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Risk Model Based on General Compound
Hawkes Process

ANATOLIY SWisHCHUKYP]

Abstract: In this paper, we introduce a new model for the risk pro-
cess based on general compound Hawkes process (GCHP) for the arrival of
claims. We call it risk model based on general compound Hawkes process
(RMGCHP). The Law of Large Numbers (LLN) and the Functional Central
Limit Theorem (FCLT') are proved. We also study the main properties of this
new risk model, net profit condition, premium principle and ruin time (in-
cluding ultimate ruin time) applying the LLN and FCLT for the RMGCHP.
We show, as applications of our results, similar results for risk model based
on compound Hawkes process (RMCHP) and apply them to the classical risk
model based on compound Poisson process (RMCPP).

Keywords: Hawkes process; general compound Hawkes process; risk
model; net profit condition; premium principle; ruin time; ultimate ruin
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1 Introduction

The Hawkes process (Hawkes (1971)) is a simple point process that has self-
exciting property, clustering effect and long memory.

It has been widely applied in seismology, neuroscience, DNA modelling
and many other fields, including finance (Embrechts, Liniger and Lin (2011))
and insurance (Stabile et al. (2010)).

In this paper, we introduce a new model for the risk process, based on
general compound Hawkes process (GCHP) for the arrival of claims. We call
it risk model based on general compound Hawkes process (RMGCHP). To the
best of the author’s knowledge, this risk model is the most general relaying
on the existing literature. Compound Hawkes process and risk model based
on it was introduced in Stabile et al. (2010).

In comparison to simple Poisson arrival of claims, GCHP model accounts
for the risk of contagion and clustering of claims.

We note, that Stabile & Torrisi (2010) were the first who replaced Poisson
process by a simple Hawkes process in studying the classical problem of the
probability of ruin. Dassios and Zhao (2011) considered the same ruin prob-
lem using marked mutually-exciting process (dynamic contagion process).
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Jang & Dassios (2012) implement Dassios & Zhao (2011) to calculate
insurance premiums and suggest higher premiums should be set up in gen-
eral across different insurance product lines. Semi-Markov risk processes
and their optimal control and stability were first introduced in Swishchuk &
Goncharova (1998) and studied and developed in Swishchuk (2000).

Compound Hawkes processes were applied to Limit Order Books in Swishchuk,
Chavez-Casillas, Elliott and Remillard (2017). General compound Hawkes
processes have also been applied to LOB in Swishchuk (2017). The general
compound Hawkes process was first introduced in Swishchuk (2017) to model
a risk process in insurance.

The paper is organized as follows. Section 2 is devoted to the descrip-
tion of Hawkes process. Section 3 contains Law of Large Numbers (LLN) and
Functional Central Limit Theorem (FCLT) for RMGCHP. Section 4 contains
applications of LLN and FCLT, including net profit condition, premium prin-
ciple, ruin and ultimate ruin probabilities, and the probability density func-
tion of the time to ruin for RMGCHP. Section 5 describes applications of the
results from Section 4 to the risk model based on compound Hawkes process
(RMCHP). Section 5 contain the applications of the results from Section 5
to the classical risk model based on compound Poisson process (RMCPP),
just for the completeness of the presentation. And Section 6 concludes the
paper and highlights future work.

2 Hawkes, General Compound Hawkes Pro-
cess (GCHP) and Risk Model based on GCHP

In this section we introduce Hawkes and general compound Hawkes processes
and give some of their properties. We also introduce the risk model based
on GCHP.

2.1 Hawkes Process

Definition 1 (Counting Process). A counting process is a stochastic
process N (t),t > 0, taking positive integer values and satisfying: N(0) = 0. It
is almost surely finite, and is a right-continuous step function with increments
of size +1. (See, e.g., Daley and Vere-Jones (1988)).

Denote by FN(t),t > 0, the history of the arrivals up to time ¢, that is,
{FN(t),t > 0}, is a filtration, (an increasing sequence of o-algebras).

A counting process N(t) can be interpreted as a cumulative count of the
number of arrivals into a system up to the current time t¢.

The counting process can also be characterized by the sequence of random
arrival times (77, Ty, ...) at which the counting process N () has jumped. The
process defined by these arrival times is called a point process.

