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We present a simple stochastic representation for the joint distribution of sample esti-

mates of three scalar parameters and two vectors of portfolio weights that characterize
the minimum-variance frontier. This stochastic representation is useful for sampling ob-

servations efficiently, deriving moments in closed-form, and studying the distribution

and performance of many portfolio strategies that are functions of these five variables.
We also present the asymptotic joint distributions of these five variables for both the

standard regime and the high-dimensional regime. Both asymptotic distributions are

simpler than the finite-sample one, and the one for the high-dimensional regime, i.e.,
when the number of assets and the sample size go together to infinity at a constant

rate, reveals the high-dimensional properties of the considered estimators. Our results
extend upon [T. Bodnar, H. Dette, N. Parolya and E. Thorstén, Sampling distributions

of optimal portfolio weights and characteristics in low and large dimensions, Random

Matrices: Theory Appl. 11 (2022)].
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1. Introduction

Consider an investment universe of N ≥ 2 assets and a sample of historical excess

returns of size T , (r1, . . . , rT ), where each vector rt is of dimension N × 1 and

rt
i.i.d.∼ N (µ,Σ).a We assume the covariance matrix Σ is positive definite and thus

invertible. We define the weights of the global minimum-variance portfolio and a

zero-cost portfolio as

wg :=
Σ−11N

1T

NΣ−11N
, (1.1)

wz := Qµ, (1.2)

where 1N is an N × 1 vector of ones and

Q := Σ−1 − Σ−11N1T

NΣ−1

1T

NΣ−11N
. (1.3)

Note that wT
g1N = 1 and wT

z 1N = 0. Any linear combination of wg and wz of the

form wg + cwz with c ∈ R delivers a portfolio on the minimum-variance frontier.

This minimum-variance frontier can be completely characterized by the following

three parameters:

σ2
g :=

1

1T

NΣ−11N
, (1.4)

µg :=
1T

NΣ−1µ

1T

NΣ−11N
, (1.5)

ψ2 := µTQµ. (1.6)

The parameters (µg, σ
2
g) are the mean and the variance of the return of wg, and

ψ ≥ 0 is the slope of the asymptote to the minimum-variance frontier.

The quantities (σ2
g , µg, ψ

2,wg,wz) together allow us to study efficient mean-

variance portfolios and their performance. However, they are unobservable in prac-

tice because µ and Σ are unknown. To estimate µ and Σ, we can use their sample

counterparts:

µ̂ :=
1

T

T∑
t=1

rt, (1.7)

Σ̂ :=
1

T

T∑
t=1

(rt − µ̂)(rt − µ̂)T. (1.8)

We assume throughout that T > N , and thus Σ̂ is invertible. Under the i.i.d.

multivariate normality assumption on rt, we have that µ̂ ∼ N (µ,Σ/T ), T Σ̂ ∼
WN (T − 1,Σ), and they are mutually independent.

aOur use of excess returns instead of raw returns follows [1] and is without loss of generality
because one can set the risk-free rate equal to zero and work with raw returns instead.
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Using µ̂ and Σ̂, we obtain the following sample estimates of (σ2
g , µg, ψ

2,wg,wz):

σ̂2
g :=

1

1T

N Σ̂−11N
, (1.9)

µ̂g :=
1T

N Σ̂−1µ̂

1T

N Σ̂−11N
, (1.10)

ψ̂2 := µ̂TQ̂µ̂, (1.11)

ŵg :=
Σ̂−11N

1T

N Σ̂−11N
, (1.12)

ŵz := Q̂µ̂, (1.13)

where Q̂ := Σ̂−1 − Σ̂−11N1T

N Σ̂−1/(1T

N Σ̂−11N ).

Our objective in this paper is threefold. First, we present a simple finite-sample

stochastic representation of (σ̂2
g , µ̂g, ψ̂

2, ŵg, ŵz) that involves 3N − 1 random vari-

ables. The weights of many portfolio strategies proposed in the literature are func-

tions of these five variables and, with our stochastic representation, we can study

any function of these portfolio weights, e.g., the linear function such as the out-of-

sample portfolio mean return and the quadratic function such as the out-of-sample

portfolio return variance.

Second, we show that the number of random variables can be reduced signifi-

cantly when one needs a stochastic representation of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz), where

L is a constant matrix of size k × N for any positive integer k. Specifically, we

present a stochastic representation that involves only 3m + 5 random variables

where m := rank(LQLT), and use this representation to derive the mean and co-

variance matrix of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz). Our representation extends upon [2] by

allowing a more general L matrix: [2] require k ≤ N − 2 and m = k (i.e., LQLT is

of full rank), whereas we do not constrain k and can have m < k.b

Third, we present the asymptotic distribution of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz) in two

different regimes: the standard regime in which N is fixed while T → ∞, and

the high-dimensional regime in which N → ∞, T → ∞, and N/T → ρ ∈ (0, 1).

The latter reveals the high-dimensional properties of the five random variables

and can serve as a simple approximation to the more involved finite-sample joint

distribution.

