shows the point estimates of the ATT and 90% confidence intervals. As discussed
in Section 3.2, K = 3 constitutes a useful benchmark in settings where T0 is small or
moderate. The simulations in Section 5 further show that the t-test performs well even
when K = 4. We therefore report results for K ∈ {3, 4}. The point estimates are equivalent
(up to rounding) for both values of K. The confidence interval for K = 3 is somewhat wider
than the confidence interval for K = 4, and neither interval includes zero. Thus, our findings
corroborate the results in Andersson (2019a) based on the permutation test of Abadie et al.
(2010).20

Table 5: Results t-test

K ATT 90%-CI

3 -0.27 -0.41 -0.14
4 -0.27 -0.36 -0.19

Notes: Point estimates and 90%
confidence intervals based on the
t-test with K ∈ {3, 4}.

Table 6 compares the results of the t-test with K = 3 to DID with K = 3, subsam-
pling, and SDID. The point estimates are similar across all methods, ranging from −0.35

for SDID to −0.21 for DID. Consistent with the t-test, the results based on DID and sub-
sampling suggest that the carbon tax significantly decreased emissions. SDID yields wider
confidence intervals that include zero. This finding is in line with the simulations in Section
5, which show that SDID may yield wider confidence intervals than the t-test when there is
heterogeneity in the nonstationarities across control units.

20Note that our SC specification differs from Andersson (2019a). We use all past outcomes as predictors,
whereas Andersson (2019a) uses a subset of past outcomes and additional predictors to compute the weights.
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Table 6: Comparison to DID, subsampling, and SDID

SC (K = 3) DiD (K = 3) Subsampling Synthetic DiD

ATT 90%-CI ATT 90%-CI ATT 90%-CI ATT 90%-CI

-0.27 -0.41 -0.14 -0.21 -0.36 -0.07 -0.28 -0.37 -0.23 -0.35 -0.84 0.14

Notes: Point estimates and 90% confidence intervals for different methods. DID, subsampling, and SDID
are implemented as described in Section 5. Note that the subsampling CI is not symmetric due to being
based on the percentile method.

7 Recommendations for practice

7.1 When should you use the t-test?

Before deciding whether to use the proposed t-test, researchers need to decide whether to use
SC in the first place. Abadie (2021) provides a detailed discussion of the relevant practical
considerations. The most popular alternative to SC is DID. While conventional SC and
DID are non-nested (Doudchenko and Imbens, 2016), we show that bias-corrected SC is
more robust than DID. Therefore, we recommend it whenever the DID assumptions are
questionable.

There are three important and interrelated considerations when choosing a suitable
method for making inferences on the ATT using the SC method. See Section 1.1 for references
to papers proposing inference methods for per-period effects and sharp null hypotheses.

Number of treated units. The t-test is designed for applications with one treated unit.
When there are multiple treated units, the t-test can be applied separately for each unit.
However, when the number of treated units is large, other approaches that directly target av-
erage effects across units, such as Abadie and L’Hour (2021) and Arkhangelsky et al. (2021),
might be preferable. For applications with multiple treated units and staggered treatment
adoption, we recommend using methods that are specifically designed to accommodate stag-
gered adoption, such as Shaikh and Toulis (2021), Ben-Michael et al. (2022), or Cattaneo
et al. (2023).

Number of periods. Existing asymptotic inference methods that rely on classical esti-
mators of the LRV or subsampling can exhibit substantial size distortions in small samples.
By contrast, the t-test, which relies on a self-normalized test statistic, exhibits higher-order
improvements and performs well in simulations when T0 and T1 are small. Therefore, we
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recommend using the t-test instead of methods that rely on estimating the LRV or sub-
sampling when T0 and T1 are small or moderate, as is the case in many SC applications.
When T1 is too small to rely on asymptotics where T1 → ∞, researchers can use inference
procedures that are valid when T1 is fixed, such as Chernozhukov et al. (2021) or Cattaneo
et al. (2023).21

Which type of variation to exploit for inference. In panel data settings, inference
methods can exploit the time series and/or the cross-sectional dimension. The t-test exploits
the time series dimension for inference. It relies on stationarity and weak dependence of the
SC prediction errors for the treated unit over time and is therefore particularly well-suited for
settings where the units are heterogeneous. This is often the case in SC applications based
on aggregate units, such as states or countries. For example, in our empirical application,
the analysis is at the country level and the control units used to construct the counterfactual
for Sweden are other OECD countries, including Iceland, Spain, and the United States.

The stationarity and weak dependence assumptions underlying the t-test are not innocu-
ous and might be questionable when there are structural breaks in the data. If the units
are homogeneous enough to justify homoskedasticity and weak dependence across units,
we recommend methods that exploit cross-sectional variation, such as Arkhangelsky et al.
(2021).

7.2 Recommendations for implementing the t-test

In Section 7.1, we discuss when to use the t-test. Here we provide some recommendations
for implementing the t-test in empirical applications.

First, with non-stationary data, the robustness of the t-test improves substantially as T0
increases. Therefore, we recommend collecting enough pre-treatment data in such settings.
When collecting additional pre-treatment data, researchers need to be careful about struc-
tural breaks in the data. The placebo test described in Appendix B.1 can be used to test
for structural breaks.

Second, the t-test relies on the predictive relationship between the treated and the control
units being sufficiently stable over time. In Appendix B.1, we demonstrate that the t-test
remains valid when the SC weights are varying over time in a stationary manner. For
applications where researchers are concerned about the weights changing in non-stationary
patterns, we recommend using the placebo test described in Appendix B.1 to assess the

21See, for example, Masini and Medeiros (2020) and Masini and Medeiros (2021) for inference methods
based on (penalized) regression approaches for estimating counterfactuals.
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validity of the assumptions underlying the t-test. This test requires enough pre-treatment
periods.

Finally, the choice of K is subject to an inherent trade-off between the expected length
of the confidence intervals and their coverage accuracy. For SC applications with small and
moderate sample sizes, choosing K = 3 provides a useful and robust benchmark: it ensures
good coverage properties while providing a reasonable RAE. More generally, researchers can
use the RAE formula (14) in conjunction with estimates of the degree of persistence in the
prediction errors and application-based simulations to guide the choice of K. Section 3.2
provides a detailed discussion on how to choose K.
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A Random treatment status

In the main text, we considered a setup where the treatment status is fixed. Here we discuss
the properties of our method when the treatment status is random. In SC applications, the
treatment assignment is usually not completely exogenous, and unconfoundedness conditions
have been considered in the literature. The idea is that conditional on certain variables, the
treatment assignment is independent (or mean-independent) of the potential outcomes. In
Kellogg et al. (2021), the conditioning variables are allowed to include all the observed
variables before the treatment; in works such as Athey et al. (2021), Ferman (2021), and
Imbens and Viviano (2023) among others, the conditioning variables are latent variables.22

Here we discuss our results under these two approaches. We treat the treatment status as
random and the treatment date as fixed. Let D ∈ {0, . . . , N} denote a random variable
indicating the identity of the treated unit. For 1 ≤ t ≤ T and i ∈ {0, . . . , N}, we observe
Yit = Yit(1) · 1{D = i} · 1{t ≥ T0 + 1} + Yit(0) · (1 − 1{D = i} · 1{t ≥ T0 + 1}), where
Yit(1) = Yit(0) + αit.

A.1 Selection on observed variables

We follow Kellogg et al. (2021) and allow the treatment assignment D to depend on observed
variables, including the outcome variables in the pre-treatment period. Their paper estab-
lishes a decomposition of the bias of SC methods. We deviate from their paper in two ways.
First, we allow the distribution of each unit to be different. Second, we impose additional
assumptions to derive inference results for the ATT.

Assumption 8. For i ∈ {0, . . . , N}, Yit(0) = θt + Vit, where {Vt}Tt=1 and {θt}Tt=1 are two
independent processes with Vt = (V0t, . . . , VNt)

′ ∈ RN+1. Moreover, {Vt}Tt=1 is covariance-
stationary and satisfies the following conditions:

1. There exists a constant κ1 > 0 such that all the eigenvalues of EVtV ′
t are in [1/κ1, κ1]

2. There exists a sequence ρT > 0 such that P (max1≤t≤T ∥Vt∥∞ ≤ ρT ) → 1

3. {Vt}Tt=1 is β-mixing with coefficient satisfying βmix(γT ) → 0 for some γT with 0 < γT <

r/2 and ρTγT = o(min{
√
T0,

√
T1})

4. max1≤k≤K ∥|H(−k)|−1
∑

t∈H(−k)
VtV

′
t − EVtV

′
t ∥∞ = oP (1)

22See Arkhangelsky and Hirshberg (2023) for some interesting recent work on combining both types of
assumptions in SC settings with many treated units.
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Assumption 8 allows for a common non-stationary trend θt and is similar to the conditions
in Section 4.1. Our object of interest is

τ = T−1
1

N∑
i=0

T∑
t=T0+1

αit · 1{D = i}. (17)

Notice that only one unit is treated, and D ∈ {0, . . . , N} is allowed to be a random variable.
Hence, this target is also random and our goal is to construct a prediction interval for τ . We
impose the following unconfoundedness condition.

Assumption 9. Let Yt(0) = (Y0t(0), . . . , YNt(0))
′ ∈ RN+1. Conditional on {Yt(0)}T0−BT≤t≤T0,

D is independent of {Yt(0)}1≤t≤T , where BT → ∞ satisfies BTρT = o(min{
√
T0,

√
T1}).

Under Assumption 9, the selection into treatment can only depend on the outcome vari-
ables on BT periods before the treatment date but does not depend on “ancient history”.
This might be reasonable if the treatment is a result of contemporary political, social and/or
economic developments, such as public sentiment on tobacco or changes in geopolitical sta-
tus. One can include additional pre-determined variables to the conditioning variables, and
the same analysis applies once we write the assumptions conditional on these extra variables.

We define our procedure as follows. For i ∈ {0, . . . , N} and k ∈ {1, . . . , K}, we define

ŵ
(i)
(k) ∈ argmin

w∈WSC

∑
t∈H(−k)

(Yit − Y ′
−i,tw)

2,

where Y−i,t ∈ RN is the vector Yt ∈ RN+1 with the i-th component removed. For k ∈
{1, . . . , K}, we define the estimator

τ̂k = T−1
1

N∑
i=0

T∑
t=T0+1

(Yit − Y ′
−i,tŵ

(i)
(k))1{Di = 1}.

In practice, we only need to compute the SC weights for the treated unit. Hence, the
same construction as in Section 2.2 applies:

TK =

√
K(τ̂ − τ)

σ̂τ̂
,

where τ̂ = K−1
∑K

k=1 τ̂k and σ̂τ̂ =
√

1 +Kr/T1

√
(K − 1)−1

∑K
k=1(τ̂k − τ̂)2. The (1 − α)

prediction interval for τ also takes the same form:

IK(1− α) =

[
τ̂ − tK−1(1− α/2)

σ̂τ̂√
K
, τ̂ + tK−1(1− α/2)

σ̂τ̂√
K

]
.

The following result establishes the validity of the procedure.