Definition 2 (Point Process). If a sequence of random variables
(11, T, ...), taking values in [0, +00), has P(0 < T} <Tp < ...) = 1, and the
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number of points in a bounded region is almost surely finite, then, (77,75, ...)
is called a point process. (See, e.g., Daley, D.J. and Vere-Jones, D. (1988)).

Definition 3 (Conditional Intensity Function). Consider a counting
process N (t) with associated histories FV (¢),¢ > 0. If a non-negative function
A(t) exists such that

A(t) = lim E[N(t+h) —hN(t)|}"N(t)]7 (1)

h—0

then it is called the conditional intensity function of N(¢). We note, that
sometimes this function is called the hazard function.

Definition 4 (One-dimensional Hawkes Process) (Hawkes (1971)).
The one-dimensional Hawkes process is a point point process N(t) which is
characterized by its intensity A(t) with respect to its natural filtration:

Mw=A+AZm—smN@, (2)

where A > 0, and the response function pu(t) is a positive function and satisfies
ST u(s)ds < 1.

The constant A is called the background intensity and the function pu(t)
is sometimes also called theexcitation function. We suppose that p(t) # 0 to
avoid the trivial case, which is, a homogeneous Poisson process. Thus, the
Hawkes process is a non-Markovian extension of the Poisson process.

The interpretation of equation (2) is that the events occur according to
an intensity with a background intensity A which increases by u(0) at each
new event then decays back to the background intensity value according to
the function p(t). Choosing p(0) > 0 leads to a jolt in the intensity at each
new event, and this feature is often called a self-exciting feature, in other
words, because an arrival causes the conditional intensity function A(¢) in
(1)-(2) to increase then the process is said to be self-exciting.

With respect to definitions of A(¢) in (1) and N(¢) (2), it follows that

At)h+o(h), m=1
P(N(t+h) — N(t) = m|FN(t)) = o(h), m>1
L=Xth+o(h), m=0.

We should mention that the conditional intensity function A(¢) in (1)-(2) can
be associated with the compensator A(t) of the counting process N (t), that
is:

A@zAA@@. (3)

Thus, A(t) is the unique FV (t),¢ > 0, predictable function, with A(0) = 0,
and is non-decreasing, such that

N(t)=M(t)+At) a.s.,



where M(t) is an FN(t),t > 0, local martingale (This is the Doob-Meyer
decomposition of N.)
A common choice for the function p(t) in (2) is one of exponential decay:

u(t) = ae™ P, (4)

with parameters a, > 0. In this case the Hawkes process is called the
Hawkes process with exponentially decaying intensity.
Thus, the equation (2) becomes

At) =N+ /Ot e PE9dN (s), (5)

We note, that in the case of (4), the process (N (t), A(t)) is a continuous-time
Markov process, which is not the case for the choice (2).

With some initial condition A(0) = Ag, the conditional density A(t) in (5)
with the exponential decay in (4) satisfies the SDE

dA(t) = B\ — A(1))dt + adN(t), t>0,

which can be solved (using stochastic calculus) as
t
M) =e P (Ng =N + A +/ ae PN (s),
0

which is an extension of (5).
Another choice for p(t) is a power law function:

)\(t) = +/0 mwws) (6)

for some positive parameters c, k, p.

This power law form for A(¢) in (6) was applied in the geological model
called Omori’s law, and used to predict the rate of aftershocks caused by an
earthquake.

Many generalizations of Hawkes processes have been proposed. They in-
clude, in particular, multi-dimensional Hawkes processes, non-linear Hawkes
processes, mixed diffusion-Hawkes models, Hawkes models with shot noise
exogenous events, Hawkes processes with generation dependent kernels.

