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Single plots or shares of land - How modeling of crop choices in 

bio-economic farm models influences simulation results 

Christoph Pahmeyer, Till Kuhn, Wolfgang Britz 

Abstract 

In bio-economic farm models, crop choices are generally depicted as shares of land types which are 

aggregates of plots with similar characteristics. The ongoing process of digitalization allows access to 

highly detailed, spatially explicit farm data and facilitates to represent single plots instead. In our paper, 

we examine how different approaches to model crop choices influence the results of an arable farm in 

a bio-economic model. Three possible approaches are considered: ‘single plots’ with one crop per 

season, crop shares of land differentiated by soil type, called ‘categorized’, and crop shares on all arable 

land, termed ‘aggregate’. The analysis is conducted using a highly detailed, spatially explicit dataset of 

8,509 arable farms located in the German federal state of North Rhine-Westphalia. Our analysis 

indicates that the ‘aggregate’ and ‘categorized’ land endowment approaches produce similar simulation 

results, which however diverge from the ‘single plot’ approach. We find that on average, crop choices 

per farm differ by 11% between the spatially explicit ‘single plot’ and the ‘aggregate’ land endowment 

approach in our case study region. Total work requirements are found to be on average 10% higher in 

the ‘aggregate’ approach compared to the ‘single plot’ approach, while energy requirements are 

relatively similar (average difference of 2.2%). Among other factors, we find the difference to be highly 

correlated with the number of plots a farm is endowed with. For instance, the average difference in crop 

choices increases from the sample average of 11% to 20.8% for those farms that are endowed with less 

than 10 plots (~ 50% of the case study population). Differences in simulated farm profits when 

comparing the ‘aggregate’ land endowment approach to the ‘single plot’ approach are found to range 

between -306 €/ha to 434 €/ha (mean: 4.57 €/ha, median: - 9.93 €/ha, S.D.: 71.47 €/ha). Our results 

suggest that for bio-economic farm analyses focusing on aggregate results over a larger sample of farms, 

both the ‘aggregate’ and ‘categorized’ land endowment approaches are sufficiently accurate in case of 

similar average numbers of plots per farm as in our study. If single farm results or variability in the 

population are targeted, we propose to incorporate the ‘single plot’ approach in bio-economic farm 

analyses. The same holds for decision support systems focusing on individual farm responses to policy 

changes or technology adoption. 

Keywords: Land aggregation, Land fragmentation, spatial resolution, farm model, BEFM 

JEL classification: Q15, Q18, Q19 
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1 Introduction 

A farm’s land endowment is generally composed of multiple individual plots (Di Falco et al., 2010), 

defined as the smallest homogeneously managed areas of land in the sense that on each plot one single 

crop is cultivated (Nesme et al., 2010). Depending on their spatial dispersion, plots may differ in size, 

soil type and quality, as well as farm-to-field distance. The dispersion of plots over a given area is 

commonly referred to as land fragmentation (King and Burton, 1982). Higher degrees of land 

fragmentation are frequent among farming systems around the world, exhibiting both negative and 

positive consequences in different dimensions (Di Falco et al., 2010; Geppert et al., 2020; Latruffe and 

Piet, 2014). While higher land fragmentation fosters biodiversity through crop diversification and 

increased amount of field margins and hedges (Di Falco et al., 2010; Geppert et al., 2020; Latruffe and 

Piet, 2014), farm profitability is reduced, as labor requirements and variable costs of cultivation are 

generally found to be increasing (Di Falco et al., 2010; Janus and Markuszewska, 2017; Latruffe and 

Piet, 2014; Lu et al., 2018). 

Despite these implications, bio-economic farm models (BEFM) rarely consider single plots and 

resulting indivisibilities in crop choices. Instead, they typically simulate shares of each crop or crop 

rotation on land endowments, depicted by (in)equality constraints. This neglects possible effects of land 

fragmentation and does not represent the decision problem faced by farmers, as illustrated by the 

following example. Suppose a farm is endowed with 15 ha of land divided into three plots of 7.5, 5 and 

2.5 ha, on which three possible crops can be cultivated (wheat, rapeseed, and barley). A BEFM depicting 

the farm’s land endowment by a single constraint, and considering additionally maximal crop shares or 

labor use, may yield optimal crop acreages such as 3.75 ha of rapeseed (25%), 5.625 ha of wheat 

(37.5%), and 5.625 ha of barley (37.5%). These crop shares cannot be realized without dividing the 

given plots into smaller units, which may not be feasible or sensible due to technical or management 

constraints. 

Until recently, data on single plots, such as size, soil quality and crop choice, were rarely available 

as public datasets. BEFMs were therefore forced to model crop choices by shares on aggregate land 

constraints. However, detailed and spatial explicit plot data become increasingly available for research, 

for instance based on the digital applications for direct payments under the Common Agricultural Policy 

which became mandatory in 2016 (European Commission, 2014). To receive financial support, farmers 

annually report their planned crop choices for each plot based on geo-referenced land registers 

(cadasters). Such geo-referenced data at plot level can be linked to high resolution maps, for instance on 

soil type, soil quality or climate (Martini, 2018; Martini et al., 2014). Such increasingly available data 

allow depicting single plots and related decision taking in BEFMs. The availability of detailed data also 

increases the potential to use BEFMs in the context of decision support systems (DSS) which aim at 

supporting farm management decisions. Using a farm’s single plots instead of its total land endowment 
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represents more accurately the actual decision problems farmers face (Pahmeyer et al., 2021a) and, 

thus, potentially increase the acceptance of DSS. 

Depicting crop choices on the single-plot level in a BEFM also allows for a better representation 

of plot related policy measures. Command-and-control instruments as part of agri-environmental 

policies increasingly prescribe management restrictions depending on a plot’s location and further 

characteristics. For instance, the German implementation of the EU Nitrates Directive comprises 

restrictions in nitrate sensitive areas at single-plot level. Equally, farmers might specifically enroll plots 

with lower productivity in agri-environmental opt-in measures. Productivity differences across plots and 

their consequences for crop choices are also discussed in the literature relating to BEFMs (linear 

programs). For instance, in his seminal on Positive Mathematical Programing Approach (PMP), Howitt 

(1995) mentions land heterogeneity as a key reason why linear models with an aggregate land constraint 

cannot be properly calibrated to observed crop allocation choices. 