Theorem 5. Let Assumptions 8 and 9 hold. Then TK
d→ tK−1 and P (τ ∈ IK(1 − α)) →

1− α.
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A.2 Selection on latent variables

Following the literature, we consider a factor model for the potential outcomes (e.g., Abadie
et al., 2010; Arkhangelsky et al., 2021; Ben-Michael et al., 2021; Ferman, 2021; Ferman and
Pinto, 2021),

Yit(0) = θt + L′
iFt + εit, E(εit) = 0, 0 ≤ i ≤ N, 1 ≤ t ≤ T, (18)

where θt is a common unrestricted nonstationarity, Li is a vector of loadings, Ft is a vector
of factors, and εit is an idiosyncratic shock. Define L := (L0, . . . , LN), F := (F1, . . . , FT ),
and ε := (ε1, . . . , εT ), where εt = (ε0t, . . . , εNt)

′ for t = 1, . . . , T . We emphasize that while
we focus on linear factor models for concreteness, the t-test is valid more broadly and ac-
commodates various types of outcome models and general forms of misspecification.

The validity of the t-test follows if we can show that the prediction model implied by
the factor model satisfies the conditions required in the main text, conditional on treatment
assignment D. SC methods are biased under factor models absent additional restrictions
(e.g., Abadie et al., 2010; Ferman and Pinto, 2021), which motivates the proposed bias
correction. We consider the following assumption.

Assumption 10. For some random vector v, D = f(L, v) and (L, v) ⊥⊥ (F, ε).

The selection mechanism D = f(L, v) can be viewed as a generalization of the notion
of “selection on fixed effects,” which has traditionally motivated the use of DID methods,
to factor models.23 It captures the idea that the only systematic confounders are individual
characteristics, similar to Imbens and Viviano (2023). We can also state Assumption 10 as
(L,D) ⊥⊥ (F, ε).

Define Yt(0) := YDt(0), and denote by Xt the vector collecting Yjt(0) for j ̸= D. The
t-test is valid if, conditional on D, {(Vt(0), Zt)}Tt=1, satisfies the conditions in the main text,
where Vt(0) = Yt(0)− θt and Zt = Xt − 1Nθt. We establish the following result.

Lemma 4. Suppose that the data are generated by model (18). Let Assumption 10 hold. If
{Ft, εt}Tt=1 is stationary, then {(Vt(0), Zt)}Tt=1 is stationary conditional on D.

By Lemma 4, the validity of the t-test follows by invoking the same theory as in Section
4.1.

23See, for example, Ghanem et al. (2023) for a discussion of selection mechanisms in the context of DID.
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B Extensions

B.1 Time-varying predictive relationship

SC methods are based on the idea that the predictive relationship between the treated
and the control units is time-invariant, such that the SC weights do not change over time.
Under time-invariance, the weights can be estimated in the pre-treatment period and used
to compute treatment effects in the post-treatment period. However, time-invariance of the
weights is not innocuous and may be questionable in some SC applications.

The t-test accommodates certain forms of time-varying weights. Consider the following
variant of model (10) with time-varying weights,

Yt(0) = X ′
twt + ut, 1 ≤ t ≤ T. (19)

We assume that the time-varying weights satisfy the SC constraints, wt ∈ WSC , 1 ≤ t ≤ T .
In Section 4.1, we assume Yt(0) = Vt(0) + θt and Xt = 1Nθt + Zt, where {(Vt(0), Zt)}Tt=1

is covariance-stationary. The model (19) implies that Vt(0) = ut + X ′
twt − θt = ut + Z ′

twt

since wt ∈ WSC . Thus, as long as {(Vt(0), Zt)}Tt=1 is stationary, the results in Section 4.1
apply and the t-test remains valid with time-varying weights. Stationarity {(Vt(0), Zt)}Tt=1

is implied by stationarity of {(Zt, wt, ut)}Tt=1.
Time-varying coefficient models typically have additional assumptions on the nature of

the variation. For example, in latent large factor models, the factors or the factor loadings
can be assumed to be nonparametric functions of observed variables (e.g., Connor and Linton,
2007; Connor et al., 2012; Fan et al., 2016, 2021). We can consider a similar situation for the
weights. In particular, it might be reasonable to assume that wt = f(Zt, et) for some fixed
unknown function f(·, ·), where {(Zt, et, ut)}Tt=1 is stationary. In this case, {(Vt(0), Zt)}Tt=1 is
stationary, and the theoretical results in Section 4.1 apply.

The variability in the weights over time affects the length of the confidence intervals
obtained from the t-test. To see this, rewrite model (19) in terms of the pseudo-true weights
w∗ as

Yt(0) = X ′
tw∗ + vt, vt := X ′

t(wt − w∗) + ut.

This shows that the variability in the weights around w∗ affects the LRV of the prediction
errors and thus the length of the confidence intervals.

When wt does not vary in a stationary manner, one might question the suitability of
SC methods in the application of interest. In this case, we might expect the fit of the SC
model to change across time in a systemic pattern. One formal procedure to check this is
the following placebo test.
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1. Split the pre-treatment period into a placebo pre-treatment period, {1, . . . , T̃0}, and a
placebo post-treatment period {T̃0 + 1, . . . , T0}.

2. Apply the t-test, treating {1, . . . , T̃0} as the pre-treatment period and {T̃0 +1, . . . , T0}
as the post-treatment period.

3. Reject the placebo test if zero is not in the confidence interval.

Maintaining the other assumptions underlying the t-test, a rejection indicates that the
weights are time-varying in ways that render the t-test invalid. More generally, this placebo
test is an omnibus specification test for the joint validity of all the assumptions underlying
the t-test. We caution that while non-rejections provide evidence in favor of the applicability
of the t-test, such non-rejections do not imply that the t-test valid.

In general, extrapolation is unavoidable in SC settings. Therefore, when the placebo test
rejects the null of no effect, researchers need to make assumptions on how the weights change
over time that allow for such extrapolation. For example, SDID accommodates a different
type of time-varying weights than the t-test (via ŵSDID

i λ̂SDID
t in (3)). In applications where

the weights are time-varying in ways that are neither covered above nor by SDID, one could
impose explicit models on how the weights change over time. We leave the development of
such methods for future research.

B.2 Consistency of the classical synthetic control estimator

In the main text, we focus on the canonical SC estimator (6). Here we provide conditions
under which the classical SC estimator of Abadie et al. (2010) satisfies the consistency
requirement in Assumption 2, which implies that the t-test can also be used in conjunction
with the classical SC estimator.

We start by discussing the theoretical properties of the classical SC estimator based on all
pre-treatment data and discuss how to implement the cross-fitting approach underlying the
t-test at the end. Consider the same setup as in the main text, but suppose that in addition
to outcome data, researchers have access to a vector of covariates or predictors Zi ∈ Rp for
i = 0, . . . , N .

Our results accommodate settings where the outcomes are generated by a factor model
with covariates as in Abadie et al. (2010),

Yit(0) = θt + δtZi + LiFt + εit, (20)

where θt is a common time effect, δt is a time-varying coefficient, Li is a vector of unit-specific
loadings, and Ft is a vector of time-varying factors. However, importantly, our results do not
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require the true data generating process to be a factor model. This feature provides useful
robustness in applications.

To define the estimator and state our theoretical results, we introduce some additional
notation. Define Yi = (Yi1, . . . , YiT0)

′ ∈ RT0 , Y−0 = (Y1, . . . , YN) ∈ RT0×N and Z−0 =

(Z1, . . . , ZN) ∈ Rp×N .
We consider the classical SC estimator

w̃ ∈ arg min
w∈WSC

∥∥∥∥∥
(
Y0

Z0

)
−

(
Y−0

Z−0

)
w

∥∥∥∥∥
2

V

, (21)

where V is a positive semi-definite matrix and ∥c∥2V = c′V c for any c ∈ RT0+p. It will be
useful to partition V as

V =

(
V1 0

0 V2

)
,

where V1 ∈ RT0×T0 and V2 ∈ Rp×p. To simplify the exposition, we include all pre-treatment
outcomes in estimator (21), but our results continue to hold as long as researchers use a
subset of O(T0) pre-treatment outcomes. Different choices of V have been proposed (e.g.,
Abadie et al., 2010, 2015). Our results below allow for general V , and we do not restrict
the relative magnitude of V2 and V1. See Remark 8 for a further discussion of the role of
covariates.

The following lemma establishes the ℓ2-consistency of w̃ for the pseudo-true SC weights,

w̄ = (w̄1, ..., w̄N)
′ = arg min

w∈WSC
E

∥∥∥∥∥
(
Y0

Z0

)
−

(
Y−0

Z−0

)
w

∥∥∥∥∥
2

V

,

where we use w̄ instead of w∗ to denote the pseudo-true weights to distinguish them from
the pseudo-true weights for the SC estimator (6) in the main text.

As in Section 4.1, we allow for a common nonstationarity. Specifically, we assume that
Yit(0) = Ỹit(0)+ θt, where θt is a non-stationary process. Define Ỹ−0 = (Ỹ1, . . . , ỸN) ∈ RT0×N

with Ỹi = (Ỹi1, . . . , ỸiT0)
′ ∈ RT0 .

Lemma 5. Suppose that ∥T−1
0 u′V1Ỹ−1 − T−1

0 Eu′V1Ỹ−1∥∞ = oP (1) and ∥T−1
0 Ỹ ′

−1V1Ỹ−1 −
ΣV ∥∞ = oP (1), where u = Y0 = Y−0w̄ and ΣV = ET−1

0 Ỹ ′
−0V1Ỹ−0. Suppose further that Zi,

for i ∈ 0, . . . , N , is non-stochastic.24 If λmin(ΣV ) is bounded below by a positive constant,
then ∥w̃ − w̄∥2 = oP (1).

Lemma 5 allows for arbitrary misspecification and a common nonstationarity θt. It
accommodates factor models, such as (20), but does not require the outcomes to be generated

24If Zi, i ∈ 0, . . . , N , is stochastic, we interpret the analysis as conditional on (Z0, . . . , ZN ).
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by a factor model. Moreover, we do not require the existence of “true” SC weights that
balance the individual loadings and covariates, as, for example, in Abadie et al. (2010).

Lemma 5 establishes the consistency of the classical SC estimator with covariates. Im-
plementing the cross-fitting required for the t-test is straightforward. For each k = 1, . . . , K,
compute the component estimators as

τ̂k =
1

T1

T∑
t=T0+1

(
Y0t −

N∑
i=1

w̃i,(k)Yit

)
− 1

|Hk|
∑
t∈Hk

(
Y0t −

N∑
i=1

w̃i,(k)Yit

)
,

where w̃(k) = (w̃1,(k), . . . , w̃N,(k))
′ are the weights obtained from applying the classical SC

estimator to the outcome data in the subperiod H(−k) := {1, . . . , T0} \Hk and all covariates.
The estimator of the ATT and the t-statistic can be constructed as described in Section 2.2.
The results in Lemma 5 imply that max1≤k≤K ∥w̃(k) − w̄∥2 = oP (1) so that Assumption 2
holds with w∗ replaced by w̄, and the theoretical results in the main text imply that the
t-test is valid.

Remark 8. There are some recent discussions on the role of covariates. Although one might
naturally think that including the covariates helps with the estimation accuracy of the weights,
papers such as Kaul et al. (2022) show that certain ways of choosing the weights eventually
lead to V2 = 0, which makes covariates irrelevant. Some papers derive consistency towards
a target that has no covariates even though the estimator takes into account covariates, e.g.,
Zhang et al. (2022). Here, we do not take a stand on this by just taking V as given. We
allow for zero V2 or large V2. Therefore, the consistency result below applies no matter how
important the covariates are.

B.3 Inference on the expected effect

In the main text, we propose a t-test for making inferences on the ATT, τ = T−1
∑T

t=T0+1 αt.
If researchers are willing restrict treatment effect heterogeneity over time and assume that
{αt} is stationary and weakly dependent, the expected treatment effect, τe = E(αt), is a
natural alternative to the ATT (e.g., Li and Bell, 2017; Li, 2020). Here, we show how our
method can be modified to make inferences on τe.