2. Stochastic representations

In Sections 2.1 and 2.2, we present our stochastic representations for (σ̂2
g , µ̂g, ψ̂

2,

ŵg, ŵz) and (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz), respectively. The proofs of all results in the

paper are available in Appendix A.

bNote that the restriction in [2] means that they do not cover, for example, the case L = IN with
IN being the N ×N identity matrix.
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2.1. Stochastic representation of (σ̂2
g , µ̂g, ψ̂

2, ŵg, ŵz)

In the next theorem, we present a stochastic representation for (σ̂2
g , µ̂g, ψ̂

2, ŵg, ŵz)

that involves 3N − 1 random variables. We denote by tν(S) a multivariate central

t-distribution with ν degrees of freedom and a scaling matrix S.

Theorem 2.1. Let P be an N × (N − 1) orthonormal matrix whose columns

are orthogonal to Σ− 1
21N . Let a ∼ N (0, 1), y ∼ N (

√
TP TΣ− 1

2µ, IN−1), z ∼
N (

√
Tµg/σg, 1), v1 ∼ χ2

T−N , v2 ∼ χ2
T−N+1, t1 ∼ tT−N+2(IN−2)/

√
T −N + 2,

t2 ∼ tT−N+3(IN−2)/
√
T −N + 3, and they are mutually independent. Let u :=

yTy ∼ χ2
N−1(Tψ

2) and R be an (N − 1) × (N − 2) orthonormal matrix whose

columns are orthogonal to y.c Then, (σ̂2
g , µ̂g, ψ̂

2, ŵg, ŵz) are jointly distributed as

σ̂2
g
d
=
σ2
gv1

T
, (2.1)

µ̂g
d
=

σg√
T

(
z +

a
√
u

√
v2

)
, (2.2)

ψ̂2 d
=

u

v2
, (2.3)

ŵg
d
= wg + σgΣ

− 1
2P

[
a

√
v2u

y +R

(
a

√
v2
t1 + (IN−2 + t1t

T

1 )
1
2 t2

)]
, (2.4)

ŵz
d
=

√
T

v2
Σ− 1

2P
(
y +

√
uRt1

)
. (2.5)

Several comments are in order. First, this stochastic representation only involves

3N − 1 random variables, and thus it provides a much more efficient way to sample

from the distribution of (σ̂2
g , µ̂g, ψ̂

2, ŵg, ŵz) than to directly sample from µ̂ and Σ̂.

Second, in (2.4) we can write

(IN−2 + t1t
T

1 )
1
2 = IN−2 +

√
1 + tT1 t1 − 1

tT1 t1
t1t

T

1 , (2.6)

which allows us to use vectorized code for simulating ŵg.

Third, σ̂2
g only depends on v1, and thus it is independent of (µ̂g, ψ̂

2, ŵg, ŵz)

that do not depend on v1.

Fourth, the stochastic representation of (ŵg, ŵz) simplifies when N = 2. Indeed,

R is a null matrix, y ≡ y ∼ N (
√
Tψ, 1), u = y2, and thus

ŵg
d
= wg + σg

sgn(y)a
√
v2

Σ− 1
2P , (2.7)

ŵz
d
=

√
Ty

v2
Σ− 1

2P . (2.8)

cP and R satisfy Σ− 1
2 PPTΣ− 1

2 = Q and Σ− 1
2 PRRTPTΣ− 1

2 = Q−Σ− 1
2 PyyTPTΣ− 1

2 /u.
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Finally, using Theorem 2.1, we can obtain stochastic representations for any

function of (σ̂2
g , µ̂g, ψ̂

2, ŵg, ŵz) which include the weights of many popular port-

folios. For example, the sample tangency portfolio, Σ̂−1µ̂/(1T

N Σ̂−1µ̂), can be

expressed as ŵg + (σ̂2
g/µ̂g)ŵz. The two-fund and three-fund rules studied by

[4], cΣ̂−1µ̂ and cΣ̂−1µ̂ + dΣ̂−11N , can be written as c(µ̂g/σ̂
2
g)ŵg + cŵz and

(d + cµ̂g)/σ̂
2
gŵg + cŵz, respectively. The fully invested two-fund rule studied by

[1] and [5] is ŵg + cŵz. Moreover, the estimates of the optimal combining coeffi-

cients (c, d) proposed by [4], [1], and [5] are functions of (σ̂2
g , µ̂g, ψ̂

2), and thus the

distribution of the weights of the estimated optimal portfolios can be studied using

Theorem 2.1 as well.

Given the stochastic representations of the weights of these sample portfolios ŵ,

we can also study the distribution of any function of ŵ, e.g., a linear function such

as the out-of-sample portfolio mean return ŵTµ, and a quadratic function such as

the out-of-sample portfolio return variance, ŵTΣŵ.