The simplified modeling of the crop choice problem based on shares of land (type) constraints 

likely introduces an aggregation bias. The bias is related to plot heterogeneity, i.e. the difference between 

mean values of plot characteristics as depicted by an aggregate constraint and the values of the individual 

plots represented by the aggregate. Furthermore, modeling of crop shares on aggregates of land neglects 

the indivisibility of plots. The magnitude and implications of these two effects have not been studied 

yet, as it requires a model depicting individual plots and a matching dataset as a benchmark. This paper 

aims to fill this gap. First, we present and discuss the current state-of-the-art approaches to model crop 

choices in BEFMs as used for policy and technology evaluation studies and in decision support systems 

(DSS). Second, we demonstrate how these different approaches affect BEFM model results in a case 

study consisting of arable farms in the German federal state of North Rhine-Westphalia. 

2 Material and Methods 

2.1 Depicting competition for land in BEFMs 

Our analysis focuses on so-called ‘mechanistic’ BEFMs which, according to Janssen and van Ittersum 

(2007), build on existing theory and knowledge, as opposed to ‘empirical’ BEFMs whose functions are 

estimated from observed data (Austin et al., 1998). Mechanistic BEFMs are mostly optimization models, 

frequently based on mathematical programming, either (mixed integer) linear programming (MILP, LP) 

or quadratic (mixed integer) programming (QMIP, QP) (Janssen and van Ittersum, 2007). Three options 

to depict the crop choice problem are found in BEFMs as presented in . 
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Figure 1: Three approaches to depict the land endowment in a BEFM based on mathematical 

programming 

 

The first approach depicts the crop choice problem based on a resource constraint relating to a single 

aggregate land endowment and is therefore referred to as the ‘aggregate’ (land endowment) approach 

(Figure 1, right panel). Accordingly, the sum of the cultivation areas 𝑋𝑗 (in ha) of crops 𝑗 is required to 

be less than the total land endowment 𝑏. Given gross margins of each crop 𝑐𝑗 (in €/ha), a simple, total 

gross margin (𝑍) maximizing farm LP may be written as follows (following the notation from Hazel 

and Norton (1986)): 

 

max 𝑍 = ∑ 𝑐𝑗 ⋅ 𝑋𝑗

𝑛

𝑗

 (1) 

such that 

 

∑ 𝑋𝑗 ≤ 𝑏

𝑛

𝑗

 (2) 

and  

 
𝑋𝑗 ≥ 0, for all 𝑗 = 1 to 𝑛 (3) 

In this approach the cultivation area designated to a certain crop (𝑋𝑗) is given as a share of the aggregate 

land endowment 𝑏. 

The second approach, referred to as the ‘categorized’ (land endowment) approach, extends the first 

by disaggregating the total land endowment into sub-categories. The land endowment can for instance 

be differentiated by type of land (arable, grassland), soil type, soil-climate-zone or a combination of 
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these. For each subcategory of land 𝑠, different sets of allowed crops 𝑗𝑠 may be defined and gross 

margins for each crop might differ across land sub-categories, i.e. 𝑐𝑗,𝑠. Incorporating these changes, the 

LP depicted by Eq. 1 – Eq. 3 may be extended as follows: 

 

max 𝑍 = ∑ ∑ 𝑐𝑗,𝑠 ⋅ 𝑋𝑗,𝑠

𝑜

𝑠

𝑛

𝑗

 (4) 

such that 

 ∑ 𝑋𝑗,𝑠 ≤ 𝑏𝑠

𝑛

𝑗

, for all 𝑠 = 1 to 𝑜 (5) 

and  

 𝑋𝑗,𝑠 ≥ 0, for all 𝑗 = 1 to 𝑛 (6) 

Both approaches apply the same modeling principle of designating a fraction of (a subcategorized) land 

endowment to a certain crop, rendering 𝑋𝑗,𝑠 or 𝑋𝑗 positive, continuous variables.  

The third approach considers single plots by using binary variables instead. Gross margins for each 

crop 𝑗 can now be differentiated for each plot 𝑘 (figure 𝑐𝑗,𝑘, in €/ha). A binary variable 𝑉𝑗,𝑘 indicates 

whether crop 𝑗 is selected (=1) or not (=0) for plot 𝑘. The gross margin realized on a plot is the plot 

specific gross margin 𝑐𝑗,𝑘 per ha of the selected crop times the plot size 𝑥𝑘 in ha. The introduction of the 

binary variables 𝑉𝑗,𝑘 leads to a so-called ‘binary integer programming’ or ‘mixed-integer programming’, 

the latter if the BEFM also contains continuous variables. 

The resulting (mixed) integer program, referred to as the ‘single plot’ (land endowment) approach, 

may be written as follows:  

 max 𝑍 = ∑ ∑ 𝑐𝑗,𝑘 ⋅ 𝑥𝑘 ⋅ 𝑉𝑗,𝑘

𝑚

𝑘

𝑛

𝑗

 (7) 

such that 

 ∑ 𝑉𝑗,𝑘

𝑛

𝑗

= 1, for all 𝑘 = 1 to 𝑚 (8) 

and  
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 𝑉𝑗,𝑘 ∈ {0,1}, for all 𝑗, 𝑘 = 1 to 𝑛, 𝑚 (9) 

The ‘categorized’ approach could allow for plot specific analyses if each plot received its own land sub-

category 𝑠. However, as this approach uses continuous variables, it returns optimal shares of crops on 

each plot (𝑋𝑗,𝑠) and implies that plots may be split arbitrarily. We do not consider this further as splitting 

plots breaks their definition as the smallest homogeneously managed units of land. 

