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Abstract 

The study assesses the resource use efficiency of smallholder paddy farmers with/without 

considering undesirable outputs through the mobile-based application. Further, the study 

performs an impact assessment of digital recommendations on farmers' paddy yield 

improvement. A mobile app-based questionnaire was used to collect data from 153 paddy 

farmers in eastern India. The study employed Data Envelopment Analysis (DEA) to identify 

the farmers' resource use efficiency with/without undesirable output. We found lower farm 

eco-efficiency scores with undesirable output in the model compared to the case of not 

considering the undesirable output analysis. Results also showed that farmers are over-utilizing 

fertilizers, farming machinery, and labor in farming, which needs to be reduced to the 

recommended optimal level. Finally, using the Propensity Score Matching (PSM), we observed 

that the farmers achieved better paddy yield, i.e., an additional 0.6t/ha paddy, due to the 

adaptation of mobile-based recommendations. Subsequently, we used probit modeling to 

estimate the critical factors for adopting mobile-based services. Results show that farmers’ 

education level, farm experience, social capital, and market information play a significant role 

in mobile-app-based recommendation adoption. This study supports that farmers need to be 

suggested to use digital advisory services, and state/central policies may be aligned towards 

strengthening farmers' capacities for applying digital services in the farming system.  

Keywords Eco-efficiency estimation, Mobile application based input recommendation, 

paddy yield improvement, Slack-Based Data Envelopment Analysis, Propensity Score 

Matching Approach 
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1. Introduction 

Rice is the most widely produced cereal crop in the world. Rice is the staple food for 3.5 billion 

people worldwide (IRRI, 2013). For nearly 520 million poor people in Asia, rice provides 50% 

of their daily calorie needs and a substantial part of their protein requirement (FAO, 2012). 

Rice is also the primary source of employment and income for more than 200 million 

households across developing countries in the world (FAO, 2004). Currently, 85% (408 MMT) 

of milled rice is utilized for human consumption. India and China account for 50% of the 

world’s milled rice consumption.  

In the past century, the global population has increased fourfold and is likely to upsurge by 

over one billion in the next 15 years, reaching almost 8.5 billion by 2030 and 11.2 billion by 

2100 (United Nations, 2015). With the world’s population growth, rice production has to be 

improved proportionately to avoid a food crisis (Carlsson-Kanyama & González, 2009). Nearly 

870 million people in developing countries where rice is responsible for food security are 

estimated to suffer from chronic undernourishment (Muthayya et al., 2014). Therefore, to 

maintain food security, rice yield needs to be doubled by 2050 (Ray et al., 2013). Farmers often 

overuse inputs like seeds, irrigation water, chemical fertilizer, and biocides (insecticides, 

fungicides, and herbicides) to maximize the rice yield (Mobtaker et al., 2010). The increased 

amount of input used to improve the grain yield also enhances greenhouse gas emissions and 

minimizes profit (Erdal et al., 2007). Therefore, using agricultural inputs at an optimum rate is 

crucial to maximizing rice production's profit and long-term sustainability (Banaeian et al., 

2012; Chandio et al., 2020; Yuan & Peng, 2017).  

In developing nations, several researchers studied paddy-producing farmers' resource use 

efficiency to make their production system efficient in terms of yield and profit maximization 

(Tiongco & Dawe, 2002). Most of these research works used Data Envelopment Analysis 

(DEA) as a suitable efficiency measurement tool (Amid et al., 2016; Banaeian & Zangeneh, 

2011; Chauhan et al., 2006; Hosseinzadeh-Bandbafha et al., 2017; Houshyar et al., 2012). This 

approach can include multiple inputs and outputs to evaluate the efficiency and derive the 

efficient frontier. DEA is a relative measurement that generates efficiency scores for all the 

Decision-Making Units (DMUs) in a given process against the best-operating units. The DMUs 

on the frontier are the most efficient, bearing a score of 1, and the remaining units below the 

frontier are inefficient units bearing scores of less than 1. In the past, using this nonparametric 

tool, several studies identified the resource use efficiency of farmers involved in different crop 

production and recognized those inputs which played a significant role in efficiency gain. 

However, based on the findings, any study rarely provides input recommendations to 

inefficient farmers and monitors whether farmers' yields improved following the experts' 

recommendations. Hence, we have selected two objectives to fulfill the research gaps. The first 

objective was to estimate paddy producers' resource-use efficiency and recommend the 

optimum quantity of agricultural inputs to the inefficient farmers. Another aim was to measure 

the impact of experts’ recommendation adaptation on paddy yield.  

2. Methodology   

2.1 Sampling and data collection 

This study was carried out in the state of West Bengal of India. In this eastern Indian state, 

smallholding agriculture is the primary source of income for a larger part of the population. 

West Bengal accounts for the largest paddy production in India. Paddy production needs many 



input resources as it is a resource-intensive crop. Thus, optimizing the input consumption to 

avert the over-use of resources in paddy production is essential. The study follows a multi-

stage random sampling, including data collection from Darjeeling district villages. During the 

COVID-19 pandemic, we developed a mobile application to collect farmers' data and avoid the 

face-to-face questionnaire survey. We installed the app on 200 farmers’ smartphones and asked 

them to fill in the questions in the form. Out of the total, 155 farmers’ successfully filled the 

app-based questionnaire. Data obtained from these farmers were used for efficiency estimation. 

