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Abstract

We quantify changes in global agricultural trade by 2050 for maize, rice, soybeans, and wheat

due to variations in commodity yields triggered by climate change. Our scenarios are dif-

ferentiated by population levels and economic growth rates associated with three shared so-

cioeconomic pathways. A baseline assuming no climate change is compared to a scenario

consistent with a representative concentration pathway (RCP) assuming a radiative force of

8.5 W m−2, i.e., RCP8.5. The baseline and the scenarios will establish an upper and lower

bound of economic effects associated with yield changes from climate change. Our results

show price increases for maize of 61.3%-80.9%, for soybeans of 36.7%-51.7%, and for wheat

of 5.4%-11.1% depending on the shared socioeconomic pathway. Rice benefits from CO2 fer-

tilization and we see a relatively constant price decrease of 19.5%-19.9% across the scenarios.

Global agricultural area for all scenarios is expected to be higher between 1.3% and 2.3% in

2050. Depending on the crop and country/region, there are significant reductions in produc-

tion especially for maize. Absolute changes in trade patterns are most pronounced for wheat

and least for rice. The increase in cropland will lead to additional carbon emissions enforcing

climate change. Intra- and inter-country welfare changes are inevitable under climate change

given the increases in crop prices and changes in trade. Our policy implications highlight the

importance of economic growth, which leads to lower commodity prices in absolute terms and

hence, higher food security. Less cropland is used under the higher economic growth sce-

nario, which represents a trade-off given the potential for higher carbon release under higher

economic growth.

Keywords: Land-use change, crop yield, international trade, representative concentration pathway
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1 Introduction

The effects of climate change on global food production and food security through crop yield

levels and variability are receiving increasing attention because negative impacts on major crops are

expected (Müller and Robertson, 2014; Rosenzweig et al., 2014; Carraro, 2016; Iizumi et al., 2017;

Zhao et al., 2017; Schauberger et al., 2017; Schleussner et al., 2018; Huffman et al., 2018; Arora

et al., 2020). Investments in agricultural research and development (R&D) needed for offsetting

some of these yield losses (Baldos et al., 2020), and the implications of changing levels of yields

and variability of these yields for crop insurance (Tack et al., 2018) have also been estimated.

Although global average crop yields are expected to decrease, there are regional and crop-

specific differences in magnitude and direction of change (Hertel et al., 2010; Müller et al., 2011;

Müller and Robertson, 2014; Wiebe et al., 2015; D’Agostino and Schlenker, 2016). Previous

research has modeled the effects of climate change on crop yields but fewer studies have assessed

the impact on trade (Rosenzweig and Parry, 1994; Reilly et al., 1994; Parry et al., 1999; Peña-

Lévano et al., 2019). The purpose of this analysis is to quantify the effects of climate change

on commodity prices, land-use, production, and trade for maize, rice, soybeans, and wheat. We

assess the impacts under three different socioeconomic environments with regard to economic

growth and population dynamics in the presence of CO2 fertilization, which potentially leads to

higher yields with climate change under certain conditions (Iizumi et al., 2017). We combine an

established agricultural outlook model with yield projections until 2050. The yield projections

include socioeconomic changes and technological change (Iizumi et al., 2017; Huffman et al.,

2018). Although a shorter time horizon is used in our analysis — some models go until 2100 —

we see important changes in trade due to yield reductions for major agricultural producers. We

shed light on the possible effects in the medium-term that climate change and its impact on yield

may have on global agricultural markets.

The general approach in developing yield estimates is to combine Representative Concentra-

tion Pathways (RCP) developed for the Intergovernmental Panel on Climate Change (IPCC) with

General Circulation Models (GCM) and global climate models to forecast long-term climate (van

Vuuren et al., 2011, 2014; Nelson et al., 2014a). Generally speaking, RCPs present plausible fu-
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ture CO2-equivalent concentration scenarios (measured in parts per million). Subsequently, crop

growth models are used to translate the effects of temperature and precipitation on crop growth

(Nelson et al., 2014a,b). In order to determine the effects on food production and food security,

analyzing yield changes in individual countries is not sufficient because variability in production

results in trade pattern changes and different prices. For example, if yields are declining, then the

resulting higher prices may induce farmers to increase acreage. In addition, if the yield changes

differ by location, then we are also faced with a shift in production and trade among other effects

(e.g., deforestation). The purpose of this paper is to assess those effects until 2050 by combining

an extended version of a global agricultural outlook model (i.e., the CARD Model1) with global

yield projections under a scenario of no climate change and the highest RCP, i.e., RCP8.5, to obtain

upper and lower bounds of the economic effects.