The differences in the simulation results using the ‘aggregate’ or ‘categorized’ approach compared 

to the ‘single plot’ approach relate to two main effects. First, the aggregation bias resulting from the 

aggregation over plot characteristics as a measure of land fragmentation (plot size, soil quality, farm-to-

field distance). In the case of the ‘categorized’ approach, the aggregation bias will largely be driven by 

the number of categories, and whether the model results are sensitive to the choice of categorization 

(e.g. categorization by soil type, soil quality, single plots). Second, the effect of considering indivisibility 

in the ‘single plot’ approach compared to the fractions allowed in the ‘aggregate’ and ‘categorized’ 

approach. Here, the assumption that plots refer to the smallest homogenously managed units of land 

plays a central role, as this implies that the plots cannot be divided into smaller sub-units in our analysis. 

Table 1 gives examples of BEFMs identified from the literature for each of the three approaches. 

As noted by Janssen and van Ittersum (2007), many BEFMs are developed for specific case studies and 

are rarely reused. For the sake of simplicity and relevancy, the overview presented in Table 1 is limited 

to some frequently used BEFMs in Europe, mainly drawing on the review article of Britz et al. (2021).  

2.2 Design of experiments 

For the underlying analysis, the BEFM FRUCHTFOLGE (Pahmeyer et al., 2021a) is used to examine how 

the different land endowment approaches affect the simulation results. FRUCHTFOLGE is chosen as it 

incorporates the technically demanding ‘single plot’ approach as its default. As the ‘categorized’ and 

‘aggregate’ approaches are simplifications of the ‘single plot’ approach, these can be modeled in the 

FRUCHTFOLGE BEFM without requiring changes to the codebase of the model. Technically, we redefine 

the 𝑉𝑗,𝑘 as fractional variables and define one or multiple categorized larger plots, which depict the 

average characteristics of the single plots and their summed-up size. FRUCHTFOLGE is an open-source 

software, and available in a public code versioning repository1. 

The ‘categorized’ land endowment approach allows for varying level of detail. Considering the 

BEFMs outlined in Table 1, all models distinguish between arable and permanent grassland, and some 

additionally between soil types (ORFEE and FARMDYN). According to the focus of this paper, only 

                                                      

 

1 The code is hosted at the following GitHub repository: https://doi.org/10.5281/zenodo.4765941  

https://doi.org/10.5281/zenodo.4765941
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arable farms without livestock are considered to isolate the effects of the varying plot characteristics and 

land endowment approaches on the results. Therefore, differentiation between arable and permanent 

grassland is not used in the ‘categorized’ approach, instead we depict the more evolved differentiation 

by soil type. 

Table 1: Use of the different land endowment approaches in the literature, mainly based on Britz et al. 

(2021). 

Approach Used by (selection of BEFMs) Primary use cases 

‘Aggregate’ CAPRI-FT (Gocht et al., 2017, 2013; Gocht and Britz, 

2011; Schroeder et al., 2015) 

IFM-CAP (Louhichi et al., 2018, 2015; M’barek et al., 

2017) 

Regional/Sectoral 

policy analysis 

‘Categorized’ FSSIM (Kanellopoulos et al., 2014; Louhichi et al., 2010; 

van Ittersum et al., 2008) 

ORFEE (Mosnier et al., 2017) 

FARMDYN (Kuhn et al., 2019, 2020; Lengers, 2012; 

Lengers et al., 2014, 2013; Pahmeyer and Britz, 2020; 

Seidel and Britz, 2019) 

Ex-ante on-farm 

analysis of policy and 

technology adoption 

‘Single plot’ MINRISK (Radulescu and Radulescu, 2012) 

FRUCHTFOLGE (Pahmeyer et al., 2021a) 

Decision support 

 

The arable farms are given the option to cultivate nine of the most frequently cultivated crops in the case 

study area, jointly accounting for more than 78% of the total arable land (IT.NRW, 2019). Prices and 

direct costs (seeds, fertilizers, plant protectants) for each crop represent averages of the past 18 years 

within the case-study region (KTBL, 2020). Plot specific yields are calculated based on a linear 

regression function including the soil quality as an independent variable3, estimated from average yields 

and soil quality ratings in the 45 NUTS 2 regions in Germany over 19 years. In the ‘categorized’ 

approach, crop yields are calculated for each soil type category of the farm, using the average soil quality 

                                                      

 

3 See the following notebook for details: https://observablehq.com/@chrispahm/influence-of-soil-quality-and-soil-moisture-

index-on-crop-yi. The regression results can also be found in the appendix, Table A3. 

https://observablehq.com/@chrispahm/influence-of-soil-quality-and-soil-moisture-index-on-crop-yi
https://observablehq.com/@chrispahm/influence-of-soil-quality-and-soil-moisture-index-on-crop-yi
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of the plots within the category. In the ‘aggregate’ approach, whole farm average yields are calculated 

based on the average soil quality of the plots.  

Machine costs are calculated using the regression model from Heinrichs et al. (2021) which 

considers farm-to-field distances and plot sizes. In the ‘single plot’ approach, the individual farm-to-

field distance and plot size of a plot are reflected in the calculations. In the ‘categorized’ approach, 

average farm-to-field distances and plot sizes for each soil type category are considered, while in the 

‘aggregate’ approach, whole farm averages are taken. For all crops, a fixed gross wage rate of 19.19 €/h 

(net wage rate of 13.5 €/h) is assumed (KTBL, 2020). The calculation of the labor costs per crop follows 

the same concept as the calculation of the machine costs for each land endowment approach. 

The profitability per ha for a crop is calculated as the difference between crop revenues and direct 

costs as well as costs for machinery and labor. Figure 2 illustrates the resulting difference between the 

‘aggregate’ and the ‘single plot’ approach using the example of winter wheat. In the ‘aggregate’ and 

‘categorized’ approach, the profitability of a crop is independent of the chosen share, reflecting the 

constant returns to scale of the technology underlying the Leontief production function used in a LP. 