Then, we calculated the efficiency and, based on that, we provided input recommendations to 

the inefficient farmers to improve their yield.  

2.2 Data Envelopment Analysis (DEA) 

The efficient use of a farm’s limited energy resources is a significant concern for policymakers 

worldwide. As a result, this study focuses on calculating the resource-use efficiency of paddy 

production in eastern India and recommends the optimum quantity of agricultural inputs. In 

this research, we propose a DEA-based model to estimate efficiency as a function of land size, 

land rent, human labor, machines, and fertilizers. Irrigation energy costs have been left out 

purposefully because agriculture in the study area is primarily rainfed (Baruah et al., 2004). 

Additionally, undesirable outputs in the form of GHG emissions have also been considered to 

obtain a more accurate measure of efficiency. Various mathematical programming techniques 

can be used to assess production efficiency. Data Envelopment Analysis (DEA) is a 

nonparametric mathematical programming approach that can determine the relative efficiency 

of decision-making units (DMUs) (Sengupta, 1987). DMUs, in this case, would refer to 

prospective farmers engaging with the digital platform. DEA calculates the technical efficiency 

(TE) of a group of DMUs by comparing them to the most efficient ones, within the group, in 

terms of input utilization and output production. Compared to other parametric frontier-based 

approaches, DEA is not dependent on a pre-determined production function, which is a 

significant advantage when comparing agricultural productivity (Malana & Malano, 2006). 

The frontier function in DEA comprises weighted combinations of observed most efficient 

DMUs (that form the frontier); the TE of inefficient DMUs can then be estimated as their 

relative distance from the efficient frontier (Nghiem et al., 2007). 

TE measures the capacity of a DMU to generate maximum outputs using a prescribed amount 

of inputs. As is known, agricultural activity hardly ever runs under perfect market conditions, 

where higher input consistently correlates to improved yield. Hence, the DEA methodology 

described here uses variable returns to scale (VRS) to compute efficiency. The input orientation 

method is applicable in the case of agriculture as it determines which of the inputs can be 

lowered without affecting the output. Therefore the current study has taken an input-oriented 

approach in line with similar studies (Mousavi-Avval et al., 2011; Phadnis & Kulshrestha, 

2012; Soni et al., 2018) to discover variables that encourage greater yields. In agricultural 

production systems, outputs can be either desirable (good) or undesirable (bad). Figure 1 is an 

example of a frontier function for two outputs and one input system, one good and the other 

bad. The axes show the proportions of various outputs to the given input. The efficient 

frontier’s convex shape is related to the input-oriented approach’s requirements. As is 

observed, the efficiency frontier comprises O, B, C, D, E, and F, efficient farmer DMUs, while 

p1 and p2 are inefficient farmers. DEA can also determine the weight of the efficient DMUs 

that contribute to the virtual DMU that serves as the reference for each inefficient DMU and 

the slacks in each inefficient DMU’s particular inputs and outputs. The slack analysis can help 



us understand how inefficient farmers can increase their efficiency by making proportionate 

input management decisions. 

(Insert Figure 1 here) 

The effect of undesirable outputs, such as GHG emissions on farm efficiency, cannot always 

be measured directly. As a result, shadow values of undesirable outputs are calculated using 

non-radial measures in a nonparametric model. Chambers et al. (1998), Kwon & Lee (2015), 

and Barra & Zotti (2016) are proponents of this paradigm. Nonparametric techniques like DEA 

have several advantages over parametric methods. For instance, data outliers are more 

noticeable when using a nonparametric technique (Zhou et al., 2018). Furthermore, even with 

a few observations, we can calculate several parameters accurately (Emrouznejad et al., 2009). 

The lack of a pre-determined functional form makes nonparametric techniques more adaptable 

and simple to apply. Even the shadow value of unwanted outputs can be estimated using 

nonparametric techniques. In contrast, the deterministic approach ignores random errors, and 

the stochastic approach fails to satisfy the monotonicity criterion (Zhou et al., 2018). 

2.3 Undesirable Outputs 

Undesirable outputs, unlike standard outputs, hurt the environment. Thus, a radial DF cannot 

adequately reflect the goal of reducing favorable outputs while simultaneously raising 

undesirable outputs, as both good and bad outputs change in the same proportion. These issues 

have been solved thanks to non-radial measures. The Directional Distance Function (DDF) 

technique is a non-radial measure that was first introduced by Tone (2001). A DDF works 

directly with the slacks in production factors, reducing both inputs and unwanted outputs while 

increasing desirable outputs. Regarding separating efficiency scores, DDF outperforms radial 

measures (Barra & Zotti, 2016). The DDF can measure differently based on the chosen 

directional vector. Therefore, DDF based on endogenous directional vectors provides a better 

valuation of the impact of undesirable outputs on TE. 