To motivate this modification, note that by similar arguments as in Lemma 1 and The-
orem 1, we have

τ̂k − τe =
1

T1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut +
1

T1

T∑
t=T0+1

α̃t + oP

(
1√

min{T0, T1}

)
.

8



where α̃t = αt−τe. The main difference to the analysis in Section 3 is the term T−1
1

∑T
t=T0+1 α̃t.

This term arises because of the different centering (τe instead of τ) and captures random-
ness of the treatment effects. Due to the presence of this additional term, the statistic√
K (τ̂ − τe) /σ̂τ̂ , does not have an asymptotic t-distribution. (Note, however, that τ̂k is

asymptotically unbiased for τe since T−1
1

∑T
t=T0+1 ut − |Hk|−1

∑
t∈Hk

ut has mean zero under
our assumptions.)

To overcome this issue, we introduce a modified debiasing approach based on also splitting
up the post-treatment period. To simplify the exposition, we assume that T1/K is an integer
in the following. We split the post-treatment period into K consecutive non-overlapping
blocks with T1/K elements, H̃1, . . . , H̃K . The estimator of the expected ATT is given by

τ̃ =
1

K

K∑
k=1

τ̃k,

where
τ̃k =

1

|H̃k|

∑
t∈H̃k

(
Yt −X ′

tŵ(k)

)
− 1

|Hk|
∑
t∈Hk

(
Yt −X ′

tŵ(k)

)
. (22)

To make inferences, we again construct t-statistic based on {τ̃1, . . . , τ̃K}. Since these estima-
tors are based on non-overlapping blocks of data and thus asymptotically independent (see
proof of Theorem 6), rescaling the denominator by

√
1 +Kr/T1 is not necessary, and we

can use a standard t-statistic,

T̃K =

√
K(τ̃ − τe)

σ̃τ̃
,

where

σ̃τ̃ =

√√√√ 1

K − 1

K∑
k=1

(τ̃k − τ̃)2.

The corresponding (1− α) confidence interval for τe is

ĨK(1− α) =

[
τ̃ − tK−1(1− α/2)

σ̃τ̃√
K
, τ̂ + tK−1(1− α/2)

σ̃τ̃√
K

]
.

The following theorem provides a formal justification of the modified inference method.

Theorem 6. Let the assumptions in Theorem 1 hold, except that we modify Assumption 3 by
replacing (Xt, ut) with (Xt, ut, αt). Then (i) T̃K

d→ tK−1 and (ii) P (τe ∈ ĨK(1−α)) → 1−α.

The proof of Theorem (6) shows that the component estimators τ̃1, . . . , τ̃K are asymptot-
ically independent due to the sample splitting in the post-treatment period, so that one can
use a standard t-statistic. This result has two important practical implications. First, the
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t-test based on T̃K is robust against heterogeneity in the variances of the component esti-
mators (Bakirov and Székely, 2005; Ibragimov and Müller, 2010) and thus is robust against
certain types of nonstationarity in {ut}. Second, the sign-based randomization test of Canay
et al. (2017) constitutes a natural alternative to the t-test, provided that K is large enough.
The randomization test is particularly appealing when stationarity of {ut} is questionable:
it is robust to heterogeneity in the variances across component estimators and more powerful
than the t-test in such settings (Canay et al., 2017).

C Robustness of the t-test

The results in Bakirov and Székely (2005) and Ibragimov and Müller (2010) show that the
standard t-test is robust against heterogeneity in the variances of the component estimators
for α ≤ 2Φ(−3) ≈ 0.083. In our context, such heterogeneity arises when {ut} is not station-
ary, and the LRV varies across blocks within the pre-treatment period and/or between the
pre-treatment and the post-treatment period.

The existing robustness results do not directly apply to the t-test described in Section 2.2
because the component estimators are not asymptotically independent. Nevertheless, as we
discuss below, the proposed t-test inherits certain robustness properties from the standard
t-test.

Suppose that {ut} is non-stationary with variance changing across blocks and between
the pre-treatment and post-treatment period so that

√
min{T0, T1}


τ̂1 − τ

...
τ̂K − τ

 d→


√

min{c0, 1}σ0ξ0 −
√
gc0,Kσ1ξ1

...√
min{c0, 1}σ0ξ0 −

√
gc0,KσKξK

 ,

where ξ0, . . . , ξK are independent N(0, 1) random variables and σ0, . . . , σK are the block-
specific LRVs. By the continuous mapping theorem, TK

d→ TK , where

TK =

√
K

gc0,K(1+min{c0,K})

(√
min{c0, 1}σ0ξ0 −

√
gc0,KK

−1
∑K

k=1 σkξk

)
√

(K − 1)−1
∑K

k=1(σkξk −K−1
∑K

k=1 σkξk)
2

=

√
Kmin{c0,1}

gc0,K(1+min{c0,K})σ0ξ0√
(K − 1)−1

∑K
k=1(σkξk −K−1

∑K
k=1 σkξk)

2

− 1√
1 + min{c0, K}

TK , (23)

and TK is the standard t-statistic, which is robust to variance heterogeneity.
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The decomposition (23) shows that, while the proposed t-test inherits some robustness
from the standard t-test due to the second term, it is not fully robust against heterogeneity
in general.

Importantly, however, the t-test is robust under different types of restrictions on the
LRVs σ0, . . . , σK . A leading example is when {ut} is non-stationary due to a structural
break between the pre-treatment and post-treatment period, so that σk = σpre > 0 for k ≥ 1

and σ0 = σpost > 0 with σpre ̸= σpost. In this case, we have that

TK =

√
K

gc0,K(1+min{c0,K})

(√
min{c0, 1}

σ2
post
σ2
pre
ξ0 −

√
gc0,K ξ̄

)
√

(K − 1)−1
∑K

k=1(ξk − ξ̄k)2
.

Note that the numerator has a N(0, σ2
num) distribution, where

σ2
num =

K

gc0,K(1 + min{c0, K})
×
(
min{c0, 1}

σ2
post

σ2
pre

+ gc0,KK
−1

)
=



1+
σ2
post
σ2pre

c0

1+c0
if 1 ≤ c0 ≤ K

1+
σ2
post
σ2pre

c0

1+c0
if c0 < 1

1+
σ2
post
σ2pre

K

1+K
if c0 > K.

Note that σ2
num ≤ 1 if σ2

post/σ
2
pre ≤ 1. Therefore, by the independence of the numerator and

denominator, we can condition on the denominator to show that the t-test remains valid in
this case:

P (|TK | > tK−1(1− α/2)) = E

E
1{|TK | > tK−1(1− α/2)} |

√√√√(K − 1)−1

K∑
k=1

(ξk − ξ̄k)2


≤ E

E
1{|TK | > tK−1(1− α/2)} |

√√√√(K − 1)−1

K∑
k=1

(ξk − ξ̄k)2


= P (|TK | > tK−1(1− α/2)) for

σ2
post

σ2
pre

≤ 1.

The above derivation shows that the t-test remains valid when {ut} is non-stationary due
to a decrease in the LRV between the pre- and post-treatment period (σpost/σpre ≤ 1). A
similar argument shows that the t-test will not be valid in general when the LRV increases
so that σpost/σpre > 1.

The above derivation also suggests a simple modification of the t-statistic for applications
where researchers are concerned about an increase in the LRV. Suppose that σ2

post/σ
2
pre ≤

Bσ2
post/σ

2
pre

, which implies an upper bound on the variance of the numerator,

σ2
num ≤ Bσ2

num
=

1 +Bσ2
post/σ

2
pre
c0

1 + c0
1{c0 ≤ K}+

1 +Bσ2
post/σ

2
pre
K

1 +K
1{c0 > K}.
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Then, the following modified t-statistic yields valid inferences:

TK =

√
K (τ̂ − τ)√

1 + Kr
T1

√
Bσ2

num

√
1

K−1

∑K
k=1 (τ̂k − τ̂)2

.

D Higher-order improvements

Suppose that we observe {yt}Tt=1 from the following Gaussian location model:

yt = β + ut, (24)

where ut is a mean zero covariance-stationary Gaussian process with
∑∞

h=−∞ h2γ(h) < ∞
and γ(h) = Eutut−h. This model has been considered for example by Jansson (2004) and
Sun et al. (2008, Assumption 3). Sun et al. (2008) show that the usual consistent estimators
using Bartlett kernel for the LRV (e.g., Newey-West estimator) would generate a test that
has size distortion at least O(T−1/2). They also show that the fixed-b approach would have
size distortion of order O(T−1). These results are the typical explanation for why the fixed-b
approach is more accurate than the classical LRV estimation approach. We now show that
in this setting our self-normalization approach also enjoys the higher-order improvement as
it has size distortion of order O(T−1).

We first outline the inference procedure in the Gaussian location model in (24). LetK ≥ 2

be a fixed integer and define G = T/K. For simplicity, we assume that G is an integer. Then
we construct blocks {Hk}Kk=1 with Hk = {(k − 1)G+ 1, . . . , kG}. Let β̂k = G−1

∑
t∈Hk

yt for
1 ≤ k ≤ K and β̄ = K−1

∑K
k=1 β̂k. For testing H0 : β = 0, we define the test statistic

TK =

√
Kβ̄√

(K − 1)−1
∑K

k=1(β̂k − β̄)2
.

The critical value is tK−1(1− α/2).

Theorem 7. Consider the model in (24). Suppose that H0 : β = 0 holds. Then

|P (|TK | > tK−1(1− α/2))− α| = O(T−1).

By Theorem 7, the “cross-fitted” self-normalized t-test also has size distortion O(T−1)

in the Gaussian location model (24). Although it is quite difficult to derive the higher-
order asymptotics outside the Gaussian location model, Theorem 7 suggests that, for size
considerations, the cross-fitted self-normalized test is expected to have similar properties as
fixed-b methods. However, in high-dimensional settings, we are not aware of any existing
results that would allow for establishing the validity of the fixed-b approach in our context.

12



E Calculations expected length

The length of the confidence interval is

L = 2tK−1(1− α/2)
1√
K

√
1 +

Kr

T1

√√√√ 1

K − 1

K∑
k=1

(τ̂k − τ̂)2.

Consider

√
min{T0, T1}L = 2tK−1(1− α/2)

1√
K
√
K − 1

√
1 +

Kr

T1

√√√√min{T0, T1}
K∑
k=1

(τ̂k − τ̂)2.

To derive the limiting distribution for fixed K, note that

min{T0, T1}
K∑
k=1

(τ̂k − τ̂)2 =
K∑
k=1

(√
min{T0, T1}(τ̂k − τ)− 1

K

K∑
k=1

√
min{T0, T1}(τ̂k − τ)

)2

and that Kr/T1 → min{c0, K} as T0, T1 → ∞.
Therefore, by Theorem 1 and the continuous mapping theorem,

√
min{T0, T1}L

d→ L,
where

L = 2σtK−1(1− α/2)
1√

K
√
K − 1

√
1 + min{c0, K}

×

√√√√ K∑
k=1

(√
min{c0, 1}ξ0 −

√
gc0,Kξk −

1

K

K∑
k=1

√
min{c0, 1}ξ0 −

√
gc0,Kξk

)2

= 2σtK−1(1− α/2)
1√

K
√
K − 1

√
1 + min{c0, K}√gc0,K

√√√√ K∑
k=1

(
ξk −

1

K

K∑
k=1

ξk

)2

Thus, it remains to compute the expectation of√√√√ K∑
k=1

(
ξk −

1

K

K∑
k=1

ξk

)2

Because
K∑
k=1

(
ξk −

1

K

K∑
k=1

ξk

)2

∼ χ2
K−1,

so that √√√√ K∑
k=1

(
ξk −

1

K

K∑
k=1

ξk

)2

∼ χK−1,
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where χK−1 denotes a chi-distribution with K − 1 degrees of freedom. Therefore,

E


√√√√ K∑

k=1

(
ξk −

1

K

K∑
k=1

ξk

)2
 =

√
2

Γ(K/2)

Γ((K − 1)/2)
,

where Γ(·) denotes the Gamma function, and

E(L) = 2σtK−1(1− α/2)
1√

K
√
K − 1

√
1 + min{c0, K}√gc0,K

√
2

Γ(K/2)

Γ((K − 1)/2)
.