This is not the case for the ‘single plot’ approach. Here, the average realized profit per ha of a crop 

changes depending on which plot the crop is cultivated on. Ordering the plots from highest to lowest 

profitability in Figure 2 shows that this implies decreasing return to scale, similar to the convexity found 

in quadratic programming approaches typically used with PMP (Heckelei et al., 2012). 

Constraints controlling maximum allowed crop shares are introduced in the BEFM for all three 

land endowment approaches, they reflect minimum waiting period between years where the same crop 

is cultivated on a plot (see Table A1 in the appendix). Due to the agronomic intolerance of sugar beets 

and rapeseed in crop rotations, their combined maximum share is limited to 33% (ISIP, 2021). Further 

constraints reflect obligations from the EU’s so-called “greening” measures: Farms above 10 ha and 

below 30 ha need to cultivate at least two crops, with the major crop not covering more than 75% of the 

arable land. Farms above 30 ha need to cultivate a minimum of three crops, with the major crop not 

covering more than 75%, and the sum of the two major crops not covering more than 95% of the arable 

land. Furthermore, farms endowed with more than 15 ha need to devote 5% of their arable land to a so-

called ecological focus area. For the farms affected by this measure, the constraint needs to be fulfilled 

by cultivating 5% of field beans in our simplified model. A detailed description of the greening measures 

is provided by Gocht et al. (2017). 
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Figure 2: Marginal profitability per hectare of wheat cultivation for all plots of an exemplary farm in 

both the ‘aggregate’ (straight line), and ‘single plot’ (stepped line) approach, sorted by descending order. 

Plots exhibiting the highest marginal profitability are generally characterized by higher soil qualities, 

larger plot sizes, and closer proximity to the farm. 

 

Table 2 gives an overview of the input-output coefficients for each crop, including minimum and 

maximum values for the case study region, reflecting varying soil qualities, farm-field-distances and 

plot sizes4. 

Each farm is simulated once for each of the three land endowment approaches and subsequently, 

results of the ‘categorized’ and ‘aggregate’ approaches are compared with the results of the ‘single plot’ 

approach. The provided indicators depict agronomic (‘Summed difference in crops shares’), social 

(‘Difference in total work load’), environmental (‘Difference in cumulative energy requirement’), and 

economic (‘Difference in profit per ha’) differences. The ‘Summed difference in crops shares’ indicator 

for a farm is calculated as follows. First, the absolute differences of the area allocated to each crop 𝑗 

under the aggregate approaches (𝑋_𝑎𝑔𝑔𝑗, both for the ‘categorized’ and ‘aggregate’ approaches) and 

the ‘single plot’ 𝑋_𝑏𝑖𝑛𝑗 approach are summed up. Second, to account for farm size, the resulting sum is 

                                                      

 

4 The data may be explored interactively in the following notebook: https://observablehq.com/@chrispahm/crop-gross-

margins-in-germany?collection=@chrispahm/agriculture/2 

https://observablehq.com/@chrispahm/crop-gross-margins-in-germany?collection=@chrispahm/agriculture/2
https://observablehq.com/@chrispahm/crop-gross-margins-in-germany?collection=@chrispahm/agriculture/2
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divided by the farm’s total land endowment 𝑏. And third, as a deviation in the share for a crop implies 

a deviation in the opposite direction for other crops, the average absolute deviation it divided by two: 

 Summed difference in crop shares (%) = 
1

2
∑

|𝑋_𝑏𝑖𝑛𝑗 − 𝑋_𝑎𝑔𝑔𝑗|

𝑏
 

𝑛

𝑗

 (10) 

Following this calculation, the ‘Summed difference in crop shares’ indicator results in a percentage 

value defined in the range [0,100%]. 

Table 2: Economic figures for each crop allowed to be cultivated in the BEFM. If present, multiple rows 

per column indicate minimum (top row) and maximum (bottom row) values. Data based on KTBL 

(2020) and Heinrichs et al. (2021). 

Crop Price (€/dt) Yield (dt/ha) Revenues (€/ha) Costs (€/ha) Profit (€/ha) 

Field beans 18.52 26.57 

45.02 

492.08 

833.77 

820.5 

1315.3 

-823.2 

13.3 

Wheat 16.95 58.61 

97.35 

993.44 

1650.08 

986.6 

1656.2 

-662.8 

663.5 

Rye 15.69 47.85 

66.38 

750.77 

1041.50 

899.1 

1410.7 

-659.9 

142.4 

Barley 16.01 44.87 

85.48 

718.37 

1368.53 

925.4 

1508.2 

-789.9 

443.2 

Maize - Corn 17.38 79.36 

113.38 

1379.28 

1970.54 

1562.6 

2109.4 

-730.1 

407.9 

Rapeseed 36.53 30.99 

44.82 

1132.06 

1637.27 

1020.9 

1529.6 

-397.6 

616.4 

Sugar beets 3.54 675.68 

814.10 

2391.91 

2881.91 

1404.1 

1879.7 

512.2 

1477.8 

Maize - Silage 2.80 388.18 

510.22 

1086.90 

1428.62 

1315.4 

2093.2 

-1006.3 

113.2 

Summer oats 15.13 36.75 

58.87 

556.03 

890.70 

709.0 

1209.0 

-652.9 

181.7 

Note: For the underlying minimum and maximum values of soil quality, plot size and farm-to-field distance, see the following 

section (section 2.3). 
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In order to evaluate which farm characteristics drive differences of indicator results, ordinary least 

squares (OLS) regressions are performed in R, Version 3.6.1 (R Core Team, 2019).   