2.4 Slacks-based DEA 

DDF has been vastly used in prior literature (Barra & Zotti, 2016; Chambers et al., 1998; 

Flückiger & Vassiliev, 2007) to determine the shadow price of environmental inefficiencies 

and unwanted outputs. Therefore, DDF has been paired with DEA in the present study to 

estimate the impact of undesirable outcomes on farm efficiency in the form of GHG emissions. 

The system is based on production technology, wherein we consider a selection of 𝑗 =  1, . . . , 𝐽 

farmers who use an input vector, 𝑥, to generate desired output vector, 𝑦, and an undesirable 

output vector, 𝑏. A general representation of the Production Possibility Set (PPS), which meets 

the basic axioms of a convex, closed, non-empty set, has been shown in Eq.                          (1): 

𝑌(𝑥) = { (𝑦, 𝑏)| 𝑥 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏), 𝑥 ∈ ℜ+
𝑀, 𝑦 ∈ ℜ+

𝑆1 , 𝑏 ∈ ℜ+
𝑆2  }                           (1) 

where 𝑌(𝑥) represents the Production Possibility Set (PPS); 𝑦 = (𝑦1, . . . , 𝑦𝑆1
 ) are the set of 

desirable or good outputs while 𝑏 = (𝑏1, . . . , 𝑏𝑆2
) are the set of undesirable or bad outputs that 

are produced by a set of inputs,  𝑥 = (𝑥1, . . . , 𝑥𝑚). Then, a DDF for the specified PPS can be 

defined as follows: 

𝐷0
⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) = sup{𝛽: (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑌(𝑥)                            (2) 



where the directional vector (𝑔𝑦, −𝑔𝑏) is projected by any efficient DMU forming the frontier. 

In order to calculate this distance function, a nonparametric DEA approach has been adopted, 

and the environmental constraints have been defined as follows: 

𝐷0
⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) = sup{𝛽: (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑌(𝑥)                                (3) 

𝑠. 𝑡. ∑ 𝜆𝑗
𝐽
𝑗=1 × 𝑦𝑗 ≥ (1 + 𝛽) × 𝑦𝑗                               (4) 

∑ 𝜆𝑗
𝐽
𝑗=1 × 𝑏𝑗 = (1 − 𝛽) × 𝑏𝑗                                (5) 

∑ 𝜆𝑗
𝐽
𝑗=1 × 𝑥𝑚𝑗 ≤ 𝑥𝑚𝑗;  𝑚 = 1,… , 6                               (6) 

𝛽 ≥ 0, 𝜆𝑗 ≥ 0 ∀ 𝑗 = 1,… , 𝐽                                (7) 

where the 𝑗 index represents the farmer being evaluated, and their efficiency score is indicated 

by β. 𝑔𝑗  = (−𝑏𝑗, 𝑦𝑗) is considered the directional vector, such that the minimum drop in 

undesirable output and the maximum rise in desirable output can happen simultaneously. 

Furthermore, the intensity vector (raw weights representing the proportion of other efficient 

farmers needed to maximize efficiency) is expressed by the sign of 𝜆. Evidently, the ratio of 

shadow values for desirable and undesirable outputs can be estimated from the values of either 

the efficient farmers or the projection of ineffective farmers onto the PPS (as shown in Fig. 1). 

2.5  Impact estimation 

2.5.1 Problems associated with impact evaluation 

There may be several theoretical explanations why  (application) might improve paddy yield, 

but how can we confirm that better productivity of app adopters compared to non-app adopters 

is due to mobile app adoption (or not)? 

Experimental data is suitable for a causal inference between mobile app adoption and yield 

improvement, as it can resolve the missing data problem. However, observational household 

data used for this study suffers from a missing data problem. Another issue with household 

data is self-selection, i.e., households determine whether they adopt advanced technology, and 

their decision may be correlated to the welfare originating from advanced technology adoption. 

It signifies that technology adoption and welfare are probably a two-way relationship whereby 

adopting advanced technology can help achieve welfare, such as an increase in income, 

educational status, and health – which may foster the advanced technology adoption. 

2.5.2 Estimation strategy & empirical model 

If a mobile app was randomly installed on farmers’ mobile – as it would be in the experimental 

approach – we could estimate the causal effect of that mobile app on farm productivity as the 

difference in average yield between users and non-users of the mobile app. Yet, with 

observational data, the study needs to incorporate some statistical solutions to such a critical 

matter of causal inference.  

The study may refer to an approach to defining paddy yield and mobile-app adoption as 

follows: 

𝑌𝑖
𝑀 = 𝐷𝑀(𝑋𝑖) + 𝜀𝑖

𝑀      𝑀 = 0, 1,                                                                                            (8) 



𝑀𝑖 = 𝐴(𝐻𝑖) + 𝛿𝑖,                                                                                                                     (9) 

Where 𝑌𝑖
𝑀denote paddy yield of household 𝑖 that adopts the new mobile-app 𝑀. Thus, 𝑌𝑖

1 and 

𝑌𝑖
0 would denote the paddy yield of household 𝑖 in case the farm-household adopts or does not 

adopt the mobile app, respectively. Paddy productivity depends on a vector of some observed 

variables 𝑋𝑖 and on a vector of unobserved variables, 𝜀𝑖
𝑀. 𝑀𝑖 is a binary variable equal to 1 if 

the farmer adopts the mobile app and 0 otherwise. 𝐻𝑖 is a subset of 𝑋𝑖 and incorporates observed 

factors influencing the choice to avail of the mobile app, while the random variable summarizes 

other unobserved variables related to farm-household 𝛿𝑖.  