2.2. Stochastic representation of (σ̂2
g , µ̂g, ψ̂

2, Lŵg, Lŵz)

Now, suppose we are interested in the distribution of (σ̂2
g , µ̂g, ψ̂

2, Lŵg,Lŵz), where

L is a k×N constant matrix and k can be any positive integer. Using the results in

Theorem 2.1, we can obtain a stochastic representation that involves 3N−1 random

variables. Instead, we now present an approach that requires a significantly smaller

number of random variables. For that purpose, define

A := LQLT and m := rank(A). (2.9)

Because rank(Q) = N − 1, we have m ≤ N − 1 even if k > N − 1, in which case A

is not invertible. We denote the eigen-decomposition of A by

A = V DV T, (2.10)

whereD is the diagonal matrix of them nonzero eigenvalues and V the k×mmatrix

of the corresponding eigenvectors. In the next theorem, we present a stochastic

representation for (σ̂2
g , µ̂g, ψ̂

2, Lŵg,Lŵz) that involves 3m+ 5 random variables.d

Theorem 2.2. Let a ∼ N (0, 1), ỹ ∼ N (
√
TD− 1

2V TLwz, Im), z ∼
N (

√
Tµg/σg, 1), v1 ∼ χ2

T−N , v2 ∼ χ2
T−N+1, u0 ∼ χ2

N−m−1(Tψ
2 − TwT

zL
TV

D−1V TLwz) if m < N − 1 and u0 = 0 if m = N − 1, t̃1 ∼ tT−N+2(Im)/√
T −N + 2, t̃2 ∼ tT−N+3(Im)/

√
T −N + 3, and they are mutually independent.

Let u := u0 + ỹ
Tỹ ∼ χ2

N−1(Tψ
2) and

B := Im −
1−

√
u0

u

ỹTỹ
ỹỹT. (2.11)

dWhen m = N − 1, the random variable u0 = 0 and only 3N + 1 random variables are needed.
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Then, (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz) are jointly distributed as in (2.1)–(2.3) and

Lŵg
d
= Lwg + σgV D

1
2

[
a

√
v2u

ỹ +B

(
a

√
v2
t̃1 + (Im + t̃1t̃

T

1 )
1
2 t̃2

)]
, (2.12)

Lŵz
d
=

√
T

v2
V D

1
2

(
ỹ +

√
uBt̃1

)
. (2.13)

Theorem 2.2 is related to [2] and [3], who derive a stochastic representation of

(σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lη̂), where

η̂ :=
ŵz

ψ̂2
. (2.14)

We extend their results by allowing a more general L matrix. Specifically, they

restrict k ≤ N − 2 and m = k (i.e., A is of full rank), while we allow L to be of

any dimension and A to have less than full rank.

We can use Theorem 2.2 to derive useful statistics of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz)

such as the moments. For example, we can show that

E
[
σ̂2
g , µ̂g, ψ̂

2, Lŵg, Lŵz

]
=
[
σ2
g
T−N
T , µg,

Tψ2+N−1
T−N−1 , Lwg,

T
T−N−1Lwz

]
,

(2.15)

where the expectations of ψ̂2 and Lŵz exist if T > N + 1, and

Var
[
σ̂2
g , µ̂g, ψ̂

2, Lŵg, Lŵz

]

=


Var[σ̂2

g ] 0 0 0T

k 0T

k

0 Var[µ̂g] 0 Cov[Lŵg, µ̂g]T 0T

k

0 0 Var[ψ̂2] 0T

k Cov[Lŵz, ψ̂2]T

0k Cov[Lŵg, µ̂g] 0k Var[Lŵg] 0k×k
0k 0k Cov[Lŵz, ψ̂2] 0k×k Var[Lŵz]

 , (2.16)

where 0k is a k × 1 vector of zeros, 0k×k a k × k matrix of zeros, and

Var[σ̂2
g ] =

2(T −N)σ4
g

T 2
, (2.17)

Var[µ̂g] =
(Tψ2 + T − 2)σ2

g

T (T −N − 1)
if T > N + 1, (2.18)

Var[ψ̂2] =
2T 2ψ4 + 2(T − 2)(2Tψ2 +N − 1)

(T −N − 1)2(T −N − 3)
if T > N + 3, (2.19)

Var[Lŵg] =
σ2
g

T −N − 1
A if T > N + 1, (2.20)

Var[Lŵz] =
T 2(T −N + 1)

(T −N)(T −N − 1)2(T −N − 3)
Lwzw

T

zL
T

+
T (Tψ2 + T − 2)

(T −N)(T −N − 1)(T −N − 3)
A if T > N + 3, (2.21)
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Cov[Lŵg, µ̂g] =
σ2
g

T −N − 1
Lwz if T > N + 1, (2.22)

Cov[Lŵz, ψ̂2] =
2T (Tψ2 + T − 2)

(T −N − 1)2(T −N − 3)
Lwz if T > N + 3. (2.23)

The mean and covariance matrix of (σ̂2
g , µ̂g, ψ̂

2) are available in [6]. The mean

and covariance matrix of Lŵg and Lŵz are available in [1] and [7]. However, the

covariance matrix between (σ̂2
g , µ̂g, ψ̂

2) and (Lŵg,Lŵz) is new.

If, as in [2], we are interested in Lη̂ instead of Lŵz, we can also use Theorem 2.2

to derive its mean and its covariance with (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lη̂). These moments

are more involved, and thus we present them with proofs in the next theorem.