2.2 General Compound Hawkes Process (GCHP)

Definition 7 (General Compound Hawkes Process (GCHP)). Let
N(t) be any one-dimensional Hawkes process defined above. Let also X,
be ergodic continuous-time finite (or possibly infinite but countable) state
Markov chain, independent of N(¢), with space state X, and a(z) be any



bounded and continuous function on X. The general compound Hawkes pro-
cess is defined as

N(t)
Si="50+ > a(Xy). (7)
k=1

Some Examples of GCHP

1. Compound Poisson Process: S; = Sy + chv:(tl) Xk, where N(t) is a
Poisson process and a(X}) = X} are i.i.d.r.v.

2. Compound Hawkes Process: S; = Sy + fo:(tl) Xk, where N(t) is a
Hawkes process and a(Xy) = X are i.i.d.r.v.

3. Compound Markov Renewal Process: S; = S, + ij:(tl) a(Xy),
where N () is a renewal process and X}, is a Markov chain.

2.3 Risk Model based on General Compound Hawkes
Process

Definition 8 (RMGCHP: Finite State MC). We define the risk model
R(t) based on GCHP as follows:

N(t)

R(t):==u+ct— Y a(Xy), (8)

k=1

where u is the initial capital of an insurance company, c is the rate of at
which premium is paid, X}, is continuous-time Markov chain in state space
X ={1,2,...,n}, N(t) is a Hawkes process, a(z) is continuous and bounded
function on X). N(t) and X} are independent.

Definition 8. (RMGCHP: Infinite State MC). We define the risk
model R(t) based on GCHP for infinite state but countable Markov chain as

follows:
N(t)

R(t):=u+ct—» a(Xy). (8

k=1

Here: X = {1,2,...,n,...}-infinite but countable space of states for Markov
chain X,.

Some Examples of RMGCHP
1. Classical Risk Process (Cramer-Lundberg Risk Model): If

a(Xy) = Xy are ii.d.r.v. and N(t) is a homogeneous Poisson process, then
R(t) is a classical risk process also known as the Cramer-Lundberg risk model



(see Asmussen and Albrecher (2010)). In the latter case we have compound
Poisson process (CPP) for the outgoing claims.

Remark 1. Using this analogy, we call our risk process as a risk model
based on general compound Hawkes process (GCHP).

2. Risk Model based on Compound Hawkes Process: If a(X}) =
Xy, are ii.d.r.v. and N(t) is a Hawkes process, then R(t) is a risk process with
non-stationary Hawkes claims arrival introduced in Stabile et al. (2010).

3 LLN and FCLT for RMGCHP

In this section we present LLN and FCLT for RMGCHP.

3.1 LLN for RMGCHP

Theorem 1 (LLN for RMGCHP). Let R(t) be the risk model (RMGCHP)
defined above in (8), and X} be an ergodic Markov chain with stationary
probabilities 7. Then

lim —= =c—a" 9)

where a* = ), v a(k)m;, and 0 < fi := f0+°° p(s)ds < 1.

Proof. (Follows from Swishchuk (2017) ('General Compound Hawkes
Processes in Limit Order Books’, working paper. Available on arXiv:
https://arxiv.org/submit/1929048)).

From (8) we have

N(t)

R(t)/t =u/t+c—Y a(Xy)/t. (10)

=1

The first term goes to zero when ¢t — 4o00. From the other side, w.r.t. the
strong LLN for Markov chains (see, e.g., Norris (1997))

1 n
gZa(Xk) st O (11)
k=1

where a* is defined in (9).
Finally, taking into account (10) and (11), we obtain:

and the result in (9) follows.



We note, that we have used above the result that N(t)/t =100 A/(1 —
it). (See, e.g., Bacry, Mastromatteo and Muzy (2015) or Daley, D.J. and
Vere-Jones, D. (1988)). Q.E.D.

Remark 2. When a(X}) = X are i.i.d.r.v., then a* = EX;.

Remark 3. When u(t) = ae™? is exponential, then ji = a/S3.

3.2 FCLT for RMGCHP

Theorem 2 (FCLT for RMGCHP). Let R(t) be the risk model (RMGCHP)
defined above in (8), and X be an ergodic Markov chain with stationary
probabilities 7. Then

lim R(t) — (¢t — a*N(t))
t——+o00 \/E
(or in Skorokhod topology (see Skorokhod (1965))

=P ¢®(0,1), (12)

HEIJPOO R(nt) — (C%_ a*N(nt)) e (12)

where ®(-,-) is the standard normal random variable (W (t) is a standard
Wiener process),

o = o A= R,

(07)? = Piexmv(i), (13)
O<p = f0+°o p(s)ds < 1,

and

v(i) = b(i)?