2.3 Case study region 

Our analysis builds on a synthetic farm population of the German federal state of North-Rhine 

Westphalia (Pahmeyer et al., 2021b) of which all 8,509 specialized arable farms are considered. As the 

classification is based on shares of revenues by farm branch in total farm revenues (Kuhn and Schäfer, 

2018), specialized arable farms might still be involved, for instance, in fattening of ruminants and 

manage some grasslands. However, the management of permanent grassland is left out of the analysis 

as animal husbandry is not considered. Figure 3 gives an overview of the spatial dispersion of the main 

farm characteristics such as average soil quality depicted by the “Muencheberg soil quality rating” 

(SQR) (Mueller et al., 2014), farm-to-field distances, plot sizes and number of plots per farm in North-

Rhine Westphalia. Figure 4 gives an overview of the distribution of these farm characteristics among 

the population. The arable land endowments of the farms range between < 1 ha to 490 ha. The mean 

farm size is 42 ha, the median farm size is 23 ha. The farms’ average SQRs range from 23 to 95, with a 

median value of 68 (mean: 68). The deviation of SQR values within a farm is up to 42.40, with a median 

value of 4.04 and a mean value of 7.05. Average field-to-farm distances range from 0.07 km to 17.77 

km (median: 0.84 km, mean: 1.33 km). The average standard deviation (S.D.) of the farm-to-field 

distances is 1.29 km (median: 0.59 km). Plot sizes range from 0.06 ha to 33.20 ha (median: 2.5 ha, mean: 

2.76 ha), and have an average S.D of 2.24 ha (median: 1.94 ha). The number of plots the farms are 

endowed with range between 1 and 202, with a mean of 14 plots and a median value of 9 plots. 
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Figure 3: Distribution of average soil quality ratings (SQR), plot (farm-to-field) distances, plot sizes, 

and number of plots per farm within the case study region of North Rhine-Westphalia. 

For brevity, the results section therefore focuses on the difference between the ‘aggregate’ and ‘single 

plot’ approach, as depicted in Figure 5. On average, the summed difference in crop shares between the 

two approaches is 11.15% (median: 2.23%, S.D.: 19.65%). The average difference in workload is 

10.8%, while the median is 7.56% (S.D.: 11.86%), i.e., the ‘aggregate’ approach overestimates the 

required labor needs in the sample. The opposite is found for the cumulative energy requirement which 

is on average 2.23% lower in the ‘aggregate’ approach compared to the ‘single plot’ approach (median: 

0.4%, S.D.: 7.35%). The simulated average farm profits are found to be slightly higher in the ‘aggregate’ 

approach when compared to the ‘single plot’ approach (4.57 €/ha, median: -9.93 €/ha, S.D.: 71.47€ /ha). 

This effect is likely related to the relaxation of the indivisibility underlying the ‘aggregate’ approach, 

and the corresponding different crop shares. Despite the overestimated labor needs and thus costs in the 

‘aggregate’ approach, which go along with higher machinery hours and costs, the average farm profits 
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are on a par with the ‘single plot’ approach. This implies that the share of crops with larger revenues is 

higher under the aggregate approach which can also be seen in Figure 7. The histograms in Figure 5 

reveal that the differences of the indicator values are found to be relatively small for a high share of 

farms. However, for a small part of the population, the simulation approaches show large differences 

for the indicators, especially for farm profits. 

Figure 4: Histograms of selected farm characteristic among the case-study farm population. 

 

The indicator values resulting from the comparison of the ‘categorized’ approach with the ‘single plot’ 

approach are very similar to the results of the ‘aggregate’ approach, see Figure A1 in the appendix.  
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Figure 5: Histograms of differences in indicator levels comparing the simulations results of the 

'aggregate' approach with the results of the 'single plot' approach in the farm population. 

 

In order to illustrate how the different land endowment approaches combined with the varying 

characteristics of land fragmentation lead to differences in the crop shares, Figure 6 displays the crop 

choices resulting from the different land endowment approaches for an exemplary farm endowed of 

12.07 ha. Since all of the farm’s plots are of the same soil type, the simulation results of the ‘aggregate’ 

and ‘categorized’ approach are the same for this farm. However, note that plots are still heterogeneous 

considering their soil quality and field-to-farm distance. While the crop shares of wheat and rapeseed 

are also mainly similar between the ‘single plot’ and the ‘aggregate’ approach, larger differences are 

found for rye and maize. Considering the farm’s average soil quality, field-farm-distance, and plot size, 

the average profit of cultivating maize is -223.66 €/ha, while it is -309.95 €/ha for rye. In order to 

maximize profits (or minimize losses in this case), maize is selected over rye in the ‘aggregate’ (and 

‘categorized’) approach. Despite their same soil type, the plots in the far east of the farm exhibit a very 

low soil quality of 26 (SQR) (farm median: SQR of 69). On these plots, the losses of -436.27 €/ha for 

rye are smaller than for maize with -476.95 €/ha, reversing the order compared to the average. The 

BEFM therefore selects rye on these fields instead of maize in the ‘single plot’ approach. Given that the 

farm is endowed with 20 plots, the indivisibility of plots can largely be disregarded as a factor 

influencing the crop share differences, as many different combinations of plots are present to come close 

to a desired crop share. The example rather shows how the aggregation bias from the ‘aggregate’ 

approach is caused by differences between average and plot specific values of plot characteristics.  
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Figure 6: Crop choice results of the three land endowment approaches for an exemplary farm. The blue 

marker in the left panel displays the farms location. 

 

Table 3 presents the results of standardized multiple linear regression models (OLS) on differences of 

the four chosen indicators between the ‘aggregate’ and ‘single plot’ approach. The similar results for 

the ‘categorized’ approach can be found in the appendix (Table A2). For (highly) auto-correlated land 

fragmentation and farm characteristics (e.g., farm size and number of plots, or mean and median values 

of the same parameter), the characteristics with the highest-ranking Pearson’s correlation coefficient are 

used in the regression models (Figure A2 in the appendix). The number of plots is log transformed due 

to the stronger influence of fewer plots on the indicator values.  