Household attributes concerning mobile-app adoption can be the outcome of the decision-

making process whereby the standard separability condition between production and 

consumption does not hold. The production decision is influenced by some household 

characteristics that influence paddy yield.  

Does mobile-app adoption improve paddy yield, or is the positive correlation between the two 

because households with better yield are richer enough to use a smartphone, internet 

connectivity, and adopt mobile-app? In other words, we are interested in identifying the 

correlation between mobile-app adoption and paddy yield and the underlying causation (Becker 

& Ichino, 2002). 

According to Rosenbaum & Rubin (1983), in a counterfactual framework, we can estimate the 

causal effect as the average treatment effect as 

𝜔 = 𝐸(𝑌𝑖
1 − 𝑌𝑖

0).                                                                                                                                                        (10) 

In the causal effect estimation, a fundamental problem arises as we observe either 𝑌𝑖
1 or 𝑌𝑖

0and 

not both for each household. Hence, our observation can be written as  

𝑌𝑖 = 𝑀𝑖𝑌𝑖
1 + (1 − 𝑀𝑖)𝑌𝑖

0     𝑀 = 0, 1.                                                                                                             (11) 

We can rewrite Eq. (4) for 𝜔 as 

𝜔 = 𝑃 . [𝐸(𝑌1 ǀ 𝑀 = 1) − [𝐸(𝑌0 ǀ 𝑀 = 1)] + (1 − 𝑃) . [𝐸(𝑌1 ǀ 𝑀 = 0) − [𝐸(𝑌0 ǀ 𝑀 = 0)]     

                                                                                                                                               (12) 

Where 𝑃 is the probability of observing a household with 𝑀 = 1 in the dataset, the above 

equation indicates that the impact of mobile-app adoption for the whole dataset is the weighted 

average of the impact of mobile-app adoption between the two groups of farm-households. 

Those currently using the mobile app or treated and those not using the mobile app or controls 

are weighted by their relative frequency. Still, we are unable the measure the unobserved 

counterfactuals 𝐸(𝑌1 ǀ 𝑀 = 0) and 𝐸(𝑌0 ǀ 𝑀 = 1), which is the major issue with causal 

inference (Heckman et al., 1998). 

If the mobile app was randomly installed on the farmers' mobile, we could substitute the 

unobserved counterfactuals, 𝐸(𝑌1 ǀ 𝑀 = 0), with the actual paddy yield 𝐸(𝑌1 ǀ 𝑀 = 1) as the 

two would be equal or close to equal. However, mobile-app adoption is not random. Hence, 

there is a chance of self-selection into a treatment.  

Unfortunately, it is difficult to resolve the above-discussed issues using suitable parametric 

approaches such as OLS estimates and Instrumental Variable (IV) estimators because the first 



one imposes a conditional independence assumption. In contrast, it is difficult to identify a 

relevant and exogenous instrumental variable in the second case. Moreover, both the IV and 

OLS approaches enforce a linear functional form assumption, which is arbitrarily ad hoc in that 

those coefficients on control variables are restricted to be the same for adopters and non-

adopters. Therefore, the study deal with nonparametric methods to overcome the restrictive 

assumptions.  

2.5.3 The propensity score matching procedure 

Adopting any new technology (here mobile-app) is a function of various observable attributes 

at the household level, and eliminating the assumption of constant technology impact permits 

us to follow the PSM method. This approach balances the distributions of observed baseline 

covariates between the control and treatment groups depending on their predicted probabilities 

of adopting advanced technology like mobile-app (their ‘propensity score’).  

The major advantage of the treatment approach is that it creates a condition like a randomized 

experiment to estimate the causal impact, as in the case of a controlled experiment. To perform 

PSM, we need to follow the conditional independence assumption, which dictates that mobile-

app adoption is random and not correlated with paddy yield once we control for 𝑋. Hence, we 

can express the mobile-app adoption effect as 

𝜔(𝑋) = 𝐸(𝑌1 − 𝑌0 ǀ 𝑋) = 𝐸(𝑌1 ǀ 𝑀 = 1, 𝑋) − 𝐸(𝑌0 ǀ 𝑀 = 0, 𝑋)                                            (13) 

Where the average effect of mobile-app is  

𝜔 = 𝐸{𝜔(𝑋)}.                                                                                                                                                               (14) 

Since mobile-app adoption is random, we can compare paddy productivity of similar 

households with different socioeconomic statuses (i.e., either adopters or non-adopters) based 

on the values of 𝑋𝑠 (baseline covariates). However, the baseline covariates differ widely, and 

the PSM procedure reduces this covariate dimensionality by comparing households with the 

same probability of adopting the mobile app, given the relevant controls 𝑋 (Rosenbaum & 

Rubin, 1983).  