Next, we provide an approximation of the limit of E(L) as K → ∞. Since K → ∞,
assuming that c0 <∞, we have that for large K,

gc0,K = K1{c0 < 1}+ (K/c0)1{1 ≤ c0 ≤ K} = min{c−1
0 , 1}K.

Note further that we take T1 → ∞ before taking K → ∞ so that 1 + Kr/T1 = 1. To
understand what happens when K → ∞, we use Stirling’s approximation of the Gamma
function: Γ(n+ 1) = (1 + o(1))×

√
2πn(n/e)n as n→ ∞. This means that

Γ(n+ 3/2)

Γ(n+ 1)
= (1 + o(1)) · ((n+ 1/2)/e)n+1/2

(n/e)n
= (1 + o(1)) ·

(
n+ 1/2

n

)n

·
(
n+ 1/2

e

)1/2

= (1 + o(1)) · e1/2
(
n+ 1/2

e

)1/2

= (1 + o(1)) ·
√
n.

Therefore, and using that tK−1(1 − α) → Φ−1(1 − α/2) as K → ∞, we have the following
approximation as K → ∞,

E(L) = 2σΦ−1(1− α/2)
1√

K
√
K − 1

√
gc0,K

√
2

Γ(K/2)

Γ((K − 1)/2)

√
1 + min{c0, K}

= (1 + o(1)) · 2σΦ−1(1− α/2)
1√

K
√
K − 1

√
min{c−1

0 , 1}K
√
2 ·
√
K/2

√
1 + c0

= (1 + o(1)) · 2σΦ−1(1− α/2)
√

min{c−1
0 , 1}

√
1 + c0.

F Verification of Assumption 6

Here we illustrate the verification of Assumption 6 based on two leading examples.

Example 1 (Unit root). Assume that ξt =
∑t

i=1 vt with a mean-zero stationary process
vt. Then by the functional central limit theorem, we can show that T−1/2ξ[rT ] tends to
B(r), where B(·) is a standard Brownian motion. Thus, the continuous mapping theorem
and the condition of T1 ≪ T0 imply T−1

1 T−1/2
∑T

t=T0+1 ξt
d→ B(1) and T−2

∑
t∈H(−k)

ξ2t =

T−2
∑T0

t=1 ξ
2
t − T−2

∑
t∈H(k)

ξ2t
d→
∫ 1

0
B2(s)ds. This verifies the first part of Assumption 6.

The second part follows by a similar calculation.
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Example 2 (Polynomial trend). Assume that ξt =
∑M

k=1 ckt
k with constants c1, . . . , cM ,

where M ≥ 1 is fixed. (M = 1 corresponds to a linear trend and M = 2 represents a
quadratic trend.) Recall the elementary relation of (

∑n
i=1 i

γ)/(n1+γ/(1+ γ)) → 1 as n→ ∞
for any fixed γ > 0. By T1 ≪ T0, the first part of Assumption 6 holds:∑T

t=T0+1 ξt√∑
t∈H(−k)

ξ2t
= (1 + o(1)) ·

(1 +M)−1
[
(1 + T1/T0)

M+1 − 1
]
TM+1
0√

(1 + 2M)−1T 2M+1
0

= O(T1T
−1/2).

The second part of Assumption 6 follows by a similar calculation.

G Proofs

We will sometimes write Yt instead of Yt(0) to simplify the exposition.

G.1 Proof of Lemma 1

Let µ = E(Xt). Notice that for T0 + 1 ≤ t ≤ T ,

Yt −X ′
tŵ(k) = αt + ut −X ′

t∆(k) = αt + ut − µ′∆(k) − X̃ ′
t∆(k)

and for t ∈ Hk,

Yt(0)−X ′
tŵ(k) = ut −X ′

t∆(k) = ut − µ′∆(k) − X̃ ′
t∆(k).

Therefore,

τ̂k − τ = T−1
1

T∑
t=T0+1

(Yt −X ′
tŵ(k))−

1

|Hk|
∑
t∈Hk

(Yt −X ′
tŵ(k))− τ

= T−1
1

T∑
t=T0+1

(αt + ut − µ′∆(k) − X̃ ′
t∆(k))−

1

|Hk|
∑
t∈Hk

(ut − µ′∆(k) − X̃ ′
t∆(k))− τ

= T−1
1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut +
1

|Hk|
∑
t∈Hk

X̃ ′
t∆(k) − T−1

1

T∑
t=T0+1

X̃ ′
t∆(k).

The proof is complete.

G.2 Proof of Lemma 2

We prove the results for the following more general estimator:

ŵ(k) ∈ argmin
w∈W

∑
t∈H(−k)

(Yt −X ′
tw)

2, (25)
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where W is a subset of {w : ∥w∥1 ≤ Q} with Q = O(1). For the canonical SC estimator, we
see that W = {w = (w1, . . . , wN)

′ : wi ≥ 0,
∑N

i=1wi = 1} and thus Q = 1.

For simplicity, we write ŵ = ŵ(k), µ̂ = µ̂(−k) and Σ̂ = Σ̂(−k). Let ξ = (µ̂−Σ̂w∗)−(µ−Σw∗).
Since ∥w∗∥∞ ≤ 2Q, we have that ∥ξ∥∞ ≤ ∥µ̂ − µ∥∞ + ∥(Σ̂ − Σ)w∗∥∞ ≤ ∥µ̂ − µ∥∞ +

2Q∥Σ̂− Σ∥∞. Thus, by assumption, ∥ξ∥∞ = oP (1).
We rewrite

w∗ = argmin
v

v′Σv − 2µ′v s.t. v ∈ W

and

ŵ ∈ argmin
v

v′Σ̂v − 2µ̂′v s.t. v ∈ W

Let ∆ = ŵ − w∗. For any λ ∈ [0, 1], define wλ = w∗ + λ∆. Then by the definition of w∗,
we have that w′

λΣwλ − 2µ′wλ ≥ w′
∗Σw∗ − 2µ′w∗, which means

λ2∆′Σ∆ ≥ 2λ(µ− Σw∗)
′∆.

Thus, for any λ ∈ (0, 1), we have that λ∆′Σ∆ ≥ 2(µ − Σw∗)
′∆. Since this holds for any

λ ∈ (0, 1), we have that
(µ− Σw∗)

′∆ ≤ 0. (26)

Now by definition, we have that

ŵ′Σ̂ŵ − 2µ̂′ŵ ≤ w′
∗Σ̂w∗ − 2µ̂′w∗.

It follows that
∆′Σ̂∆ ≤ 2(µ̂− Σ̂w∗)

′∆.

Notice that

(µ̂− Σ̂w∗)
′∆ = (µ− Σw∗)

′∆+ ξ′∆
(i)
≤ ξ′∆ ≤ ∥ξ∥∞∥∆∥1 ≤ 2∥ξ∥∞Q,

where (i) holds by (26). The above two displays imply that

∆′Σ̂∆ ≤ 2∥ξ∥∞Q.

Therefore,

2∥ξ∥∞Q ≥ ∆′Σ∆+∆′(Σ̂− Σ)∆ ≥ ∆′Σ∆− ∥Σ̂− Σ∥∞∥∆∥21
≥ c∥∆∥22 − 4∥Σ̂− Σ∥∞Q2.

The desired result follows by recalling ∥ξ∥∞ ≤ ∥µ̂− µ∥∞ + 2Q∥Σ̂− Σ∥∞.
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G.3 Proof of Lemma 3

By Equations (15) and (16) the result follows from the same arguments as in the proof of
Lemma 2 with W = WSC .

G.4 Proof of Lemma 4

Note that

Yt(0) =
D∑
i=0

1{D = i}Yit(0)

=
D∑
i=0

1{D = i}(θt + L′
iFt + εit)

= θt + F ′
t

(
D∑
i=0

1{D = i}Li

)
+

D∑
i=0

1{D = i}εit

= Vt(0) + θt,

where Vt(0) = F ′
t

(∑D
i=0 1{D = i}Li

)
+
∑D

i=0 1{D = i}εit. For j ̸= D, we have that

Yjt(0) = θt + L′
jFt + εjt = θt + Zjt,

where Zjt = L′
jFt + εjt.

Next, note that Assumption 10 implies (L,D) ⊥⊥ (F, ε). Let F be σ-algebra generated
by (L,D). Since (L,D) is independent of (F, ε) and (Ft, εt) is stationary, we have that
conditional on F , the following is stationary:[

F ′
t

(
D∑
i=0

1{D = i}Li

)
+

D∑
i=0

1{D = i}εit, {L′
jFt + εjt}j ̸=D

]
.

Stationarity conditional on (L,D) then implies stationarity conditional on D since L is
time-invariant.

G.5 Proof of Lemma 5

Let ∆ = w̃ − w̄ and e = Z0 − Z−0w̄. Since w̄ ∈ WSC , the definition of w̃ implies that∥∥∥∥∥
(
Y0

Z0

)
−

(
Y−0

Z−0

)
w̃

∥∥∥∥∥
2

V

≤

∥∥∥∥∥
(
Y0

Z0

)
−

(
Y−0

Z−0

)
w̄

∥∥∥∥∥
2

V

. (27)
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The right-hand side is

∥∥∥∥∥
(
u

e

)∥∥∥∥∥
2

V

= u′V1u+ e′V2e. For the left-hand side, we have

(
Y0

Z0

)
−

(
Y−0

Z−0

)
w̄ =

(
Y−0w̄ + u

Z−0w̄ + e

)
−

(
Y−0

Z−0

)
ŵ =

(
u− Y−0∆

e− Z−0∆

)
(i)
=

(
u− Ỹ−0∆

e− Z−0∆

)
.

where (i) follows by Y−0∆ = (δ1′
N + Ỹ−0)∆ = Ỹ−0∆ since 1′

N∆ = 1′
N(w̃ − w̄) = 1 − 1 = 0,

where δ = (δ1, . . . , δT0)
′. Thus, (27) implies that(

u− Ỹ−0∆
)′
V1

(
u− Ỹ−0∆

)
+ (e− Z−0∆)′ V2 (e− Z−0∆) ≤ u′V1u+ e′V2e.

Rearranging the terms, we obtain

∆′
(
T−1
0 Ỹ ′

−0V1Ỹ−0

)
∆+∆′ (T−1

0 Z ′
−0V2Z−0

)
∆ ≤ 2

(
T−1
0 u′V1Ỹ−0

)
∆+ 2

(
T−1
0 e′V2Z−0

)
∆.