Theorem 2.3. The mean of Lη̂ and its covariance with (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lη̂) are

E [Lη̂] =
T

N − 1
1F1

(
1;
N + 1

2
;−Tψ

2

2

)
Lwz if N > 2, (2.24)

Cov
[
Lη̂,

(
σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lη̂
)]

=
[
0k,0k,Cov

[
Lη̂, ψ̂2

]
,0k×k,Var [Lη̂]

]
, (2.25)

where

Cov
[
Lη̂, ψ̂2

]
=

T

T −N − 1

[
1−

(
1 +

Tψ2

N − 1

)
1F1

(
1;
N + 1

2
;−Tψ

2

2

)]
Lwz

if N > 2 and T > N + 1, (2.26)

Var [Lη̂] =
T

(T −N)(N − 3)

[
1F1

(
1;
N − 1

2
;−Tψ

2

2

)
+
T −N − 1

N − 1

1F1

(
2;
N + 1

2
;−Tψ

2

2

)]
A+

T 2

N2 − 1

[
T −N − 1

T −N
1F1

(
2;
N + 3

2
;−Tψ

2

2

)
− N + 1

N − 1
1F1

(
1;
N + 1

2
;−Tψ

2

2

)2 ]
Lwzw

T

zL
T if N > 3. (2.27)

3. Asymptotic distributions

Another reason why the stochastic representations in Theorems 2.1 and 2.2

are valuable is that they allow us to easily derive asymptotic distributions of

(σ̂2
g , µ̂g, ψ̂

2,Lŵg, Lŵz), which is what we study in this section.

3.1. Standard asymptotic regime

In the next theorem, we consider the standard asymptotic regime in which N is

fixed while T → ∞.

Theorem 3.1. Let N be fixed while T → ∞. Then, the asymptotic joint distribu-
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tion of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz) is

√
T


σ̂2
g − σ2

g

µ̂g − µg
ψ̂2 − ψ2

Lŵg −Lwg
Lŵz −Lwz

 d→ N (02k+3,V0) , (3.1)

where

V0 =


2σ4

g 0 0 0T

k 0T

k

0 σ2
g(1 + ψ2) 0 σ2

gw
T
zL

T 0T

k

0 0 2ψ2(2 + ψ2) 0T

k 2(1 + ψ2)wT
zL

T

0k σ2
gLwz 0k σ2

gA 0k×k
0k 0k 2(1 + ψ2)Lwz 0k×k Lwzw

T
zL

T + (1 + ψ2)A

 . (3.2)

Theorem 3.1 shows that (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz) are consistent estimators when

N is fixed. However, in practice N is not negligible relative to T and the fixed N

asymptotic distribution may be an inaccurate approximation of the finite-sample

distribution.

3.2. High-dimensional asymptotic regime

We now turn to the high-dimensional (or Kolmogorov) asymptotic regime in which

N → ∞, T → ∞, and N/T → ρ ∈ (0, 1). This regime is commonly used in

recent finance literature to study the high-dimensional distributional properties of

estimated portfolios and their inputs; see, e.g., [8], [9], [10], [11], and [12].

Theorem 3.2. Let N → ∞, T → ∞, and N/T → ρ ∈ (0, 1) while (σ2
g , µg, ψ

2,Lwg,

Lwz,A) are fixed.e Then, the joint asymptotic distribution of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,

Lŵz) is

√
T


σ̂2
g − (1− ρ)σ2

g

µ̂g − µg

ψ̂2 − ψ2+ρ
1−ρ

Lŵg −Lwg
Lŵz − 1

1−ρLwz

 d→ N (02k+3,Vρ) , (3.3)

eWe can also assume these quantities are not fixed but are bounded as N → ∞, and replace them

by their asymptotic limit in (3.3)–(3.4). Assuming they are fixed is sensible when the objective of
using the asymptotic distribution is to approximate the exact finite-sample distribution.
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where

Vρ =



2(1− ρ)σ4
g 0 0 0T

k 0T

k

0
σ2
g(1+ψ

2)

1−ρ 0
σ2
g

1−ρw
T
zL

T 0T

k

0 0 2(ψ4+2ψ2+ρ)
(1−ρ)3 0T

k
2(1+ψ2)
(1−ρ)3 w

T
zL

T

0k
σ2
g

1−ρLwz 0k
σ2
g

1−ρA 0k×k

0k 0k
2(1+ψ2)
(1−ρ)3 Lwz 0k×k

Lwzw
T
z LT+(1+ψ2)A
(1−ρ)3


. (3.4)

Note that we recover the fixed N asymptotic distribution by letting ρ→ 0.

Theorem 3.2 shows that (σ̂2
g , ψ̂

2, Lŵz) are asymptotically biased in the high-

dimensional regime. Moreover, except for the asymptotic variance of σ̂2
g , all the

entries of the asymptotic covariance matrix Vρ in (3.4) increase relative to the

fixed N asymptotic regime, V0 in (3.2).

4. Conclusion

We derive a simple stochastic representation for the joint distribution of sample

estimates of three scalar parameters and two vectors of portfolio weights that char-

acterize the minimum-variance frontier. This stochastic representation is useful,

among others, to draw observations efficiently, understand which parameters deter-

mine the distribution, derive exact finite-sample moments in closed-form, and come

up with the asymptotic joint distribution in the standard and the high-dimensional

regime. In the process, we extend related results in [2] and [3].