Therefore, the study wants to identify the conditional probability that household 𝑖 adopts the 

new mobile app, given the controls 𝑋 as  

𝜌𝑖 = 𝜌(𝑋𝑖) = Pr𝑜𝑏[𝑀𝑖 = 1 ǀ 𝑋𝑖]                                                                                                                         (15) 

This conditional probability, known as propensity score, helps us identify similar households 

(Rosenbaum & Rubin, 1983). The propensity score ranks households based on their behavior 

towards mobile app adoption to estimate mobile-app impact among households with similar 

behavior. In other words, groups of farmers with the same propensity score have the same 

distribution of 𝑋, irrespective of their mobile-app adoption. It is termed a balancing property. 

Estimating balancing property is crucial to check whether farmers’ behavior within each group 

is similar or not.  

The mobile-app adoption impact for a group of farmers with similar propensity scores can be 

rewritten as  

𝜔(𝜌(𝑋)) = 𝐸(𝑌1 ǀ 𝑀 = 1, 𝜌(𝑋)) − 𝐸(𝑌0 ǀ 𝑀 = 0, 𝜌(𝑋))                                                                (16) 



Where the effect on the entire population is  

𝜔 = 𝐸{𝜔(𝜌(𝑋))}.                                                                                                                                                        (17) 

The propensity score also imposes common support conditions as its value stays between 0 and 

1. Such a value distribution pattern improves the matching quality as it excludes the tails of the 

distribution of 𝜌(𝑋). Hence, the PSM method is only meaningful as it applies to the area of 

overlapping support (Heckman et al., 1997).  

After identifying the similarities through propensity score estimation, we match each adopter 

with their nearest non-adopter based on the similarity score. There are various methods to 

perform this activity. One such method is the nearest neighbor method (NNM) which identifies 

the closest twin for each household in the opposite adoption status. Then it determines the 

average difference in yield between each pair of matched households and concludes that the 

difference in yield arises due to mobile-app adoption. The second approach is known as a 

kernel-based matching estimator (KBM). This method is more flexible compared to NNM. It 

follows the same procedure as NNM, but the matched household is the weighted average of all 

households in the opposite adoption status within a certain propensity score distance, while 

weights are inversely proportional to the distance.  

3. Results and Discussion 

Different paddy inputs such as land rent, human labour, land area, machinery, and fertilizing 

chemicals, while production yield and CO2eq of GHG emissions as good and bad outputs, 

respectively, were included in the dataset. Irrigation cost has not been considered among inputs 

since paddy cultivation in this region is mostly rainfed. Descriptive statistics of different input 

and output variables have been summarized in Table 1 below. It can be observed that most of 

the farmers in this region are small landholders for whom paddy is the major source of income. 

Among inputs, renting farm machinery like tractors and harvesters is the farmers' major cost, 

whereas labor (both man and woman) is abundantly available. However, the yield is not very 

high compared to the state or national average. On the other hand, there are significant GHG 

emissions from the various stages of paddy production, an estimate of which has been 

calculated based on the yield in line with other research studies (Baruah et al., 2004; Chauhan 

et al., 2006; Karstensen et al., 2020). 

(Insert Table 1 here) 

3.1 DEA Efficiency Scores 

DEA efficiency scores were evaluated both with and without considering undesirable outputs 

for comparison. Results show that the TE of 119 out of 153 farmers decreased after including 

GHG emissions as an undesirable output. Only the remaining 34 farmers had been able to 

manage their farm inputs in a better way and produced comparatively lower levels of GHG 

emissions. Similarly, the total number of efficient DMUs without undesirable output was found 

to be 52. However, this reduced significantly to 34 after including undesirable outputs in the 

analysis. This shows that incorporating undesirable outputs does lower the efficiency of DMUs, 

and the efficiency scores thus obtained are closer to the actual TE of the DMUs. The details of 

efficiency scores with and without undesirable outputs have been given in Table 2 below. 

(Insert Table 2 here) 



3.2  Slacks Analysis 

Slacks in DEA refer to the proportional reduction in the input variables or increase in the 

quantity of the output variables, which is required for an inefficient DMU to become fully 

efficient. Slacks can not only recognize the inefficiencies farmers face in improving their farm 

productivity, but they can also provide appropriate direction where the improvement is most 

needed. Therefore, slacks represent the remaining portion of the efficiency and exist only for 

inefficient DMUs (Tone, 2001). It should be noted that the slack values on both input and 

output variables have zero values when the efficiency score equals one. Calculating slacks in 

inputs and outputs for individual DMUs provides us with tangible information regarding the 

amount by which each input variable must be changed to enable any particular DMU to become 

efficient. For this study, the slack values have been calculated using the multi-stage method 

(Tone, 2001; Yang, 2014). 

Table 3 above shows the general descriptive statistics of the slacks, which can be defined as 

the space of improvement by re-allocating the variables. In the case of the input-oriented DEA 

model, the slacks in input variables indicate the scope for reduction, while the slacks in output 

variables represent the scope for potential improvement. The table shows that the cost of 

women’s agricultural labor could be reduced by ₹218 on average. Similarly, the cost of 

fertilizers, farming machinery, and labor (adult man) should be reduced by approximately 

₹1259, ₹1862, and ₹929, respectively. However, there is little scope for reduction in the area 

under paddy cultivation, which is helpful since paddy is these farmers' primary livelihood 

source. If individual farmers optimize the input slacks correctly, there is a potential scope of 

improvement in the yield by nearly 12 quintals on average and a reduction of 1397 kg of CO2eq 

released during cultivation. Theoretically, these recommendations can help farmers reduce 

their cost of production and increase their overall productivity.  