(28)

We observe that for any w,

T−1
0 E

∥∥∥∥∥
(
Y0

Z0

)
−

(
Y−0

Z−0

)
w

∥∥∥∥∥
2

V

= T−1
0 E

∥∥∥∥∥
(
Ỹ0

Z0

)
−

(
Ỹ−0

Z−0

)
w

∥∥∥∥∥
2

V

= T−1
0 E∥Ỹ0 − Ỹ−0w∥2V1

+ T−1
0 ∥Z0 − Z−0w∥2V2

= T−1
0 E∥Ỹ0∥2V1

− 2
(
T−1
0 EỸ ′

0V1Ỹ−0

)
w + w′

(
T−1
0 EỸ ′

−0V1Ỹ−0

)
w + T−1

0 ∥Z0 − Z−0w∥2V2
.

Let wλ = w̄ + λ∆. Notice that wλ ∈ WSC for any λ ∈ [0, 1]. Thus, by the definition of
w̄, we have that

∂

∂λ

(
−2
(
T−1
0 EỸ ′

0V1Ỹ−1

)
wλ + w′

λ

(
T−1
0 EỸ ′

−0V1Ỹ−0

)
wλ + T−1

0 ∥Z0 − Z−0wλ∥2V2

)∣∣∣∣
λ=0

≥ 0.

This means that

−2
(
T−1
0 EỸ ′

0V1Ỹ−0

)
∆+ 2w̄′

(
T−1
0 EỸ ′

−0V1Ỹ−0

)
∆− 2T−1

0 ∆Z ′
−0V2(Z0 − Z−0w̄) ≥ 0.

In other words, (
T−1
0 Eu′V1Ỹ−0

)
∆+ T−1

0 e′V2Z−0∆ ≤ 0. (29)

Hence, by the assumption of ∥T−1
0 u′V1Ỹ−0 − T−1

0 Eu′V1Ỹ−0∥∞ = oP (1), we have that(
T−1
0 u′V1Ỹ−0

)
∆+ T−1

0 e′V2Z−0∆
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=
(
T−1
0 Eu′V1Ỹ−0

)
∆+ T−1

0 e′V2Z−0∆+
(
T−1
0 u′V1Ỹ−0 − T−1

0 Eu′V1Ỹ−0

)
∆

(i)
≤
(
T−1
0 u′V1Ỹ−0 − T−1

0 Eu′V1Ỹ−0

)
∆

≤ ∥T−1
0 u′V1Ỹ−0 − T−1

0 Eu′V1Ỹ−0∥∞∥∆∥1
(ii)
≤ oP (1),

where (i) follows by (29) and (ii) follows by ∥∆∥1 ≤ ∥w̃∥1 + ∥w̄∥1 = 2. This and (28) imply

∆′
(
T−1
0 Ỹ ′

−0V1Ỹ−0

)
∆+∆′ (T−1

0 Z ′
−0V2Z−0

)
∆ ≤ oP (1).

On the other hand, we have

∆′
(
T−1
0 Ỹ ′

−0V1Ỹ−0

)
∆

= ∆′
(
T−1
0 EỸ ′

−0V1Ỹ−0

)
∆+∆′

(
T−1
0 Ỹ ′

−0V1Ỹ−0 − T−1
0 EỸ ′

−0V1Ỹ−0

)
∆

≥ ∆′
(
T−1
0 EỸ ′

−0V1Ỹ−0

)
∆− ∥T−1

0 Ỹ ′
−0V1Ỹ−0 − T−1

0 EỸ ′
−0V1Ỹ−0∥∞∥∆∥21

= ∆′
(
T−1
0 EỸ ′

−0V1Ỹ−0

)
∆− oP (1).

The above two displays imply

∆′
(
T−1
0 EỸ ′

−0V1Ỹ−0

)
∆+∆′ (T−1

0 Z ′
−0V2Z−0

)
∆ = oP (1).

Since ∆′ (T−1
0 Z ′

−0V2Z−0

)
∆ ≥ 0 and the smallest eigenvalue of T−1

0 EỸ ′
−0V1Ỹ−0 is bounded

away from zero, we have ∥∆∥2 = oP (1).

G.6 Proof of Theorem 1

By Lemma 1, we have that∣∣∣∣∣τ̂k − τ −

(
1

T1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1

|Hk|
∑
t∈Hk

X̃ ′
t∆(k)

∣∣∣∣∣ +
∣∣∣∣∣ 1T1

T∑
t=T0+1

X̃ ′
t∆(k)

∣∣∣∣∣ , (30)

where X̃t = Xt − E(Xt) and ∆(k) = ŵ(k) − w∗.25 We now bound the two terms on the
right-hand side of (30).

Fix k ∈ {1, . . . , K}. Define Bk to be the “two-sided buffer”, i.e., the set that contains
the smallest γT numbers and the largest γT numbers in Hk = {(k − 1)r + 1, . . . , kr} for
1 ≤ k ≤ K. Also define Ak = Hk\Bk, i.e., Ak = {t : (k − 1)r + 1 + γT + 1 ≤ t ≤ kr − γT}.
Thus, ∑

t∈Hk

X̃ ′
t∆(k) =

∑
t∈Ak

X̃ ′
t∆(k) +

∑
t∈Bk

X̃ ′
t∆(k).

25We note that working with X̃t instead of Xt is key for our theoretical argument since E(X̃t) = 0.
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The second term can be bounded by∣∣∣∣∣∑
t∈Bk

X̃ ′
t∆(k)

∣∣∣∣∣ ≤ max
1≤t≤T0

∥X̃t∥∞∥∆(k)∥1|Bk| = 2γT max
1≤t≤T0

∥X̃t∥∞∥∆(k)∥1.

Thus,

P

(∣∣∣∣∣∑
t∈Bk

X̃ ′
t∆(k)

∣∣∣∣∣ ≤ 2ρTγT∥∆(k)∥1

)
→ 1. (31)

On the other hand, we use Berbee’s coupling to bound
∑

t∈Ak
X̃ ′

t∆(k). By Theorem 16.2.1
of Athreya and Lahiri (2006), on an enlarged probability space, there exist random variables
{X̄t}t∈Ak

such that (1) {X̄t}t∈Ak
and {X̃t}t∈Ak

have the same distribution, (2) {X̄t}t∈Ak
is

independent of data in {1, ..., T0}\Hk and (3) P ({X̄t}t∈Ak
̸= {X̃t}t∈Ak

) ≤ βmix(γT ). Notice
that ∆(k) is independent of {X̄t}t∈Ak

. Hence,

E

(∑
t∈Ak

X̄ ′
t∆(k)

)2

| ∆(k)

 = ∆′
(k)E

[(∑
t∈Ak

X̄t

)(∑
t∈Ak

X̄t

)′]
∆(k)

(i)
≤ |Ak|κ1∥∆(k)∥22,

where (i) follows by Assumption 3 and the fact that {X̄t}t∈Ak
and {X̃t}t∈Ak

have the same
distribution. Thus,

∑
t∈Ak

X̄ ′
t∆(k) = OP (

√
|Ak|∥∆(k)∥2). Since P ({X̄t}t∈Ak

̸= {X̃t}t∈Ak
) ≤

βmix(γT ) = o(1), it follows that∑
t∈Ak

X̃ ′
t∆(k) = OP (

√
|Ak|∥∆(k)∥2). (32)

Now by (31) and (32),∑
t∈Hk

X̃ ′
t∆(k) = OP

(
ρTγT∥∆(k)∥1 +

√
|Ak|∥∆(k)∥2

)
(i)
= OP

(
ρTγT∥∆(k)∥1 +

√
r∥∆(k)∥2

)
,

where (i) follows by the assumption that γT = o(T0) and |Ak| < |Hk| = r. Similarly, we can
show

T−1
1

T∑
t=T0+1

X̃ ′
t∆ = OP

(
T−1
1 ρTγT∥∆(k)∥1 + T

−1/2
1 ∥∆(k)∥2

)
.

Since r ≍ min{T0, T1}, the above two displays and (30) imply∣∣∣∣∣τ̂k − τ −

(
1

T1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)∣∣∣∣∣ = OP

(
ρTγT∥∆(k)∥1
min{T0, T1}

+
∥∆(k)∥2√
min{T0, T1}

)
.
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By Assumptions 2 and 3 as well as the covariance-stationarity of ut, we have

√
min{T0, T1}

∣∣∣∣∣τ̂k − τ −

(
1

T1

T∑
t=T0+1

ũt −
1

|Hk|
∑
t∈Hk

ũt

)∣∣∣∣∣ = oP (1) ,

where ũt = ut −E(ut). The desired result in Theorem 1 follows from Assumption 2 and the
usual CLT for dependent processes, e.g., Theorem 5.20 of White (2001).

G.7 Proof of Theorem 2

Part (i) is a direct consequence of Theorem 1. For Part (ii), recall that

TK =

√
K(τ̂ − τ0)√

1 + Kr
T1

×
√

(K − 1)−1
∑K

k=1(τ̂(k) − τ̂)2
.

We notice that r/T1 → min{c0/K, 1}. Then Theorem 1 and the continuous mapping
theorem imply that TK

d→ TK , where

TK =

√
K
(√

min{c0, 1}ξ0 −
√
gc0,K ξ̄

)
√

1 + min{c0, K} ×
√

(K − 1)−1
∑K

k=1 gc0,K(ξk − ξ̄)2

=

√
K

gc0,K(1+min{c0,K})

(√
min{c0, 1}ξ0 −

√
gc0,K ξ̄

)
√

(K − 1)−1
∑K

k=1(ξk − ξ̄)2
,

where ξ̄ = K−1
∑K

k=1 ξk.
Notice that ξ̄ is independent of

∑K
k=1(ξk − ξ̄)2. Therefore, the numerator is independent

of the denominator. The variance of the numerator is

K

gc0,K(1 + min{c0, K})
×
(
min{c0, 1}+ gc0,KK

−1
)
=


1 if 1 ≤ c0 ≤ K

1 if c0 < 1

1 if c0 > K.

Hence, the numerator has a standard normal distribution. It follows that TK ∼ tK−1.
The proof is complete.

G.8 Proof of Theorem 3

We start with an auxiliary lemma, which is an analog of Lemma 1.
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Lemma 6. Let the assumptions of Theorem 3 hold. Then, for 1 ≤ k ≤ K,

τ̂k − τ =

(
1

T1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)
+

(
1

|Hk|
∑
t∈Hk

Z̃t −
1

T1

T∑
t=T0+1

Z̃t

)′

∆(k),

where Z̃t = Zt − E(Zt) and ∆(k) = ŵ(k) − w∗.

Proof of Lemma 6. Let µ = E(Zt). Notice that because 1′
Nw∗ = 1′

N ŵ(k) = 1, for T0+1 ≤
t ≤ T ,

Yt −X ′
tŵ(k) = αt + ut − Z ′

t∆(k) = αt + ut − µ′∆(k) − Z̃ ′
t∆(k)

and for t ∈ Hk

Yt −X ′
tŵ(k) = ut − Z ′

t∆(k) = ut − µ′∆(k) − Z̃ ′
t∆(k).

Therefore,

τ̂k − τ = T−1
1

T∑
t=T0+1

(Yt −X ′
tŵ(k))−

1

|Hk|
∑
t∈Hk

(Yt −X ′
tŵ(k))− τ

= T−1
1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut +
1

|Hk|
∑
t∈Hk

Z̃ ′
t∆(k) − T−1

1

T∑
t=T0+1

Z̃ ′
t∆(k).

The proof is complete.