+ Dex(9() — 9(@)*P(i, 3) = 2b(0) 3 5es(9(d) — 9(0) P(i, ),
b = (b(1),b(2),...,b(n)),
b(i): = a* —af(i),
g: = (P4+1I*—1)""

a’ = ) ex mali),
(14)

P is a transition probability matrix for Xy,, i.e., P(i,7) = P(Xg1 = j| Xy =
i), IT* denotes the matrix of stationary distributions of P and ¢(j) is the jth
entry of g.

Proof. (Follows from Swishchuk (2017) ("General Compound Hawkes
Processes in Limit Order Books’, working paper. Available on arXiv:
https://arxiv.org/submit/1929048)). From (8) it follows that

N (nt)

RVt = (utct =Y a(Xy)/Vt,

=1



and
N(t)

R(t)/VE=(u+ct+> (a" —a(Xy)) — N(t)a")/ V1, (15)

i=1
where a* is defined in (14)).
Therefore,

R(t) = (ct = N(t)a") _ u+ 310 (0" — a(Xy))

= 16
i Vi (16)
As long as % — 5100 0, we have to find the limit for
> (@ — (X))
Vit
when t — +o0.
Consider the following sums
Ry =) (a(Xy) —a*) (17)
k=1
and
Un(t) :=n""2[(1 = (nt — |nt])) R}y + (0t = [108]) Rl (18)

where |[-] is the floor function.

Following the martingale method from Vadori and Swishchuk (2015), we
have the following weak convergence in the Skorokhod topology (see Sko-
rokhod (1965)):

U2() =0 o0 W), (19)

where o* is defined in (13).
We note again, that w.r.t LLN for Hawkes process N (t) (see, e.g., Daley,
D.J. and Vere-Jones, D. (1988)) we have:

M P t—4o0 A =
t 1—4
or
T (20)

where i is defined in (13).
Using change of time in (19), ¢ — N(t)/t, we can find from (19) and (20):

U (N(1)/1) =nsoe oW (I0/(1 = 1)),

or

Un(N(nt)/n) =i o/ A/ (1= m)W(D), (21)
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where W (t) is the standard Wiener process, and o* and fi are defined in (13).
The result (12) now follows from (15)-(21). Q.E.D.

Remark 4. When a(X}) = X, € {40, —d} are independent and P(1,2) =
P(2,1) =7*=1/2, then a* = 0 and ¢* = +4.

Remark 5. When a(X}) = X € {+9, —d} are independent and P(1,2) =
P(2,1) = p, then 7* = 1/2, a* = 0 and (¢*)? = 6*p/(1 — p).

Remark 6. When a(Xj) = X, € {40, —0} is two-state Markov chain
and P(1,1) =p', P(2,2) = p, then a* = §(27* — 1) and
L-p+m @ —p)
(p+p —2)?
Remark 7. When a(X}) = X are i.i.d.r.v., then ¢* = Var(Xy) in (13)

and 0 = Var(Xg)/AN/ (1 —f).

4 Applications of LLN and FCLT for RMGCHP

In this section we consider some applications of LLN and FCLT for RMGCHP
that include net profit condition, premium principle and ruin and ultimate
ruin probabilities.

(0)* = 46%( — (1 —x").

4.1 Application of LLN: Net Profit Condition

From Theorem 1 (LLN for RMGCHP) follows that net profit condition has
the following form:

Corollary 1 (NPC for RMGCHP).

c>a , (22)

where a* = ), _ a(k)m}.

Corollary 2 (NPC for RMCHP). When a(X;) = X are iid.r.v.,
then a* = F X, and the net profit condition in this case has the form

— X E[Xk]

>
©71

Corollary 3 (NPC for RMCPP). Of course, in the case of Poisson
process N (t) (1 = 0) we have well-known net profit condition:

c> X E[Xk]
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4.2 Application of LLN: Premium Principle

A premium principle is a formula for how to price a premium against an
insurance risk. There many premium principles, and the following are three
classical examples of premium principles (S; = Eff:(tl) a(Xy)):

e The expected value principle: ¢ = (1 4+ 6) x E[S,]/t,
where the parameter 6 > 0 is the safety loading;

e The variance principle: ¢ = E[S¢]/t + 0 x Var[S/t];

e The standard deviation principle: ¢ = E[S;]/t + 6 x \/Var[S;/t].