(Insert Table 3 here) 

3.3  Socioeconomic status of the paddy farmers 

Table 4 displays the socioeconomic condition of the paddy growers by mobile-app adoption 

status for 152 surveyed households using land for paddy production during the Kharif season. 

Explanatory variables in table 4 are selected based on theoretical assumptions and focused 

group discussion and used as baseline covariates to calculate the propensity score.  

We identified that the average education level of the households’ head and farm experience is 

statistically different between non-adopters and adopters, which means that education might 

be correlated with the adoption choice. A significant difference in the average landing size 

exists between adopters and non-adopters, which signifies that farmers’ adoption decisions 

may be influenced by farm size. Among the institutional assets such as membership in farmers’ 

groups, having Kisan Credit Card (KCC), and access to credit differ significantly among non-

adopters and adopters, suggesting that these variables might act as critical factors to access 

mobile-app. Moreover, non-adopters present a significantly lower percentage of market 

information and investment in advanced mechanization and a higher percentage in livestock 

ownership than mobile-app adopters. Hence, such variables were included in the study as 

baseline covariates to estimate propensity scores and identify their impact on farmers’ adoption 

decisions. Most importantly, the mobile-app adopters achieve a 15.62% (0.52t/ha) better yield 

than non-adopters, which motivates us to rectify whether the such impact is only due to mobile-



app adoption or socioeconomic and institutional constraints is responsible for such variation in 

production among adopters and non-adopters.  

(Insert Table 4 here) 

3.4  Determinants of mobile app adoption 

Table 5 summarizes the outcome of probit estimation. The result shows that the household 

head’s education level is important in adopting mobile-app. One additional year in formal 

education from the mean education level improves the likelihood of mobile-app adoption by 

1.7%. Educated farmers tend to have a better possibility to decode new information and analyze 

the importance of advanced technology like mobile-app. Education facilitates adoption and 

helps better manage input resources (Alene & Manyong, 2007). This finding is similar to 

Kassie et al. (2011) and Khonje et al. (2015).  

Like education, experienced farmers are more prone to technology adoption. A practical, 

timely, and optimum amount of input is the key to successful farming in terms of economic 

evaluation. Experienced farmers know these facts, and as the mobile app provides this 

information effectively, they are more interested in using this mobile app.  

Social capital is crucial for technology adoption (Abebaw & Haile, 2013; Alene et al., 2008; 

Fischer & Qaim, 2014). This is also the case in this study, as the farmers with group 

membership show a 19.6% higher probability of mobile-app adoption than those without group 

membership. Group members share their experiences and exchange information about their 

new adoption when they meet, and a positive experience about an adoption always motivates 

farmers to adopt the technology (Kassie et al., 2011).   

The results also indicate that access to market information significantly impacts farmers’ 

mobile-app adoption. A 1% increase in market information improves the chance of mobile-app 

adoption by 40%. This suggests that if paddy growers have market information and easy market 

access, it will reduce the high transaction cost in the quest to find markets for the input purchase 

and produce sell, which in turn will help them in gaining maximum benefit from the adoption 

of advanced technologies (Khonje et al., 2015).  

Having Kisan Credit Card affects mobile-app adoption. Abate et al. (2016) identified that 

access to formal credit improved the chance of technology adoption. In India, farmers with 

Kisan Credit cards can avail of institutional credit (at a meager interest rate) before every 

cropping season without visiting formal lending institutions. With access to credit, farmers 

have sufficient working capital to buy farm inputs. However, they don’t know enough about 

the efficient use of inputs to get maximum farm output. However, the newly introduced mobile 

app provides them the platform to use the inputs efficiently for maximum benefit. Therefore, 

having a KCC improves the likelihood of app adoption by 26.4%.  

Successful adoption of modern technologies always motivates and gives confidence about 

future smart technology adoption. This may be why those farmers who invested and adopted 

any new technology in the past also adopted the mobile app. However, age always plays a role 

in any kind of adoption. For advanced technology adoption, the young generation is more 

passionate; hence relatively young farmers adopt the mobile app compared to the older ones. 

Also, old farmers are unfamiliar with smartphone use; therefore, they are more reluctant to use 

any mobile app.  



Results indicate that household size negatively impacts mobile-app adoption, suggesting that 

subsistence pressure might play a critical role in choosing advanced technology. Marginal 

landholders with large household sizes are mostly involved in subsistence farming. Most of the 

time, they are least interested in farming; hence, they are less likely to invest in any new 

technology for production improvement in the farm sector. Similarly, farmers with livestock 

ownership feel that livestock farming is more profitable than crop production. Therefore, such 

farmers are not interested in adopting any technology related to conventional crop production.  