Proof of Theorem 3. By Equation (15), ŵ(k) only depends on {Zt}t∈H(−k)
and, thus, is

approximately independent of {Zt}t∈H(k)

⋃
{T0+1,...,T}. Therefore, using Lemma 6 and the

same arguments as in Theorem 1, one can show that∣∣∣∣∣τ̂k − τ −

(
1

T1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)∣∣∣∣∣ = OP

(
ρTγT∥∆(k)∥1
min{T0, T1}

+
∥∆(k)∥2√
min{T0, T1}

)
.

The result now follows by Assumption 2 and the same arguments as in Theorems 1 and 2
and Corollary 1.

G.9 Proof of Theorem 4

We first derive a result on the error bounds for the SC estimator. Then we prove Theorem
4.

Lemma 7. Assume that Y = Xw + u and X = θ1′
N + Z + ξβ′, where u ∈ RT , w ∈ RN

satisfies 1′
Nw = 1 and w ≥ 0. Consider the estimator

ŵ = arg min
v∈RN

∥Y −Xv∥22 s.t. v ≥ 0, 1′
Nv = 1.
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Suppose that the eigenvalues of EZ ′Z/T are between c−1
0 and c0. Then on the event M,

∥ŵ − w∥2 ≤
√
c0
T

[8λ21 + 2c21 + 4λ2 + 4λ3]

and
|β′(ŵ − w)| ≤ ∥ξ∥−1

2

[
6λ1 + 3c1 + 4

√
λ2

]
,

where

M = {∥Z ′ξ∥∞ ≤ λ1∥ξ∥2}
⋂

{|u′ξ| ≤ c1∥ξ∥2}
⋂

{∥Z ′u∥∞ ≤ λ2}
⋂

{∥Z ′Z − EZ ′Z∥∞ ≤ λ3} .

Proof of Lemma 7. Let ∆ = ŵ − w and ΣZ = EZ ′Z/T . We proceed in two steps.
Step 1: bound ∥∆∥2.
Recall that Y = Xw+ u. By definition, we have ∥Y −Xŵ∥22 ≤ ∥Y −Xw∥22. This means

that
∥X∆∥22 ≤ 2u′X∆.

We notice that 1′
N∆ = 0, X = θ1′

N + Z + ξβ′ and thus

X∆ = Z∆+ ξβ′∆.

Therefore, we have

∥Z∆∥22 + ∥ξ∥22(β′∆)2 + 2∆′Z ′ξβ′∆ ≤ 2u′Z∆+ 2u′ξβ′∆.

We then have[
∥ξ∥2(β′∆) + ∥ξ∥−1

2 (∆′Z ′ξ − u′ξ)
]2 ≤ ∥ξ∥−2

2 (∆′Z ′ξ − u′ξ)2 + 2u′Z∆− ∥Z∆∥22. (33)

It follows that
∥ξ∥−2

2 (∆′Z ′ξ − u′ξ)2 + 2u′Z∆− ∥Z∆∥22 ≥ 0.

Notice that ∥∆∥1 ≤ ∥ŵ∥1 + ∥w∥1 = 2. Hence,

(∆′Z ′ξ − u′ξ)2 ≤ 2(∆′Z ′ξ)2 + 2(u′ξ)2 ≤ 2∥∆∥21∥Z ′ξ∥2∞ + 2c21∥ξ∥22 ≤ (8λ21 + 2c21)∥ξ∥22. (34)

By the above two displays, we have

8λ21 + 2c21 + 2u′Z∆ ≥ ∥Z∆∥22.

Moreover, we notice that |u′Z∆| ≤ λ2∥∆∥1 and

∥Z∆∥22 = ∆′EZ ′Z∆+∆′(Z ′Z − EZ ′Z)∆
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≥ ∆′EZ ′Z∆− ∥Z ′Z − EZ ′Z∥∞∥∆∥21.

By ∥∆∥1 ≤ 2, we have that

8λ21 + 2c21 + 4λ2 ≥ T∆′ΣZ∆− 4λ3.

Therefore,

∆′ΣZ∆ ≤ 1

T

[
8λ21 + 2c21 + 4λ2 + 4λ3

]
. (35)

We obtain the bound on ∥∆∥2 by λmin(ΣZ) ≥ c−1
0 .

Step 2: bound β′∆.
By (33) and (34), we have

[
∥ξ∥2(β′∆) + ∥ξ∥−1

2 (∆′Z ′ξ − u′ξ)
]2 ≤ ∥ξ∥−2

2 (∆′Z ′ξ − u′ξ)2 + 2u′Z∆

≤ 8λ21 + 2c21 + 2u′Z∆ ≤ 8λ21 + 2c21 + 2∥Z ′u∥∞∥∆∥1 ≤ 8λ21 + 2c21 + 4λ2.

Then

∥ξ∥2 · |β′∆| ≤ ∥ξ∥−1
2 · |∆′Z ′ξ − u′ξ|+

√
8λ21 + 2c21 + 4λ2

(i)
≤
√

8λ21 + 2c21 +
√
8λ21 + 2c21 + 4λ2

≤ 2
√

8λ21 + 2c21 + 4λ2 ≤ 6λ1 + 3c1 + 4
√
λ2.

where (i) follows by (34). The proof is complete.

Proof of Theorem 4. Let ∆(k) = ŵ(k) − w. Notice that

τ̂k − τ = T−1
1

T∑
t=T0+1

(Yt −X ′
tŵ(k))−

1

|Hk|
∑
t∈Hk

(Yt −X ′
tŵ(k))− τ

= T−1
1

T∑
t=T0+1

(αt + ut −X ′
t∆(k))−

1

|Hk|
∑
t∈Hk

(ut −X ′
t∆(k))− τ

= T−1
1

T∑
t=T0+1

(ut −X ′
t∆(k))−

1

|Hk|
∑
t∈Hk

(ut −X ′
t∆(k))

= T−1
1

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut +
1

|Hk|
∑
t∈Hk

X ′
t∆(k) − T−1

1

T∑
t=T0+1

X ′
t∆(k). (36)

We notice that ∑
t∈Hk

X ′
t∆(k) =

∑
t∈Hk

Z ′
t∆(k) +

(∑
t∈Hk

ξt

)
(β′∆(k)).
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Since ∆(k) depends on {(θt, Zt, ξt)}t∈H(−k)
and {Zt}t∈H(−k)

is independent of {(θt, ξt)}Tt=1,
it follows that conditional on {(θt, ξt)}Tt=1, we can still use the coupling argument in the proof
of Theorem 1 and obtain∑

t∈Hk

Z ′
t∆(k) = OP

(
ρTγT +

√
|Hk| · ∥∆(k)∥2

)
.

By Assumption 7, we apply Lemma 7 and obtain

∥∆(k)∥2 = OP

(
(T−1 logN)1/4

)
= oP (1) (37)

and

|β′∆(k)| = OP

 (logN)1/2√∑
t∈H(−k)

ξ2t

 .

Therefore,√
min{T0, T1}

|Hk|
∑
t∈Hk

X ′
t∆(k)

=

√
min{T0, T1}

|Hk|
∑
t∈Hk

Z ′
t∆(k) +

√
min{T0, T1}

|Hk|

(∑
t∈Hk

ξt

)
(β′∆(k))

=

√
min{T0, T1}

|Hk|
OP

(
ρTγT +

√
|Hk| · ∥∆(k)∥2

)
+

√
min{T0, T1}

|Hk|
OP

(∑
t∈Hk

ξt

)
· (logN)1/2√∑

t∈H(−k)
ξ2t


(i)
= oP (1) + T

−1/2
1 OP

(logN)1/2
∑

t∈Hk
ξt√∑

t∈H(−k)
ξ2t


(ii)
= oP (1) + T

−1/2
1 OP

(
(logN)1/2 · T1T−1/2

) (iii)
= oP (1), (38)

where (i) follows by (37), min{T1, T0} ≍ T1, |Hk| ≍ T1, T0 ≍ T , T−1/2
1 ρTγT = o(1) (Assump-

tion 3), (ii) follows by Assumption 6, and (iii) follows by T1 ≪ T0/ logN .
Similarly, we can show that

T∑
t=T0+1

Z ′
t∆(k) = OP

(
ρTγT +

√
T1∥∆(k)∥2

)
and thus √

min{T0, T1}
T1

T∑
t=T0+1

X ′
t∆(k)
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=

√
min{T0, T1}

T1

T∑
t=T0+1

Z ′
t∆(k) +

√
min{T0, T1}

T1

(
T∑

t=T0+1

ξt

)
(β′∆(k))

=

√
min{T0, T1}

T1
OP

(
ρTγT +

√
T1∥∆(k)∥2

)
+

√
min{T0, T1}

T1
OP

( T∑
t=T0+1

ξt

)
(logN)1/2√∑

t∈H(−k)
ξ2t


(i)
= oP (1) + T

−1/2
1 OP

(logN)1/2
∑T

t=T0+1 ξt√∑
t∈H(−k)

ξ2t


(ii)
= oP (1) + T

−1/2
1 OP

(
(logN)1/2 · T1T−1/2

) (iii)
= oP (1), (39)

where (i) follows by (37), min{T1, T0} ≍ T1 and T−1/2
1 ρTγT = o(1), (ii) follows by Assumption

6 and (iii) follows by T1 ≪ T0/ logN .
Now we combine (36) with (38) and (39), obtaining√

min{T0, T1}(τ̂k − τ)

=

√
min{T0, T1}

T1

(
T

−1/2
1

T∑
t=T0+1

ut

)
−

√
min{T0, T1}

|Hk|

(
|Hk|−1/2

∑
t∈Hk

ut

)

+

√
min{T0, T1}

|Hk|
∑
t∈Hk

X ′
t∆(k) −

√
min{T0, T1}

T1

T∑
t=T0+1

X ′
t∆(k)

=

√
min{T0, T1}

T1

(
T

−1/2
1

T∑
t=T0+1

ut

)
−

√
min{T0, T1}

|Hk|

(
|Hk|−1/2

∑
t∈Hk

ut

)
+ oP (1).

Since T1 ≪ T0 and |Hk| = min{T0/K, T1}, we have min{T0, T1}/T1 → 1 and min{T0, T1}/|Hk| →
1. The first claim of the theorem follows.

For the second claim, we notice that (T−1/2
1

∑T
t=T0+1 ut, |H1|−1/2

∑
t∈H1

ut, ..., |HK |−1/2
∑

t∈Hk
ut)

′

converges in distribution to the normal distribution with mean zero and variance matrix
IK+1σ

2, where σ2 is the long-run variance of ut. Notice that

TK =

√
KT1

|H1|K+T1
· (τ̂ − τ)√

1
K−1

∑K
k=1(τ̂(k) − τ̂)2

.

By the same argument as in the proof of Theorem 2, asymptotically the numerator has
N(0, 1) distribution and is independent of the denominator, which asymptotically has a
χ2
K−1 distribution divided by K − 1. Therefore, TK converges in distribution to the student
t-distribution with K − 1 degrees of freedom. The proof is complete.
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G.10 Proof of Theorem 5

Before we prove Theorem 5, we introduce the some notations and establish a preliminary
result. For any i ∈ {0, ..., N} and any w ∈ WSC , we have that

Yit(0)− Y−i,t(0)
′w = θt + Vit − (θt1

′
N + V ′

−i,t)w = Vit − V ′
−i,tw.

Due to the covariance-stationarity of Vt, the distribution of the above quantity does not
depend on t. Hence, we can define the following time-independent quantity:

w(i)
∗ ∈ argmin

w∈WSC

E(Yit(0)− Y ′
−i,t(0)w)

2 = argmin
w∈WSC

E(Vit − V ′
−i,tw)

2.