We present here the expected value principle as one of the premium prin-
ciples (that follows from Theorem 1 (LLN for RMGCHP)):

Corollary 4 (Premium Principle for RMGCHP)
a*\

1— i

where the parameter 6 > 0 is the safety loading.

c=(1+0)

(23)

4.3 Application of FCLT for RMGCHP: Ruin and Ul-
timate Ruin Probabilities

4.3.1 Application of FCLT for RMGCHP: Approximation of RMGCHP
by a Diffusion Process

From Theorem 2 (FCLT for RMGCHP) it follows that risk process R(t) can
be approximated by the following diffusion process D(t) :

R(t)~u+ct— N(t)a" +oW(t) :=u+ D(t),

where a* and o are defined above, N(t) is a Hawkes process and W (t) is a
standard Wiener process.

It means that our diffusion process D(t) has drift (¢ — a*A/(1 — 1)) and
diffusion coefficient o, i.e., D(t) is N(c — a*\/(1 — 1)t, o*t)-distributed.

We use the diffusion approximation of the RMGCHP to calculate the ruin
probability in a finite time interval (0, 7).

4.3.2 Application of FCLT for RMGCHP: Ruin Probabilities

The ruin probability up to time 7 is given by (7, is a ruin time)

v(u,7) = 1—o¢(u,7)=P(T, <T)
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Applying now the result for ruin probabilities for diffusion process (see,
e.g., Asmussen (2000) or Asmussen and Albrecher (2010)) we obtain the
following

Theorem 3 (Ruin Probability for Our Diffusion Process):

Ylu,7) = <I>(—“+(C_a;%(1_m)7)

_ 2(c—a*A/(1-))
2

+ e aiu@(— uf(cfa;‘f\é(lfﬂ)ﬁ)?

where @ is the standard normal distribution function.

4.3.3 Application of FCLT for RMGCHP: Ultimate Ruin Proba-
bilities

Letting 7 — 400 in Theorem 3 above, we obtain:

Corollary 5 (The Ultimate Ruin Probability for RMGCHP):

_20—a*N/(-A)

(u) =1=¢(u) = P(T, < +o0) =e = %, (25)
where o and /i are defined in Theorem 2 (FCLT for RMGCHP).

4.4 Application of FCLT for RMGCHP: The Distri-
bution of the Time to Ruin

From Theorem 3 and Corollary 5 follows:

Corollary 6 (The Distribution of the Time to Ruin). The distri-
bution of the time to ruin, given that ruin occurs is:

Y = P(T, < 7|T, < +00)
_ 6wuq}<_u+(c—a§%l—ﬂ))7’)

(e )

Differentiation in previous distribution by u gives the probability density
function fr, (1) of the time to ruin:

Corollary 7 (The Probability Density Function of the Time to
Ruin):

U _ _ (u—(e=a*2/(1-p))7)?
T 3/26 2

fr.(r) = o 207r , 7>0. (26)
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Remark 8 (Inverse Gaussian Distribution): Substituting u?/c? = a
and u/(c —a*\/(1 — 1)) = b in the density function we obtain:

T—b

) 2em5 5 10,

fr. (1) = (5—

273

which is the standard Inverse Gaussian distribution with expected value
u/(c—a*\/(1 — 1)) and variance uo?/(c — a*\/(1 — [1)).

Remark 9 (Ruin Occurs with P =1): If ¢ = a*\/(1 — /1), then ruin
occurs with P = 1 and the density function is obtained from Corollary 6
with ¢ = a*\/(1 — [1), i.e.,

u _3/2 _i
fr, (1) = —=7""%e"22 1>0.

oV 2

The distribution function is :

Fr, (1) = 29( ), T>0.

oV
5 Applications of LLN and FCLT for
RMCHP

In this section we list the applications of LLN and FCLT for risk model
based on compound Hawkes process (RMCHP). The LLN and FCLT for
RMCHP follow from Theorem 1 and Theorem 2 above, respectively. In this
case a(X}y) = Xy are i.i.d.r.v. and a* = EX}, and our risk model R(t) based
on compound Hawkes process N(t) (RMCHP) has the following form:

N(t)
R(t) =u+ct—» X,
k=1

where N (t) is a Hawkes process.