Asset ownership positively influences technology adoption (Khonje et al., 2015). If farmers 

have more cultivable land, they are more interested in farming because, with comparatively 

large landholding, they are capable of surplus production, and by the market this surplus 

amount, they gain profit. Such business-minded farmers always accept any new technology 

that increases their chance of profit. Perhaps this is why farmers with large landholding sizes 

are more interested in mobile-app adoption than others with comparatively less landholding 

sizes.  

(Insert Table 5 here) 

3.5  The causal effect of mobile-app adoption on poverty reduction 

Before discussing the causal effects of mobile-app adoption on paddy yield, we need to identify 

the quality of the matching process. The initial requirement is to balance the distribution of 

relevant variables between mobile adopters and non-adopters. Table 6 provides the detailed 

results of the covariate balancing test before and after the matching. The standardized mean 

difference for overall covariates used in PSM is reduced by 56% to 60%, irrespective of the 

matching algorithm. This finding indicates a substantial reduction of total bias through 

matching. Also, the ρ-values of the likelihood ratio tests specify that the joint significance of 

covariates is not rejected before matching. However, it is rejected after matching. Also, the 

pseudo-R2 values for all three matching algorithms drop significantly after matching. The 

insignificant ρ-values of the likelihood ratio test, low pseudo-R2, and low mean standardized 

bias indicate that the propensity score successfully balances the distribution of covariates 

between the two groups. 

(Insert Table 6 here) 

The PSM estimates (NNM, KNM, and Radius Matching) presented in Table 7 show that 

farmers who adopted mobile-app had increased their paddy productivity. Mobile-app users 

achieve an additional 0.6t/ha paddy yield, which signifies that the mobile app helps the farmer 

provide optimum inputs (Fertilizer, irrigation, insecticides, pesticides, etc.) at the right time. 

An optimum and timely supply of inputs helps improve plant nutrition and growth, resulting 

in greater production per unit area.  

The results obtained in Table 7 depend on the postulation of conditional independence and 

confoundedness. If any unobserved independent variable is present that can affect both mobile-

app adoption and outcome variables, then the chance of unobserved heterogeneity appears, 

which can alter the influence significance (Becker & Ichino, 2002; Rosenbaum & Rubin, 

1983). In non-experimental studies, it is difficult to determine the magnitude of such hidden 

bias due to the unavailability of a relevant measurement tool. Rosenbaum gave one feasible 

solution in 2002. Since then, by calculating the Rosenbaum bounds sensitivity analysis, we can 



determine how strongly the unobserved exogenous variables influence the significance of the 

estimate (Caliendo & Kopeinig, 2008; DiPrete & Gangl, 2004). 

Results in Table 7 show that a τ-bound value is associated with each ATT value. Such value 

displays a critical gamma level at which the causal inference of mobile-app adoption may be 

questioned. For example, the gamma value for paddy is 2.90-2.95, which means that if 

households have the same vectors of baseline covariates in their odds of mobile-app adoption 

by a factor of 190-195%, the positive impact of mobile-app adoption on paddy yield, may be 

questionable. It means that the strength of hidden bias must be high enough to alter the findings 

in Table 7. It also indicates that the study has considered almost all those possible exogenous 

variables as baseline covariates that impact treatment and dependent variables. 

(Insert Table 7 here) 

4. Conclusions 

Paddy is a resource-intensive crop. Optimum utilization of inputs is necessary to improve 

paddy yield, farmers’ income, and greenhouse gas emissions. Hence, the objectives of this 

study were to identify the resource-inefficient farmers through DEA and provide them with 

mobile-based recommendations for the optimum use of farm inputs. Finally, the study also 

identified the impact of mobile app-based input recommendation adoption on farmers’ yield 

improvement. The findings from DEA indicated that only 22% of farmers manage their farm 

inputs optimally. Slack analysis indicated that the cost of fertilizers, farming machinery, 

women's agricultural labor, and man-labor should be reduced by approximately ₹1259, ₹1862, 

₹218, and ₹929, respectively. Based on the findings, we recommended inputs among the 

farmers with a mobile app to improve their farm production. Finally, we collected data from 

app users and non-users and performed a quasi-experimental analysis to identify whether the 

app-based input recommendation improved farmers’ paddy yield. Results estimated that app 

users achieved an additional 0.6t/ha paddy yield than non-app users. We also determined the 

constraints for mobile app adoption. The findings indicated that education level, farm 

experience, social capital, market information, credit access, and prior use of advanced 

technology played a significant role in mobile app adoption. Such findings indicated that the 

government needs to create more digital platforms to provide farm-based advisories to 

smallholder farmers that will sustainably improve farm productivity. Along with the 

government, non-government organizations and private players can demonstrate digital 

platform utilization's beneficial role in enhancing their acceptability among farmers.  
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Tables & Figure 

 