The stochastic representation we derive is of wide interest to researchers in the

portfolio choice literature because it is both simple and general. Indeed, as we show,

it covers many different sample portfolio strategies such as the global minimum-

variance portfolio, the tangency portfolio, the two-fund and three-fund rules in

[4], and the fully invested two-fund rule in [1]. Moreover, one can use our results

to study not only linear functions of these portfolios, such as the out-of-sample

portfolio mean return, but also nonlinear functions like the out-of-sample portfolio

return variance.
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Appendix A. Proofs of results

A.1. Proof of Theorem 2.1

Let P̃ be an N ×N orthonormal matrix whose first column is

ν := σgΣ
− 1

21N . (A.1)
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10 Kan, Lassance, and Wang

Let

z :=
√
T P̃ TΣ− 1

2 µ̂ ∼ N (
√
T P̃ TΣ− 1

2µ, IN ), (A.2)

W := T P̃ TΣ− 1
2 Σ̂Σ− 1

2P ∼ WN (T − 1, IN ), (A.3)

and they are mutually independent. Using W and z, we can write (σ̂2
g , µ̂g, ψ̂

2, ŵg,

ŵz) as

σ̂2
g =

σ2
g

T (eT
1W

−1e1)
, (A.4)

µ̂g =
σg√
T

eT
1W

−1z

eT
1W

−1e1
, (A.5)

ψ̂2 = zTW−1z − (eT
1W

−1z)2

eT
1W

−1e1
, (A.6)

ŵg =
σgΣ

− 1
2 P̃W−1e1

eT
1W

−1e1
, (A.7)

ŵz =
√
TΣ− 1

2 P̃W− 1
2

(
IN − W− 1

2 e1e
T
1W

− 1
2

eT
1W

−1e1

)
W− 1

2 z, (A.8)

where e1 := [1, 0T

N−1]
T.

Partition W and W−1 as

W =

[
W11 W12

W21 W22

]
, (A.9)

W−1 =

[
W 11 W 12

W 21 W 22

]
, (A.10)

where W11 and W 11 are the (1,1) elements of W and W−1, respectively. Using

Theorem 3.2.10 of [13], we have

v1 :=W11·2 =W11 −W12W
−1
22 W21 ∼ χ2

T−N , (A.11)

x := −W− 1
2

22 W21 ∼ N (0N−1, IN−1), (A.12)

W22 ∼ WN−1(T − 1, IN−1), (A.13)

and they are mutually independent and independent of z. Using the formula for

the inverse of a partitioned matrix, we obtain

W 11 =W−1
11·2 =

1

v1
, (A.14)

W 21 = −W−1
22 W21W

−1
11·2 =

W
− 1

2
22 x

v1
, (A.15)

W 22 =W−1
22 +W−1

22 W21W
−1
11·2W12W

−1
22 =W−1

22 +
W

− 1
2

22 xx
TW

− 1
2

22

v1
. (A.16)
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Let P be the last N − 1 columns of P̃ . We define

y :=

 z2...
zN

 ∼ N
(√

TP TΣ− 1
2µ, IN−1

)
, (A.17)

and u := yTy ∼ χ2
N−1(Tψ

2). Using y, we can write z as

z = e1z1 +

[
0

y

]
, (A.18)

and thus W−1z can be expressed as

W−1z =W−1e1z1 +W
−1

[
0

y

]
=

[
W 11

W 21

]
z1 +

[
W 12y

W 22y

]
. (A.19)

This allows us to write

µ̂g =
σg√
T

(
W 11z1 +W

12y

W 11

)
=

σg√
T

(
z1 + x

TW
− 1

2
22 y

)
, (A.20)

σ̂2
g =

σ2
gv1

T
, (A.21)

ψ̂2 =

(
z1e1 +

[
0

y

])T

W− 1
2

(
IN − W− 1

2 e1e
T
1W

− 1
2

eT
1W

−1e1

)
W− 1

2

(
z1e1 +

[
0

y

])

=

[
0

y

]T(
W−1 − W−1e1e

T
1W

−1

eT
1W

−1e1

)[
0

y

]
= yTW−1

22 y, (A.22)

ŵg =

σgΣ
− 1

2 P̃

[
W 11

W 21

]
W 11

= σgΣ
− 1

2 P̃

[
1

W
− 1

2
22 x

]
= wg + σgΣ

− 1
2PW

− 1
2

22 x, (A.23)

ŵz =
√
TΣ− 1

2 P̃

([
W 11

W 21

]
z1 +

[
W 12y

W 22y

]
−
[
W 11

W 21

](
z1 +

W 12

W 11
y

))
=

√
TΣ− 1

2 P̃

[
0

W 22y − W 21W 12y
W 11

]

=
√
TΣ− 1

2 P̃

[
0

W−1
22 y

]
=

√
TΣ− 1

2PW−1
22 y. (A.24)

Let R̃ := [z̃, R] be an (N − 1)× (N − 1) orthonormal matrix, where

z̃ :=
y√
u
, (A.25)

and R is a null matrix when N = 2. We define

H := (R̃TW−1
22 R̃)−1 =

[
H11 H12

H21 H22

]
∼ WN−1(T − 1, IN−1), (A.26)
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where H1,1 is the (1,1) element of H. Using Theorem 3.2.10 of [13], we have

v2 :=H11·2 =H11 −H12H
−1
22 H21 ∼ χ2

T−N+1, (A.27)

x2 := −H− 1
2

22 H21 ∼ N (0N−2, IN−2), (A.28)

H22 ∼ WN−2(T − 1, IN−2), (A.29)

and they are mutually independent and independent of v1 and x.