To state the next result, let ∆
(i)
(k) = ŵ

(i)
(k) − w

(i)
∗ .

Lemma 8. Let Assumptions 8 and 9 hold. Then max1≤k≤K max0≤i≤N ∥∆(i)
(k)∥2 = oP (1).

Proof of Lemma 8. Let fi(w) be the (N +1)-dimensional vector whose i-th entry is 1 and
whose other entries are −w. Then

argmin
w∈WSC

E(Vit − V ′
−i,tw)

2 = argmin
w∈WSC

E(V ′
t fi(w))

2 = argmin
w∈WSC

fi(w)
′Σfi(w),

where Σ = EVtV
′
t . Similarly,

argmin
w∈WSC

∑
t∈H(−k)

(Yit − Y ′
−i,tw)

2 = argmin
w∈WSC

∑
t∈H(−k)

(Vit − V ′
−i,tw)

2

= argmin
w∈WSC

∑
t∈H(−k)

(V ′
t fi(w))

2 = argmin
w∈WSC

fi(w)
′Σ̂(−k)fi(w),

where Σ̂(−k) = |H(−k)|−1
∑

t∈H(−k)
VtV

′
t . Let ∆

(i)
(k) = fi(ŵ

(i)
(k))− fi(w

(i)
∗ ). By construction,

[fi(w
(i)
∗ ) + ∆

(i)
(k)]

′Σ̂(−k)[fi(w
(i)
∗ ) + ∆

(i)
(k)] ≤ fi(w

(i)
∗ )′Σ̂(−k)fi(w

(i)
∗ ).

Thus,
(∆

(i)
(k))

′Σ̂(−k)∆
(i)
(k) ≤ −2fi(w

(i)
∗ )′Σ̂(−k)∆

(i)
(k).

Similar to the argument of (26) in the proof of Lemma 2, we have that

fi(w
(i)
∗ )′Σ∆

(i)
(k) ≥ 0.

The above two displays imply

(∆
(i)
(k))

′Σ∆
(i)
(k) − ∥Σ̂(−k) − Σ∥∞ · ∥∆(i)

(k)∥
2
1 ≤ (∆

(i)
(k))

′Σ̂(−k)∆
(i)
(k)
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≤ −2fi(w
(i)
∗ )′Σ̂(−k)∆

(i)
(k) ≤ 2∥fi(w(i)

∗ )∥1∥Σ̂(−k) − Σ∥∞∥∆(i)
(k)∥1.

By construction, ∥fi(w(i)
∗ )∥1 = 2 and ∥∆(i)

(k)∥1 = ∥ŵ(i)
(k) − w

(i)
∗ ∥1 ≤ 2. It follows that

(∆
(i)
(k))

′Σ∆
(i)
(k) ≤ 12∥Σ̂(−k)−Σ∥∞. Since the eigenvalues of Σ are bounded below by 1/κ1, this

means that
max

0≤i≤N,0≤k≤K
∥∆(i)

(k)∥
2
2 ≤ 12κ1 max

0≤k≤K
∥Σ̂(−k) − Σ∥∞.

The result follows by the assumption of max0≤k≤K ∥Σ̂(−k) − Σ∥∞ = oP (1).

Proof of Theorem 5. Define Ṽit = Vit − EVit and uit = Ṽit − Ṽ ′
−i,tw

(i)
∗ . Since ŵ(i)

(k) ∈ WSC ,
we have that Yit(0)− Y−i,t(0)

′ŵ
(i)
(k) = Vit − V ′

−i,tŵ
(i)
(k). Hence,

T−1
1

N∑
i=0

T∑
t=T0+1

(Yit − Y ′
−i,tŵ

(i)
(k))1{Di = 1}

= T−1
1

N∑
i=0

T∑
t=T0+1

(αit + Yit(0)− Y−i,t(0)
′ŵ

(i)
(k))1{Di = 1}

= τ + T−1
1

N∑
i=0

T∑
t=T0+1

(Yit(0)− Y−i,t(0)
′ŵ

(i)
(k))1{Di = 1}

= τ + T−1
1

N∑
i=0

T∑
t=T0+1

(Vit − V ′
−i,tŵ

(i)
(k))1{Di = 1}

and similarly,

1

|Hk|

N∑
i=0

∑
t∈Hk

(Yit − Y ′
−i,tŵ

(i)
(k))1{Di = 1} =

1

|Hk|

N∑
i=0

∑
t∈Hk

(Vit − V ′
−i,tŵ

(i)
(k))1{Di = 1}.

Therefore, letting ∆
(i)
(k) = ŵ

(i)
(k) − w

(i)
∗ , we have

τ̂k − τ =
N∑
i=0

(
T−1
1

T∑
t=T0+1

(Vit − V ′
−i,tŵ

(i)
(k))−

1

|Hk|
∑
t∈Hk

(Vit − V ′
−i,tŵ

(i)
(k))

)
· 1{D = i}

=
N∑
i=0

(
T−1
1

T∑
t=T0+1

(Ṽit − Ṽ ′
−i,tŵ

(i)
(k))−

1

|Hk|
∑
t∈Hk

(Ṽit − Ṽ ′
−i,tŵ

(i)
(k))

)
· 1{D = i}

+
N∑
i=0

(
T−1
1

T∑
t=T0+1

(EVit − (EV−i,t)
′ŵ

(i)
(k))−

1

|Hk|
∑
t∈Hk

(EVit − (EV−i,t)
′ŵ

(i)
(k))

)
· 1{D = i}

(i)
=

N∑
i=0

(
T−1
1

T∑
t=T0+1

(Ṽit − Ṽ ′
−i,tŵ

(i)
(k))−

1

|Hk|
∑
t∈Hk

(Ṽit − Ṽ ′
−i,tŵ

(i)
(k))

)
· 1{D = i}
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=
N∑
i=0

(
T−1
1

T∑
t=T0+1

uit −
1

|Hk|
∑
t∈Hk

uit

)
· 1{D = i}

+
N∑
i=0

(
1

|Hk|
∑
t∈Hk

Ṽ−i,t − T−1
1

T∑
t=T0+1

Ṽ−i,t

)′

∆
(i)
(k) · 1{D = i}, (40)

where (i) follows by the covariance-stationarity of Vt.
For any i ∈ {0, ..., N}, let ∆̄(i)

(k) be the (N+1)-dimensional vector whose i-th component is
zero and other components correspond to ∆

(i)
(k). Then Ṽ ′

−i,t∆
(i)
(k) = Ṽ ′

t ∆̄
(i)
(k), ∥∆̄

(i)
(k)∥22 = ∥∆(i)

(k)∥22
and ∥∆̄(i)

(k)∥1 = ∥∆(i)
(k)∥1 ≤ 2. Hence,

N∑
i=0

(
1

|Hk|
∑
t∈Hk

Ṽ−i,t − T−1
1

T∑
t=T0+1

Ṽ−i,t

)′

∆
(i)
(k) · 1{D = i}

=
1

|Hk|
∑
t∈Hk

N∑
i=0

Ṽ ′
−i,t∆

(i)
(k) · 1{D = i} − T−1

1

T∑
t=T0+1

N∑
i=0

Ṽ ′
−i,t∆

(i)
(k) · 1{D = i}

=
1

|Hk|
∑
t∈Hk

N∑
i=0

Ṽ ′
t ∆̄

(i)
(k) · 1{D = i} − T−1

1

T∑
t=T0+1

N∑
i=0

Ṽ ′
t ∆̄

(i)
(k) · 1{D = i}

=
1

|Hk|
∑
t∈Hk

Ṽ ′
t∆(k) − T−1

1

T∑
t=T0+1

Ṽ ′
t∆(k),

where ∆(k) =
∑N

i=0 ∆̄
(i)
(k) · 1{D = i}. By the same coupling argument as in the proof of

Theorem 1, we have that∣∣∣∣∣ 1

|Hk|
∑
t∈Hk

Ṽ ′
t∆(k) − T−1

1

T∑
t=T0+1

Ṽ ′
t∆(k)

∣∣∣∣∣ = OP

(
ρTγT∥∆(k)∥1
min{T0, T1}

+
∥∆(k)∥2√
min{T0, T1}

)
,

where ρTγT → 0. Notice that ∥∆(k)∥1 =
∑N

i=0 ∥∆̄
(i)
(k)∥1 · 1{D = i} ≤ 2 and ∥∆(k)∥2 =∑N

i=0 ∥∆̄
(i)
(k)∥2 ·1{D = i} ≤ max0≤i≤N ∥∆̄(i)

(k)∥2 = max0≤i≤N ∥∆(i)
(k)∥2 = oP (1) due to Lemma 8.

Hence, ∣∣∣∣∣ 1

|Hk|
∑
t∈Hk

Ṽ ′
t∆(k) − T−1

1

T∑
t=T0+1

Ṽ ′
t∆(k)

∣∣∣∣∣ = oP

(
1√

min{T0, T1}

)
.

Let w̄(i)
∗ be the (N + 1)-dimensional vector whose i-th entry is 1 and the other entries

correspond to −w(i)
∗ . Then uit = Ṽit − Ṽ ′

−i,tw
(i)
∗ = Ṽ ′

t w̄
(i)
∗ . Therefore,

N∑
i=0

(
T−1
1

T∑
t=T0+1

uit −
1

|Hk|
∑
t∈Hk

uit

)
· 1{D = i}

=
N∑
i=0

(
T−1
1

T∑
t=T0+1

Ṽ ′
t w̄

(i)
∗ − 1

|Hk|
∑
t∈Hk

Ṽ ′
t w̄

(i)
∗

)
· 1{D = i}
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= T−1
1

T∑
t=T0+1

Ṽ ′
t w̄∗ −

1

|Hk|
∑
t∈Hk

Ṽ ′
t w̄∗,

where w̄∗ =
∑N

i=0 w̄
(i)
∗ 1{D = i}. The above two displays and (40) imply that

√
min{T0, T1}

∣∣∣∣∣τ̂(k) − τ −

(
T−1
1

T∑
t=T0+1

Ṽ ′
t w̄∗ −

1

|Hk|
∑
t∈Hk

Ṽ ′
t w̄∗

)∣∣∣∣∣ = oP (1).