Table 3 suggests that the number of plots present on a farm is the main driver for the ‘Summed 

difference in crop shares’ indicator. Farms endowed with fewer plots generally express greater 

differences in the optimal crop allocation between the two approaches, which reflects the impact of the 

assumed indivisibility of the plots. Furthermore, also the S.D. in the plot sizes of the farm, the mean plot 

size, as well as plot radii are found to have a stronger influence on the difference of the results in this 

indicator, displaying the influence of these factors on the aggregation bias. While higher values of the 

S.D. in plot sizes, as well as higher mean plot radii are found to increase the overall difference in crop 

allocation results, higher mean plot sizes, as well as S.D. in plot radii decrease the difference. 

Considering the difference in workload among the different land endowment approaches, again the 

number of plots, but also the mean- and S.D. of plot sizes within a farm are found to have a stronger 

influence. While the S.D. of plot sizes is found to increase the difference in the workload simulation 
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results, both an increasing number of plots as well as an increasing mean plot size are found to decrease 

the difference in the simulation results. 

Also, the difference in profit per ha between the two land endowment approaches is mainly 

influenced by the number of plots (effect of indivisibility), followed by the mean- and S.D. of plot sizes, 

and the farms S.D. in farm-to-field distances (aggregation bias). While larger mean plot radii and plot 

sizes per farm tend to have a positive influence on the profit difference (higher profits in the ‘aggregate’ 

approach simulation results compared to the ‘single plot’ approach), the number of plots, S.D. in plot 

radii, as well as the S.D. in plot sizes have a negative influence on the profit difference (higher profits 

in the ‘single plot’ approach, compared to the ‘aggregate’ approach). 

Similar to the differences in profit, also the differences in the cumulative energy requirement (CER) 

are mostly depending on the number of plots, as well as the farms mean- and S.D. of plot sizes. In this 

indicator, the number of plots, mean plot size, as well as the S.D. in plot radii is found to have positive 

influence on the difference in simulation results. On the other hand, the farms mean plot radius, S.D. in 

plot sizes, as well as the mean soil quality is found to have a negative impact on the difference in CER 

simulation results. 

Figure 7 displays the summed cultivation area in the farm population resulting from the simulation 

of the ‘aggregate’ and ‘single plot’ approaches. Mainly due to the indivisibility effect, the total 

cultivation area of the more profitable crops, namely wheat, sugar beets, as well as winter rape is higher 

in the simulation results of the ‘aggregate’ approach compared to the ‘single plot’ approach. On the 

other hand, the cultivation area of field beans, (corn) maize, oats, silage maize, winter barley, and winter 

rye is higher in the ‘single plot’ simulation results. 

In the ‘aggregate’ approach, 64% of the total farm population hit the maximum crop share 

constraint for sugar beets (20% max. crop share), and 36% of the population do so for winter rape (also 

20% max. crop share). Due to the indivisibility of plots, these figures cannot be reliably calculated for 

the ‘single plot’ approach. 
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Table 3: Standardized regression results (beta coefficients) for different indicators comparing the BEFM 

simulations results from the 'aggregate' and 'single plot' land endowment approach. 

 Dependent variable: 

 OLS 

 ‘Aggregate’ vs ‘single plot’ approach 

 

Summed diff. 

in crop shares 

(%) 

Diff. workload 

(%) 

Diff. profit 

(EUR/ha) 
Diff. CER (%) 

Mean plot radius farm [km] 0.150*** -0.049*** 0.122*** -0.158*** 

Dev. plot radius farm [km] -0.094*** 0.111*** -0.130*** 0.108*** 

ln(Number of plots [n]) -0.674*** -0.232*** -0.584*** 0.575*** 

Mean plot size farm [ha] -0.156*** -0.475*** 0.205*** 0.146*** 

Dev. plot size farm [ha] 0.303*** 1.209*** -0.304*** -0.188*** 

Mean soil quality farm [SQR] 0.027*** 0.021*** 0.060*** -0.160*** 

Dev. soil quality farm [SQR] 0.040*** 0.008 -0.007 0.057*** 

Constant -0.035*** -0.022*** -0.010 0.027*** 

Observations 8,409 8,409 8,409 8,409 

R2 0.474 0.741 0.420 0.350 

Adjusted R2 0.474 0.740 0.420 0.349 

Residual Std. Error (df = 8401) 0.651 0.510 0.716 0.748 

F Statistic (df = 7; 8401) 1,081.725*** 3,424.726*** 870.023*** 645.777*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Figure 7: Total simulated cultivation area per crop in the aggregate (A, blue) and single plot (B, orange) 

approach. 

 

Table 4 displays the standardized regression coefficients measuring the impact of various farm 

characteristics on the relative difference in the total cultivation area for each crop between the 

‘aggregate’ and ‘single plot’ approach. For all crops with a notable difference in the summed total 

cultivation area between the two approaches (see Figure 7), the number of plots as a measure of the 

indivisibility effect, the mean plot size, as well as the intra-farm S.D. of plot sizes are found to have the 

greatest influence on the relative difference in the crop shares. For oats, also the mean, as well as the 

S.D. of soil qualities is found to have an impact on the relative difference in the total cultivation area. 
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Table 4: Standardized regression results (beta coefficients) comparing the relative difference in crop cultivation area for each crop between the BEFM simulations 

results from the 'aggregate' and 'single plot' land endowment approach. 