Using the formula for the inverse of a partitioned matrix again, we can show

that

R̃TW−1
22 R̃ =H−1 =

[
H−1

11·2 −H−1
11·2H12H

−1
22

−H−1
22 H21H

−1
11·2 H

−1
22 +H−1

22 H21H
−1
11·2H12H

−1
22

]
.

(A.30)

This allows us to write

W−1
22 z̃ = R̃R̃TW−1

22 z̃ = R̃

[
H−1

11·2

−H−1
22 H21H

−1
11·2

]
=
R̃

v2

[
1

H
− 1

2
22 x2

]
=
z̃ +RH

− 1
2

22 x2

v2
.

(A.31)

Let

q := R̃TW
− 1

2
22 x. (A.32)

Conditional on H, we have

q ∼ N (0N−1,H
−1). (A.33)

The first element of q is

q1 = z̃TW
− 1

2
22 x ∼ N (0, z̃TW−1

22 z̃). (A.34)

Letting

a := (z̃TW−1
22 z̃)

− 1
2 q1 =

√
v2q1 ∼ N (0, 1), (A.35)

we can write q1 = a/
√
v2. Therefore, it remains to obtain a stochastic representation

of q̃ := [q2, . . . , qN−1]
T.

Conditional on q1, we have

q̃|q1 ∼ N
(
−H−1

22 H21q1,H
−1
22

)
, (A.36)

and we can write

q̃ = −H−1
22 H21q1 +H

− 1
2

22 x1 =
a

√
v2
H

− 1
2

22 x2 +H
− 1

2
22 x1, (A.37)

where x1 ∼ N (0N−2, IN−2), and it is independent of x2 and H22. In addition,

using Theorem 3.1 and Corollary 3.1 from [14], we can write

H
− 1

2
22 [x1, x2]

d
= [x̃1, x̃2]C

−1, (A.38)
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where x̃1 ∼ N (0N−2, IN−2), x̃2 ∼ N (0N−2, IN−2), and C is a lower triangular ma-

trix such that CCT ∼ W2(T−N+3, I2), and (x̃1, x̃2,C) are mutually independent.

Using the Bartlett decomposition (see [13], p.99), we can write

C−1 =

[
1√
w2

0
b√
w1w2

1√
w1

]
, (A.39)

where b ∼ N (0, 1), w1 ∼ χ2
T−N+2, w2 ∼ χ2

T−N+3, and they are mutually indepen-

dent. This allows us to write

H
− 1

2
22 x1

d
=

x̃1√
w2

+
bx̃2√
w1w2

, (A.40)

H
− 1

2
22 x2

d
=

x̃2√
w1
. (A.41)

With all these random variables, we can write

σ̂2
g =

σ2
gv1

T
, (A.42)

µ̂g =
σg√
T

(
z1 + a

√
u

√
v2

)
, (A.43)

ψ̂2 = uz̃TW−1
22 z̃ =

u

v2
, (A.44)

ŵg = wg + σgΣ
− 1

2PR̃q

= wg + σgΣ
− 1

2P (z̃q1 +Rq̃)

= wg + σgΣ
− 1

2P

[
ay

√
v2u

+R

(
a

√
v2
H

− 1
2

22 x2 +H
− 1

2
22 x1

)]
d
= wg + σgΣ

− 1
2P

[
ay

√
v2u

+R

(
ax̃2√
v2w1

+
x̃1√
w2

+
bx̃2√
w1w2

)]
, (A.45)

ŵz =
√
TuΣ− 1

2PW−1
22 z̃

=

√
Tu

v2
Σ− 1

2P
(
z̃ +RH

− 1
2

22 x2

)
d
=

√
T

v2
Σ− 1

2P

(
y +

√
u
Rx̃2√
w1

)
. (A.46)

Letting

t1 :=
x̃2√
w1

∼ tT−N+2(IN−2)√
T −N + 2

, (A.47)

t2 :=
1

√
w2

(IN−2 + t1t
T

1 )
− 1

2 (t1b+ x̃1) ∼
tT−N+3(IN−2)√

T −N + 3
, (A.48)
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which are mutually independent, we can write

ŵg
d
= wg + σgΣ

− 1
2P

[
a

√
v2u

y +R

(
a

√
v2
t1 + (IN−2 + t1t

T

1 )
1
2 t2

)]
, (A.49)

ŵz
d
=

√
T

v2
Σ− 1

2P
(
y +

√
uRt1

)
. (A.50)

This completes the proof.

A.2. Proof of Theorem 2.2

From (A.45) and (A.46), we obtain

Lŵg = Lwg + σgLΣ
− 1

2P

[
ay

√
v2u

+R

(
ax̃2√
v2w1

+
x̃1√
w2

+
bx̃2√
w1w2

)]
, (A.51)

Lŵz =

√
T

v2
LΣ− 1

2P

(
y +

√
u
Rx̃2√
w1

)
. (A.52)

Let

y̌ := LΣ− 1
2Py ∼ N (

√
TLwz,A), (A.53)

x̌1 := LΣ− 1
2PRx̃1 ∼ N (0k, B̃), (A.54)

x̌2 := LΣ− 1
2PRx̃2 ∼ N (0k, B̃), (A.55)

where

A := LΣ− 1
2PP TΣ− 1

2LT = LQLT, (A.56)