Let A1 = {1, ..., T}\{T0 − 2BT + 1, ..., T0 + 2BT} and A2 = {T0 − BT , ..., T0 + BT}.
By Berbee’s coupling (e.g., Theorem 16.2.1 of Athreya and Lahiri (2006)), on an enlarged
probability space, there exist random variables {V̄t}t∈A1 such that (1) {V̄t}t∈A1 and {Ṽt}t∈A1

have the same distribution, (2) {V̄t}t∈A1 is independent of {Ṽt}t∈A2 and (3) P ({V̄t}t∈A1 ̸=
{Ṽt}t∈A1) ≤ βmix(BT ). Define RT,k = T−1

1

∑T
t=T0+2BT+1 Ṽ

′
t w̄∗ − 1

|Hk|
∑

t∈Hk\A1
Ṽ ′
t w̄∗. Notice

that

T−1
1

T∑
t=T0+1

Ṽ ′
t w̄∗ −

1

|Hk|
∑
t∈Hk

Ṽ ′
t w̄∗ −RT,k

= T−1
1

T0+2BT∑
t=T0+1

Ṽ ′
t w̄∗ −

1

|Hk|
∑

t∈Hk
⋂

A1

Ṽ ′
t w̄∗

= OP

(
max
1≤t≤T

∥Ṽt∥∞
(
T−1
1 · 2BT + |Hk|−1 · |Hk

⋂
A1|
)
· ∥w̄∗∥1

)
(i)
= OP

(
ρT

(
T−1
1 · 2BT + |Hk|−1 · |Hk

⋂
A1|
))

(ii)
= oP

(
1√

min{T0, T1}

)
,

where (i) follows by ∥w̄∗∥1 =
∑N

i=0 ∥w̄
(i)
∗ ∥1 ·1{D = i} ≤ 1 and (ii) follows by |Hk

⋂
A1| ≤ 2BT

and the assumption of B2
T ≪ ρ−2

T min{T0, T1}.
By assumption, w̄∗ is independent of {Ṽt}t∈A1 conditional on {Ṽt}t∈A2

⋃
{θt}t∈A2 . Thus,

w̄∗ is independent of {V̄t}t∈A1 conditional on {Ṽt}t∈A2

⋃
{θt}t∈A2 . Thus, conditional on

{V̄t}t∈A2

⋃
{θt}t∈A2 , there exists σ2 representing the long-run variance of T−1

∑T
t=1 V̄

′
t w̄∗ such

that

√
min{T0, T1}



T−1
1

∑T
t=T0+2BT+1 V̄

′
t w̄∗

1
|H1|

∑
t∈H1\A1

V̄ ′
t w̄∗

1
|H2|

∑
t∈H2\A1

V̄ ′
t w̄∗

...
1

|HK |
∑

t∈HK\A1
V̄ ′
t w̄∗


/σ

d→



√
min{c0, 1}ξ0
√
gc0,Kξ1

√
gc0,Kξ2

...
√
gc0,KξK


,

where ξ0, ..., ξK are independentN(0, 1) random variables. SinceRT,k = T−1
1

∑T
t=T0+2BT+1 Ṽ

′
t w̄∗−

1
|Hk|

∑
t∈Hk\A1

Ṽ ′
t w̄∗ with probability at least 1 − βmin(BT ) and BT → ∞, the above three
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displays imply

√
min{T0, T1}


τ̂(1) − τ

...
τ̂(K) − τ

 /σ
d→


√

min{c0, 1}ξ0 −
√
gc0,Kξ1

...√
min{c0, 1}ξ0 −

√
gc0,KξK

 .

The desired result follows by the same argument as in Theorem 2 and Corollary 1.

G.11 Proof of Theorem 6

Using similar arguments as in Lemma 1 and Theorem 1, we obtain

τ̃k − τe =
1

|H̃k|

∑
t∈H̃k

(ut + α̃t)−
1

|Hk|
∑
t∈Hk

ut +
1√

min{T0, T1}
ϵT,k,

where max1≤k≤K |ϵT,k| = oP (1), and, since τ̃1, . . . , τ̃K are obtained based on non-overlapping
blocks of data,

√
min{T0, T1}


τ̂1 − τe

...
τ̂K − τe

 d→


ξ1
...
ξK

 ,

where ξ1, . . . , ξK are independent and identically distributed mean zero normal random vari-
ables. The result (i) now follows from classical arguments, and (ii) follows from the same
arguments as in Corollary 1.

G.12 Proof of Theorem 7

We define the mapping ψ : RK → R by

ψ(v1, ..., vK) =

√
Kv̄√

(K − 1)−1
∑K

k=1(vk − v̄)2
with v̄ = K−1

K∑
j=1

vj.

We define ΣT,K to be the covariance matrix of
√
G(β̂1, ..., β̂K). We also define the matrix

ΣK to be the diagonal matrix whose diagonal entries are all equal to TE(β̂2
1). Finally, we

define ξ ∼ N(0, IK). Hence, TK has the same distribution as ψ(Σ1/2
T,Kξ). Moreover, ψ(Σ1/2

K ξ)

follows student’s t-distribution with K − 1 degrees of freedom. It suffices to show that∣∣∣P (ψ(Σ1/2
T,Kξ) ≤ a

)
− P

(
ψ(Σ

1/2
K ξ) ≤ a

)∣∣∣ = O(T−1) ∀a ∈ R.

Clearly, ψ(·) is Lipschitz. Since the student’s t-distribution with K−1 degrees of freedom
has bounded density, we only need to show that ∥Σ1/2

T,Kξ − Σ
1/2
K ξ∥2 = OP (T

−1).
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Now we do so by showing that ΣT,K − ΣK = O(T−1). The diagonal entries in both
matrices are the same. We consider the off-diagonal entries. Fix k, l ∈ {1, ..., K} with
l > k ≥ 1. Then∣∣∣(ΣT,K)k,l

∣∣∣
= G

∣∣∣E(β̂kβ̂l)∣∣∣
= G−1

∣∣∣∣∣ ∑
t1∈Hk

∑
t2∈Hl

Eut1ut2

∣∣∣∣∣
= G−1

∣∣∣∣∣∣
kG∑

t1=(k−1)G+1

lG∑
t2=(l−1)G+1

Eut1ut2

∣∣∣∣∣∣
= G−1

∣∣∣∣∣∣
kG∑

t1=(k−1)G+1

lG∑
t2=(l−1)G+1

γ(t2 − t1)

∣∣∣∣∣∣
= G−1

∣∣∣∣∣∣
kG∑

t1=(k−1)G+1

lG−t1∑
h=(l−1)G+1−t1

γ(h)

∣∣∣∣∣∣
= G−1

∣∣∣∣∣∣
(l−1)G∑

h=(l−2)G+1

γ(h) [min {(l − k + 1)G− h,G} −max {(l − k)G+ 1− h, 1}]

∣∣∣∣∣∣
≤ G−1

(l−1)G∑
h=(l−2)G+1

|γ(h)| · |[min {(l − k + 1)G− h,G} −max {(l − k)G+ 1− h, 1}]|

≤ G−1

(l−1)G∑
h=(l−2)G+1

|γ(h)|h ≤ KT−1

∞∑
h=1

|γ(h)|h.

Since
∑∞

h=1 |γ(h)|h is bounded, we have (ΣT,K)k,l = O(T−1). Therefore, ΣT,K − ΣK =

O(T−1). The proof is complete.

G.13 Proof of Corollary 1

By Theorem 2, we have that

P (TK ∈ [−tK−1(1− α/2), tK−1(1− α/2)]) → 1− α.

Note that the event
{TK ∈ [−tK−1(1− α/2), tK−1(1− α/2)]}

is equivalent to the event{
τ ∈

[
τ̂ − tK−1(1− α/2)

σ̂τ̂√
K
, τ̂ + tK−1(1− α/2)

σ̂τ̂√
K

]}
.
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Thus the result follows.

H Additional simulations

H.1 Performance with large T0

In this section, we explore the performance of the t-test when T0 = 150. These simulations
are motivated by the theoretical results in Section 4.2, which require that T0 is much larger
than T1. A larger T0 further allows us to explore the impact of choosing a larger K.

Table 7 shows the results for (T0, T1, N) = (150, 16, 14) and K ∈ {4, 6, 8}. The results for
DGP6–DGP7 confirm the theoretical results in Section 4.2, and the results for DGP8–DGP9
suggest that the t-test remains quite robust in settings not covered by our theory, provided
that T0 is large enough. Table 7 also shows that increasing K to K = 6 and K = 8 reduces
the length of the confidence intervals, especially under misspecification, while not affecting
coverage accuracy much.

Table 7: Simulation results with (T0, T1, N) = (150, 16, 14)

Bias×10 Coverage Avg. length CI

K = 4 K = 6 K = 8 K = 4 K = 6 K = 8 K = 4 K = 6 K = 8

DGP1 -0.00 -0.00 -0.00 0.90 0.90 0.89 0.06 0.05 0.05

DGP2 0.00 0.00 -0.00 0.89 0.91 0.90 0.06 0.05 0.05

DGP3 0.01 0.01 0.02 0.89 0.90 0.90 0.48 0.41 0.38

DGP4 -0.01 -0.00 -0.02 0.90 0.90 0.91 0.48 0.41 0.39

DGP5 0.00 0.01 -0.01 0.91 0.91 0.91 0.48 0.42 0.39

DGP6 -0.01 -0.01 -0.02 0.89 0.88 0.87 0.06 0.05 0.05

DGP7 0.00 0.00 0.00 0.89 0.89 0.89 0.06 0.05 0.05

DGP8 0.01 0.01 0.00 0.86 0.85 0.84 0.41 0.35 0.32

DGP9 -0.01 -0.00 0.00 0.83 0.83 0.82 0.09 0.08 0.08

Notes:. Simulations are based on 10,000 repetitions. CI: Confidence interval. Nomi-
nal coverage: 1− α = 0.9. The DGPs are described in Section 5.

H.2 Performance with small T1

Figures 5 and 6 display the coverage and average length of the confidence intervals based on
the t-test for DGP1–DGP9 when T0 = 30 and T1 ∈ {10, 12, 14, 16} (recall that T1 = 16 in the
main text). Given the small sample setting, we choose K = 3. Overall, the performance of
the t-test does not change much if the sample size decreases from T1 = 16 to T1 = 10, except
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under DGP8, which is not covered by our theory. This finding is not surprising given that
the persistence in the prediction errors is relatively low (ρu = 0.31) and changing T1 does
not affect the estimation of the weights. Under DGP8, and to a lesser extent under DGP6,
coverage decreases as T1 increases. This result is consistent with our theoretical results,
which require T0 to be much larger than T1 when there are deviations from a common
nonstationarity.

Figure 5: Coverage with small T1
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Notes: Simulations with 10,000 repetitions. Nominal coverage: 1− α = 0.9. The DGPs are described in Section 5.
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Figure 6: Length with small T1
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Notes: Simulations with 10,000 repetitions. Nominal coverage: 1− α = 0.9. The DGPs are described in Section 5.

H.3 Comparison to permutation method of Abadie et al. (2010)

The permutation approach of Abadie et al. (2010) is a popular inference method in SC ap-
plications. It is fundamentally different from the t-test. First, it is designed to test sharp
null hypotheses, such as the null of no effect whatsoever, whereas the t-test is designed to
make inferences on the ATT. Second, it is typically motivated from a design-based per-
spective and requires random assignment of the treatment to be valid, whereas the t-test is
developed within a sampling-based framework and allows for selection on observables and
unobservables (see Appendix A).

Given these differences, we focus on size and power in a setting with constant effects to
compare both methods. We implement the permutation test as described in Section 3.5 of
Abadie (2021). Figure 7 displays the empirical rejection probabilities for both tests over a
grid of alternatives αt = a for t ≥ T0. We consider the same DGPs as in the main text and
two different sample sizes (T0, T1, N) = (30, 16, 14) (“small”) and (T0, T1, N) = (150, 16, 14)
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(“large”). In light of our simulation results, we choose K = 4 for the small sample case and
K = 8 for the large sample case.

The simulation results show that the t-test is more powerful than the permutation ap-
proach overall, despite testing a weaker null hypothesis. The permutation test is only com-
parable to the t-test in terms of power under stationarity and correct specification (DGP1
and DGP2) and when T0 = 30. For all the other DGPs and when T0 = 150, the t-test
is more powerful, and the permutation test can have essentially no power in some cases.
We note that while the permutation test typically underrejects under our specific DGPs,
Hahn and Shi (2017) show that this test can also substantially overreject under DGPs with
sampling-based variation.

Figure 7: Comparison to permutation approach
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Notes: Simulations with 10,000 repetitions. Nominal level: α = 0.1. Small: (T0, T1, N) = (30, 16, 14) and K = 4 for the t-test.
Large: (T0, T1, N) = (150, 16, 14) and K = 8 for the t-test. The DGPs are described in Section 5.
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