Table 1. Descriptive Statistics of different Inputs and Outputs 

S. No. Particulars Unit Mean SD Min Max 

Input Variables 

1 Seed cost INR/ha 3842 378.23 2575 5380 

2 Hired labour cost INR/ha 4133.01 204.48 1575 7325 

3 Family labour (Adult Man) Hours/ha 169.28 1150.36 0 4800 

4 Family labour (Adult Woman) Hours/ha 72.29 520.18 0 3000 

5 Electricity  kWh/ha 148.29 48.69 82.32 236.91 

6 Diesel fuel Litre/ha 80.88 50.76 28.15 151.72 

7 Nitrogen fertilizer (N) (kg/ha) 107.23 22.28 70.91 140.24 

8 Phosphorus fertilizer (P2O5) (kg/ha) 53.68 12.16 40.11 70.63 

9 Potassium fertilizer (K2O) (kg/ha) 49.92 13.63 35.73 64.77 

Output Variables 

1 Paddy production (desirable) Tons/ha 2.82 2.29 1.73 4.73 

2 Total CO2eq (undesirable) kg of CO2 1396.91 789.43 332.28 4033.24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Summary of DEA efficiency scores 

S. No. Particulars Mean Std. Dev. Min Max 

1 Efficiency without undesirable o/p 0.814668 0.170925 0.41168 1 

2 Efficiency with undesirable o/p 0.639601 0.242239 0.22288 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Summary of Slacks for DEA with undesirable output 

S. No. Particulars Unit Mean SD Min Max 

Input Variables 

1 Land Size Ha 0.12 0.16 0 0.78 

2 Land Rent ₹ 1395.12 1447.56 0 6500 

3 Labour (Adult Man) ₹ per day 928.65 997.23 0 3850 

4 Labour (Adult Woman) ₹ per day 217.64 380.86 0 2500 

5 Farming Machinery Cost ₹ 1861.55 2299.53 0 9350.96 

6 Cost of Fertilizers/ Pesticides ₹ 1258.97 1884.17 0 10412.5 

Output Variables 

1 Paddy Yield (desirable) Quintals 11.76 6.29 3.73 31.73 

2 Total CO2eq (undesirable) kg of CO2 1396.91 789.43 332.28 4033.24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Descriptive statistics for mobile-app adopters and non-adopters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables 

Mobile-app non-

adopters      Mobile-app adopters Mean 

difference 

test Mean SE Mean SE 

Yield 3.33 0.025 3.85 0.04 0.001 

Age 46.64 1.5 45.44 2.84 0.697 

Gender 0.833 0.035 0.763 0.069 0.337 

Education 6.79 0.302 9.18 0.609 0.002 

Farm experience 31.89 1.7 34.11 2.85 0.515 

Farm size 0.378 0.021 1.02 0.075 0.001 

Household members 5.27 0.167 5.18 0.303 0.796 

Farming as major income source 0.62 0.045 0.76 0.069 0.942 

Distance to marketplace 2.65 0.095 2.32 0.166 0.083 

Membership in farmers group 0.342 0.044 0.711 0.074 0.001 

KCC 0.298 0.043 0.736 0.072 0.001 

Market information 0.263 0.041 0.631 0.079 0.001 

Access to credit 0.491 0.047 0.68 0.076 0.039 

Livestock 0.711 0.042 0.447 0.081 0.003 

Prior investment in advanced 

mechanization 0.272 0.041 0.447 0.081 0.044 



Table 5. Probit estimates of the determinants of mobile-app. 

*** Significant at 1%; ** Significant at 5%; * Significant at 10% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables Estimates SE 

Marginal 

effect 

Age -0.112*** 0.043 -0.016 

Gender -0.359 0.484 -0.052 

Education 0.119** 0.063 0.017 

Farm experience 0.115*** 0.042 0.016 

Farm size 0.108* 0.042 0.012 

Household members -0.225** 0.109 -0.032 

Farming as major income source -0.078 0.389 -0.011 

Distance to marketplace -0.213 0.193 -0.031 

Membership in farmers group 1.346*** 0.518 0.196 

KCC 1.817*** 0.562 0.264 

Market information 2.745*** 0.615 0.4 

Access to credit 0.342 0.422 0.049 

Livestock -0.817** 0.437 -0.119 

Prior investment in advanced 

mechanization 0.654* 0.39 0.095 

Constant -0.872 1.165 
 



Table 6. PSM quality indicators before and after matching 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matching 

algorithm 

 

Pseudo-

R2 before 

matching 

 

Pseudo-

R2 after 

matching 

 

𝜌>χ2 

before 

matching 

 

𝜌>χ2 

after 

matching 

Mean 

standardized 

bias before 

matching 

Mean 

standardized 

bias after 

matching 

(Total)% 

|bias| 

reduction 

Mobile-

app 

adoption 

NNM 0.483 0.083 0.007 0.538 0.353 0.143 59.49 

KBM 0.476 0.073 0.009 0.389 0.361 0.155 57.06 

RM 0.453 0.080 0.011 0.441 0.376 0.163 56.64 



Table 7. Average treatment effects on treated and results of sensitivity analysis 

*** Significant at 1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matching algorithm  ATT SE 𝝉-bound 

NNM 0.594*** 0.171 2.60-2.65 

KBM (0.06) 0.609*** 0.039 2.20-2.25 

RM (0.25) 0.574*** 0.093 2.90-2.95 



 Figure 1. An environmental PPS under undesirable output-based DEA 

 