B̃ := LΣ− 1
2PRRTP TΣ− 1

2LT = A− LΣ− 1
2PyyTP TΣ− 1

2LT

u
= A− y̌y̌T

u
,

(A.57)

where Q is defined in (1.3). Depending on the matrix L, the rank of A can be

less than k, in which case A is not invertible. Suppose the rank of A is m, with

m ≤ min(k,N − 1). We perform an eigen-decomposition of A as A = V DV T,

where D is a diagonal matrix of the m nonzero eigenvalues of A and V is an k×m
matrix of the corresponding eigenvectors. Let

ỹ :=D− 1
2V Ty̌ ∼ N (

√
TD− 1

2V TLwz, Im). (A.58)

Defining u0 := u− ỹTỹ, we have

u0 ∼ χ2
N−m−1(Tψ

2 − TwT

zL
TV D−1V TLwz), (A.59)

and it is independent of ỹ. When m = N − 1, we set u0 = 0. Note that we can set

y̌ = V D
1
2 ỹ because

V D
1
2 ỹ ∼ N (

√
TLwz,A). (A.60)

The mean of V D
1
2 ỹ is obtained by using

E[V D
1
2 ỹ] =

√
TV V TLwz =

√
T (Ik − Ṽ0Ṽ

T

0 )Lwz =
√
TLwz, (A.61)
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where Ṽ0 is the k × (k − m) matrix of the eigenvectors associated with the zero

eigenvalues of A. The last equality holds because

Lwz = LΣ
− 1

2PP TΣ− 1
2µ (A.62)

is a linear combination of the columns of LΣ− 1
2P , so it is in the span of A and we

have Ṽ T
0 Lwz = 0k−m.

Define

B := Im −
1−

√
u0

u

ỹTỹ
ỹỹT, (A.63)

and it can be shown that

V D
1
2BBTD

1
2V T = V D

1
2

(
Im − 1

u
ỹỹT

)
D

1
2V T

= A− V D
1
2 ỹỹTD

1
2V T

u

= A− y̌y̌T

u
= B̃. (A.64)

We can write x̌1 = V D
1
2Bq1 and x̌2 = V D

1
2Bq2 with

q1 ∼ N (0m, Im), (A.65)

q2 ∼ N (0m, Im), (A.66)

and q1 and q2 are mutually independent.

With these random variables, we can now write

Lŵg
d
= Lwg + σgV D

1
2

[
a

√
v2u

ỹ +B

(
q1√
w2

+

(
a

√
v2

+
b

√
w2

)
q2√
w1

)]
, (A.67)

Lŵz
d
=

√
T

v2
V D

1
2

(
ỹ +

√
u
Bq2√
w1

)
. (A.68)

This stochastic representation requires 3m+8 random variables, and we can reduce

this number to 3m+ 5 by using

Lŵg
d
= Lwg + σgV D

1
2

[
a

√
v2u

ỹ +B

(
a

√
v2
t̃1 + (Im + t̃1t̃

T

1 )
1
2 t̃2

)]
, (A.69)

Lŵz
d
=

√
T

v2
V D

1
2

(
ỹ +

√
uBt̃1

)
, (A.70)

where

t̃1 :=
q2√
w1

∼ tT−N+2(Im)√
T −N + 2

, (A.71)

t̃2 :=
1

√
w2

(Ik + t̃1t̃
T

1 )
− 1

2 (q1 + bt̃1) ∼
tT−N+3(Im)√
T −N + 3

. (A.72)

This completes the proof.
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A.3. Proof of Theorem 2.3

Using Theorem 2.1, the mean of Lη̂ is

E[Lη̂] =
√
TLΣ− 1

2PE
[
y

yTy

]
=

√
TLΣ− 1

2P

[
1F1

(
1; N+1

2 ;−Tψ2

2

)
N − 1

√
TP TΣ− 1

2µ

]

=
T

N − 1
1F1

(
1;
N + 1

2
;−Tψ

2

2

)
Lwz, (A.73)

provided N > 2, where the second equality follows from Equation (EC.53) in [6].

The proof of Cov
[
Lη̂,

(
σ̂2
g , µ̂g,Lŵg

)]
= (0k,0k,0k×k) is straightforward. Turn-

ing to the covariance between Lη̂ and ψ̂2, we have

Cov[Lη̂, ψ̂2] = E[Lŵz]− E[Lη̂]E[ψ̂2], (A.74)

where E[Lŵz], E[Lη̂], and E[ψ̂2] are available in (2.15) and (2.24), which

yields (2.26). Finally, the covariance matrix of Lη̂ is

Var[Lη̂] = LE[η̂η̂T]LT − E[Lη̂]E[Lη̂]T, (A.75)

where E[Lη̂] is given by (2.24) and

E[η̂η̂T] = TΣ− 1
2PE

[
1

u2
(y +

√
uRt1)(y +

√
uRt1)

T

]
P TΣ− 1

2 . (A.76)

Since t1 has zero mean and is independent of y and R, we have

E[η̂η̂T] = TΣ− 1
2PE

[
yyT

u2
+
Rt1t

T
1R

T

u

]
P TΣ− 1

2 . (A.77)

The matrix R is such that RRT = IN−1 − yyT/u, and thus

E
[
Rt1t

T
1R

T

u

]
=

1

T −N
E
[
RRT

u

]
=

1

T −N

(
E
[
1

u

]
IN−1 − E

[
yyT

u2

])
. (A.78)

This means that E[η̂η̂T] becomes

E[η̂η̂T] =
T

T −N
Σ− 1

2P

(
E
[

1

yTy

]
IN−1 + (T −N − 1)E

[
yyT

(yTy)2

])
P TΣ− 1

2 .