 Dependent variable: 

 Aggregate vs 'single plot' (rel. diff) 

 OLS 

 
Field beans Wheat Rye Barley Maize - 

Corn 

Rape Sugar beets Maize - 

Silage 

Oats 

Mean plot radius farm [km] -0.059*** -0.138*** 0.001 -0.006 0.154*** -0.130*** -0.087*** 0.007 0.012 

Dev. plot radius farm [km] 0.016 0.070*** -0.028 -0.008 -0.085*** 0.106*** 0.078*** -0.010 -0.023 

ln(Number of plots [n]) -0.169*** 0.555*** -0.069*** -0.056*** -0.621*** 0.657*** 0.459*** -0.024*** -0.113*** 

Mean plot size farm [ha] 0.439*** 0.311*** 0.108*** 0.050** -0.209*** -0.157*** -0.187*** -0.035** 0.009 

Dev. plot size farm [ha] -0.195*** -0.434*** -0.070*** 0.144*** 0.331*** 0.037*** 0.072*** 0.027** -0.049*** 

Mean soil quality farm [SQR] -0.011 -0.001 -0.099*** 0.016 0.092*** -0.061*** -0.109*** -0.030*** -0.185*** 

Dev. soil quality farm [SQR] 0.035*** -0.005 0.085*** 0.001 -0.015* -0.028*** -0.069*** 0.004 0.120*** 

Constant 0.018* 0.041*** 0.008 -0.0001 -0.037*** 0.013 0.00001 -0.016** 0.008 

Observations 8,409 8,409 8,409 8,409 8,409 8,409 8,409 8,409 8,409 
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Field beans Wheat Rye Barley Maize - 

Corn 

Rape Sugar beets Maize - 

Silage 

Oats 

R2 0.095 0.356 0.029 0.033 0.415 0.405 0.198 0.005 0.079 

Adjusted R2 0.094 0.355 0.028 0.032 0.415 0.405 0.197 0.004 0.078 

Residual Std. Error (df = 8401) 0.954 0.724 0.982 0.990 0.685 0.732 0.855 0.676 0.962 

F Statistic (df = 7; 8401) 125.849*** 662.730*** 36.147*** 40.423*** 852.565*** 818.594*** 296.283*** 5.533*** 102.358*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
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3 Discussion 

Our results empirically quantify the effects of different aspects of land fragmentation on the simulation 

results of a mechanistic BEFM. The regression analysis shows that the smaller the number of plots, the 

larger the differences between the binary choice model with plots depicting land heterogeneity and the 

LP which optimizes crop shares under a constraint assuming homogenous land. This suggests that the 

effect of indivisibility dominates over the aggregation bias. As the aggregation bias rather increases with 

growing numbers of plots in a farm, the opposite effect would be found in the regression analysis if the 

aggregation bias was the major driver of differences. 

Most of the indicator values tested in our study are centered around a mean difference being close 

to zero (see Figure 5). Therefore, analysis focusing on findings for a whole farm population will likely 

attain similar average results between the ‘single plot’ and the ‘aggregate’ land endowment approach. 

However, as seen from the relatively wide range in indicator values, especially for the profitability of 

crop cultivation per hectare, simulation results for the selected farms under the two approaches can differ 

substantially. Therefore, for studies focusing on selected case study farms and their responses to new 

policies or technologies, either the ‘single plot’ approach or the ‘categorized’ approach using a sufficient 

number of categories is recommended. In the context of DSS however, solely the ‘single plot’ approach 

is recommended as it depicts the decision problem farmers face more accurately (see Pahmeyer et al., 

2021a). Furthermore, as the ‘single plot’ approach also considers the actual required workload for each 

specific plot, compared with farm averages over all plots, this approach is deemed more appropriate in 

a decision support context. However, it has to be considered that such heterogeneity requires integer 

crop choices, which renders model calibration far more difficult (Britz, 2021) compared to established 

approaches such as PMP (Heckelei et al., 2012). Equally, using integers to depict crop choices increases 

the ‘jumpiness’ in the allocative responses, and the overall higher model detail also implies that model 

result interpretation is rendered more demanding. 

In our dataset, the shares of the three dominant crops (winter wheat, sugar beet and rape seed) are 

mostly driven by maximal crop rotational constraints, which means that their profitability advantages 

over other crops do not (much) depend on soil quality, plot size or farm-to-field distance. Output price 

fluctuations for crops are not necessarily highly correlated, take sugar beets and cereals as an example. 

Hence, crops might be found as dominant or not depending on the considered years when calculating 

the profitability of each crop. The importance of this effect is therefore likely case-study dependent. The 

closer the profitability of crops are to each other under average plot characteristics of a farm, and the 

larger the heterogeneity of the plots, the more likely it is to find aggregation bias in the ‘aggregate’ and 

‘categorized’ approach in relation to the optimal crop shares.  
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In order to reproduce empirically observed crop shares in the baseline model results, BEFMs are 

commonly calibrated using either PMP (Heckelei et al., 2012) or by some more or less automated 

approach to adjust coefficients in MILPs or LPs (Britz, 2021). Among others, Howitt (1995) states 

heterogeneous land quality and the corresponding variations in crop yields as a likely reason for the 

need of calibration, such that linear models are not well suited to recover observed crop allocation 

changes. 

No attempt is made here to calibrate the three competing modelling approaches which, if successful, 

would remove the differences at least with regard to crop choices. Our findings certainly do not imply 

that an integer-based, normative crop choice model depicting single plots generally leads to allocative 

responses more closely resembling empirically observed crop shares. It is however clear that its 

calibration against observed allocative responses is more demanding (Britz, 2021), whereas PMP based 

models using crop shares can be calibrated relatively straightforward against given price elasticities 

(Mérel and Bucaram, 2010). We also assume in all three models that labor is bought (or sold) at a given 

price, by considering its costs in the profitability per hectare. A BEFM might instead comprise annual 

or sub-annual labor constraints, which likely restrict the solution space further and thus potentially 

reduce differences between the three modelling approaches. However, these points mostly apply to 

BEFMs being used in a positive, policy or technology evaluating context. BEFMs used for decision 

support are generally not calibrated to empirically observed crop shares, as they aim to explore optimal 

solutions to the allocation problem given a farm specific, constrained set of resources, and therefore do 

not aim to predict farmers behavior (Reidsma et al., 2018). 