5.1 Net Profit Condition for RMCHP

From (22) it follows that net profit condition for RMCHP has the following
form (¢* = EX}):
AEX,

N

>
c =7

5.2 Premium Principle for RMCHP

From (23) it follows that premium principle for RMCHP has the following
form:

12



AEX,
1—a’

where 6 > 0 is the safety loading parameter.

c=(1+0)

5.3 Ruin Probability for RMCHP

From (24) it follows that the ruin probability for RMCHP has the following

form:

Y(ur) = @(-HHEERYIY)

4o TR gy (e EX N Uiy

oVT
Remark 10. Here, 0 = Var(Xy)\/A/(1 — f1) (see Remark 7.).

5.4 Ultimate Ruin Probability for RMCHP

From (25) it follows that the ultimate ruin probability for RMCHP has the
following form:

_2e=BX3)/(-p)

Y(u) =1=0(u) = P(T,, < +o0) = ¢ -

5.5 The Probability Density Function of the Time to
Ruin

From (26) it follows that the probability density function of the time to ruin
for RMCHP has the following form:

U _ _ (u=(e=EX1)/(1—-4))7)?
fr, (1) = 773/2¢ 2027 , 1>0.
oV 2T

6 Applications of LLN and FCLT for
RMCPP

In this section we list, just for completeness, the applications of LLN and
FCLT for risk model based on compound Poisson process (RMCPP). The
LLN and FCLT for RMCPP follow from Section 5 above. In this case
a(Xy) = X are iidrv. and a* = EXj, and o = 0 and our risk model
R(t) based on compound Poisson process N(t) (RMCHP) has the following
form:

(1)
R(t)=u+ct—» X
k=1
where N(t) is a Poisson process.
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Of course, all the results below are classical and well-known (see, e.g.,
Asmussen (2000)), and we list them just to show that they are followed from
our results above.

6.1 Net Profit Condition for RMCPP

From (22) it follows that net profit condition for RMCPP has the following
form (a* = FXy):
c> )\EXl

6.2 Premium Principle for RMCPP

From (23) it follows that premium principle for RMCPP has the following
form:

c=(1+0)AEX,,

where 6 > 0 is the safety loading parameter.

6.3 Ruin Probability for RMCPP

From (24) it follows that the ruin probability for RMCPP has the following

form:

Plu,7) = B(-HEEHAT)

_ 2(c—EX1A)u

= CD(_U—(C—EXl)\)T)‘

oVT
Remark 11. Here, 0 = Var(X;)VA because fi = 0 (see remark 7.).

6.4 Ultimate Ruin Probability for RMCPP

From (25) it follows that the ultimate ruin probability for RMCPP has the
following form:

_2e=BX1N)

Y(u) = 1= g(u) = P(T, < +o0) =~ 2

6.5 The Probability Density Function of the Time to
Ruin for RMCPP

From (26) it follows that the probability density function of the time to ruin
for RMCPP has the following form:

U gy _(u=(e=EXiNT)?
fr,(1) = ——=71 3/2¢ 2027 ., 7>0.

oV 2T
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7 Conclusion and Future Work

In this paper, we introduced a new model for the risk process based on general
compound Hawkes process (GCHP) for the arrival of claims. We call it risk
model based on general compound Hawkes process (RMGCHP). The Law of
Large Numbers (LLN) and the Functional Central Limit Theorem (FCLT)
have been proved. We also studied the main properties of this new risk model,
net profit condition, premium principle and ruin time (including ultimate ruin
time) applying the LLN and FCLT for the RMGCHP. We showed similar
results for risk model based on compound Hawkes process (RMCHP) and
applied them to the classical risk model based on compound Poisson process
(RMCPP). The future work will be devoted to the implementations of the
obtained results to some insurance problems and preparation of numerical
results.
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