(A.79)

Using Lemma 3 and Equation (EC.55) in [6], we can show that for N > 3,

E
[

1

yTy

]
=

1F1

(
1; N−1

2 ;−Tψ2

2

)
N − 3

, (A.80)

E
[
yyT

(yTy)2

]
=

1F1

(
2; N+1

2 ;−Tψ2

2

)
(N − 1)(N − 3)

IN−1

+
1F1

(
2; N+3

2 ;−Tψ2

2

)
(N + 1)(N − 1)

TP TΣ− 1
2µµTΣ− 1

2P . (A.81)
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Plugging (A.80) and (A.81) into (A.79), the covariance matrix of Lη̂ becomes

Var[Lη̂] =
T

(N − 3)(T −N)
1F1

(
1;
N − 1

2
;−Tψ

2

2

)
A

+
T (T −N − 1)

(N − 1)(N − 3)(T −N)
1F1

(
2;
N + 1

2
;−Tψ

2

2

)
A

+
T 2(T −N − 1)

(N2 − 1)(T −N)
1F1

(
2;
N + 3

2
;−Tψ

2

2

)
Lwzw

T

zL
T

− T 2

(N − 1)2
1F1

(
1;
N + 1

2
;−Tψ

2

2

)2

Lwzw
T

zL
T, (A.82)

which yields (2.27) after simplifications. This completes the proof.

A.4. Proof of Theorem 3.1

Using the exact finite-sample formula for the mean and covariance matrix of (σ̂2
g , µ̂g,

ψ̂2,Lŵg,Lŵz) in (2.15)–(2.16), we can directly obtain the asymptotic mean and

covariance matrix in (3.1)–(3.2) when N is fixed while T → ∞.

Therefore, we are left with proving that the asymptotic distribution is normal,

which we show using Theorem 2.2. Let â := a/
√
T , ŷ := ỹ/

√
T , ẑ := z/

√
T ,

û0 := u0/T , v̂1 := v1/T , and v̂2 := v2/T . Then, when N is fixed while T → ∞, we

have
√
T â ∼ N (0, 1), (A.83)

√
T (ŷ −D− 1

2V TLwz) ∼ N (0m, Im), (A.84)
√
T (ẑ − µg/σg) ∼ N (0, 1), (A.85)

√
T (û0 − (ψ2 −wT

zL
TV D−1V TLwz)) (A.86)

d→ N (0, 4(ψ2 −wT

zL
TV D−1V TLwz)), (A.87)

√
T (v̂1 − 1)

d→ N (0, 2), (A.88)
√
T (v̂2 − 1)

d→ N (0, 2), (A.89)
√
T t̃1

d→ N (0m, Im), (A.90)
√
T t̃2

d→ N (0m, Im). (A.91)

Since the distribution of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz) can be written as a function of

(â, ŷ, ẑ, û0, v̂1, v̂2, t̃1, t̃2), it is asymptotically normal from the delta method. This

completes the proof.

A.5. Proof of Theorem 3.2

Using the exact finite-sample formula for the mean and covariance matrix of (σ̂2
g , µ̂g,

ψ̂2,Lŵg,Lŵz) in (2.15)–(2.16), we can directly obtain the asymptotic mean and

covariance matrix in (3.3)–(3.4) when N → ∞, T → ∞, and N/T → ρ ∈ (0, 1).
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Therefore, we are left with proving that the asymptotic distribution is normal,

which we show using Theorem 2.2. Let â := a/
√
T , ŷ := ỹ/

√
T , ẑ := z/

√
T ,

û0 := u0/T , v̂1 := v1/T , and v̂2 := v2/T . Then, when N → ∞, T → ∞, and

N/T → ρ ∈ (0, 1), we have
√
T â ∼ N (0, 1), (A.92)

√
T (ŷ −D− 1

2V TLwz) ∼ N (0m, Im), (A.93)
√
T (ẑ − µg/σg) ∼ N (0, 1), (A.94)

√
T (û0 − (ρ+ ψ2 −wT

zL
TV D−1V TLwz))

d→ N (0, 2ρ+ 4(ψ2 −wT

zL
TV D−1V TLwz)), (A.95)

√
T (v̂1 − (1− ρ))

d→ N (0, 2(1− ρ)), (A.96)

√
T (v̂2 − (1− ρ))

d→ N (0, 2(1− ρ)), (A.97)

√
T t̃1

d→ N
(
0m,

1

1− ρ
Im

)
, (A.98)

√
T t̃2

d→ N
(
0m,

1

1− ρ
Im

)
. (A.99)

Since the distribution of (σ̂2
g , µ̂g, ψ̂

2,Lŵg,Lŵz) can be written as a function of

(â, ŷ, ẑ, û0, v̂1, v̂2, t̃1, t̃2), it is asymptotically normal from the delta method. This

completes the proof.
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