In our analysis, the profitability of a crop solely depends on plot attributes, not on farm or farmer’s 

characteristics. This allows analyzing impacts of the aggregation bias caused by plot heterogeneity and 

indivisibility independently of other effects. In empirical analysis, especially farm size is likely closely 

correlated with the number of plots present in a farm. This makes it harder to disentangle effects of the 

number of plots and plot heterogeneity from effects of farm size. Farm size likely affects crop 

profitability and crop choice, for instance, by size depending on differences in the costs of depreciation, 

in transaction costs, or in mechanization level. Such effects are not considered in our analysis. Farm size 

also likely affects farmer’s behavior, such as via impacts of wealth on risk behavior (Sulewski et al., 

2020), whereas our models assume risk neutrality. More generally, the importance of plot indivisibility 

for crop choices challenges the usual assumption on differentiable functions and error term distributions 

in empirical work in this field. 

Note that differences between the simulation results of the different land endowment approaches 

reported in this manuscript assume an ideal parameterization for each farm. Lacking farm specific 

information, many BEFMs only adjust prices and sometimes yield levels for individual farms, and use 

regional averages for other parameters, such as variable costs of crop production. For instance, recent 
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studies applying BEFMs to German farms use a farm-field-distance of 2 km and a plot size of 2 ha 

defined as the default values found in planning data collections (Kuhn et al., 2020; Lengers et al., 2014; 

Pahmeyer and Britz, 2020; Schäfer et al., 2017). The difference in the simulation results between the 

‘aggregate’ land endowment approach using such default values compared to the results of the ‘single 

plot’ is higher than reported in our manuscript, as our analysis still reflects in the aggregate approaches 

farm specific plot averages. 

4 Summary and conclusion 

The aims of our manuscript are to identify approaches to model crop choices in BEFMs and to quantify 

differences in their results, based on a case study consisting of arable farms in the German federal state 

of North Rhine-Westphalia. Our findings suggest that results may vary substantially between the 

approaches. While we find quite limited differences between the ‘aggregate’ and ‘categorized’ 

approaches, their results are systematically different from the ‘single plot’ approach. The results of a 

regression analysis suggest that differences are mainly driven by the number of plots a farm is endowed 

with, while other characteristics such as the intra-farm S.D. of soil qualities, plot sizes, and driving 

distances show a significant, but less relevant influence. Thereby, the indivisibility of plots is the major 

driver for the differences in our results. Accordingly, the heterogeneity of plots and the corresponding 

aggregation bias is of minor importance in our analysis. 

Following our simulation results, we suggest that both the ‘aggregate’ and ‘categorized’ land 

endowment approaches yield sufficiently accurate results for studies involving policy analysis or 

technology adoption for a whole farm population. For BEFMs used in policy and technology analysis, 

effects of plot heterogeneity can likely be considered by a sufficiently large number of land categories 

in the ‘categorized’ approach, and our analysis suggests that especially soil quality differences can be 

relevant here. 

Recommendations are likely different for BEFMs targeting single farm results or variability in the 

farm population, as well as DSS. Considering the wide range of profit differences between the ‘single 

plot’ and ‘aggregate’ approach among the population, studies targeting single farms and DSS should 

incorporate spatially explicit, single plots to better capture the decision problem and provide accurate 

decision support for every individual farm.  
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Appendix A. Supplementary Data 

Table A1: Assumed waiting periods per crop and resulting maximum crop shares in the rotation. Source: 

Baeumer (1990). 

Crop Waiting 

period 

(years) 

Maximum crop 

share (%) 

Field beans 4 20% 

Wheat 0.5 66% 

Rye 0.5 66% 

Barley 0.5 66% 

Maize - Corn 0 100% 

Rapeseed 4 20% 

Sugarbeets 4 20% 

Maize - Silage 0 100% 

Oats 0.5 66% 
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Figure A1: Histograms of differences in indicator values between the results of both the ‘aggregate’ 

(blue) and ‘categorized’ (orange) land endowment approach compared to the results of the ‘single plot’ 

approach. 
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The average, summed difference in crop shares between the ‘categorized’ approach and the ‘single plot’ 

approach is 11.17% (median: 2.24%, S.D.: 19.65), while the average difference in workload is 10.8% 

(median: 7.56%, S.D.: 11.86%). The difference in cumulative energy requirement is on average -2.03% 

(median: 0.4%, S.D.: 7.39%). Compared to the ‘aggregate’ approach, the average difference in profit is 

slightly lower, with an average profit difference of -1.8 €/ha, a median difference of -15.48 €/ha and a 

S.D. of 73.06 €/ha. A positive difference in profit indicates that simulated profits for a farm are higher 

in the ‘aggregate’ approach compared to the ‘single plot’ approach, and vice versa.  
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Figure A2: Pearson correlation coefficients between farm characteristics and difference in indicator 

values for the different land endowment approaches. 
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Table A2: Standardized regression results for different indicators comparing the BEFM simulations 

results from the ‘categorized’ and 'single plot' land endowment approach. 

 Dependent variable: 

 OLS 

 ‚Categorized‘ vs ‚single plot‘ 

 

Summed diff. 

in crop shares 

(%) 

Diff. work load 

(%) 

Diff. profit 

(EUR/ha) 

Diff. CER 

(%) 

Mean plot radius farm [km] 0.173*** -0.040*** 0.115*** -0.170*** 

Dev. plot radius farm [km] -0.117*** 0.095*** -0.080*** 0.100*** 

ln(Number of plots [n]) -0.752*** -0.276*** -0.647*** 0.649*** 

Mean plot size farm [ha] 0.021* -0.248*** 0.217*** -0.011 

Dev. plot size farm [ha] 0.138*** 1.015*** -0.284*** -0.052*** 

Mean soil quality farm [SQR] 0.039*** 0.026*** 0.067*** -0.160*** 

Dev. soil quality farm [SQR] 0.028*** 0.001 0.016* 0.055*** 

Constant 0.000 0.000 0.000 -0.000 

Observations 8,509 8,509 8,509 8,509 

R2 0.502 0.684 0.477 0.399 

Adjusted R2 0.501 0.684 0.477 0.399 

Residual Std. Error (df = 8501) 0.706 0.562 0.723 0.775 

F Statistic (df = 7; 8501) 1,222.284*** 2,629.876*** 1,109.137*** 807.859*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
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