We contribute to the literature and policy debate of climate change and agriculture in multiple

ways. First, climate change affects global agricultural productivity and not just in a single coun-

try or region. This leads to changes in imports and exports, and hence to a reallocation of (land)

resources within a country (Baker et al., 2018). Because the CARD Model is global in coverage,

shifts in the comparative advantage across space and time is taken into account. Second, previous

literature compares current trade patterns to future patterns with climate change. We use data to

simulate a future without climate change and can expand the comparison of the future with and

without climate change. Merging of global yield estimates with agricultural trade models is nec-

essary to obtain an accurate image of the price, production, and welfare changes associated with

climate change. Third, the impact on food production has food security implications, particularly

in developing countries. And lastly, we contribute to the policy discussion about the effects of

economic and population growth on agricultural markets. Our scenarios include a low and high

economic growth scenario and we show that high economic growth leads to lower food security,

lower commodity prices, and lower cropland area use. Lower commodity prices under high in-

come growth contribute to consumer welfare. Lower cropland use under high economic growth

avoids carbon emissions from native vegetation but can potentially increase emissions from other

1The base model was developed at the Center for Rural and Agricultural Development (CARD) at Iowa State

University.
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industries.

2 Background on Agriculture and Climate Change

Modeling the impact of climate on yields and agriculture is usually done through (1) statistical

models relating observed climate variables to yields, (2) process-based models which capture bio-

physical linkages, or (3) integrated assessment models (IAM) that contain a feedback loop to so-

cioeconomic variables such as land management (Ciscar et al., 2018). Statistical models are based

on historical weather and yield variables and thus, do not capture the effects of changes in man-

agement practices due to adaptation and/or mitigation efforts or CO2 fertilization. The advantage

of these statistical models is the availability of detailed yield and weather data at the regional and

global scale. Process-based crop models have the advantage of being able to model yields based

on bio-physical relations such as nitrogen inputs, water availability, soil quality, and/or tempera-

ture. These models require a significant amount of input data and are therefore more difficult to

implement. Müller and Robertson (2014) assess the upper bound of yield projections by using the

emission scenario RCP8.5 (a radiative force of 8.5 W m−2) and two GCMs (i.e., HadGEM2-ES and

IPSL-CM5A-LR) in combination with two global crop growth models: Decision Support System

for Agrotechnology Transfer (DSSAT) and Lund-Potsdam-Jena managed Land (LPJmL). An ex-

tensive review of process-based models is presented in the supplemental materials of Rosenzweig

et al. (2014). The aforementioned methods to model climate change impacts on agriculture do not

incorporate how changing yields affect economic decisions by farmers and society as a whole. To

overcome this limitation, integrated assessment models were developed, which incorporate man-

agement decisions such as land-use by farmers based on climate variables and also account for

how these affects change climate variables (Nelson et al., 2014a; Hertel and Lobell, 2014). For

example, IAMs are able to incorporate how yield decreases triggered by climate change affect

farmers’ decision to increase crop area into pastures and forests and hence, release biomass carbon

that subsequently extenuates carbon concentration in the atmosphere.

There is a large literature on estimating the consequences of climate change on agricultural

yields at the regional and national level. Schlenker and Lobell (2010) predicts yield loss of 17%-
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22% for major cereals, i.e., maize, sorghum, and millet, in Sub-Saharan Africa by 2050. Müller

et al. (2011) review a large number of academic papers on the impacts of climate change on African

agriculture. Across statistical, econometric, and process-based models, they find a wide range (-

100% to +168%) of possible impacts of climate change on agricultural production in Africa. The

authors also suggest that CO2 fertilization could be especially useful in mitigating some of the

strong negative effects of climate change on African agriculture.

Multiple authors assess the impact of climate change on U.S. agriculture in general or specific

regions in particular. Multiple authors focus their analysis on the U.S. Midwest and Great Plains

given the importance for corn, soybeans, alfalfa, and wheat production (Lobell et al., 2014; Lant

et al., 2016; Kukal and Irmak, 2018; Crane-Droesch, 2018; Arora et al., 2020). The general con-

sensus is that there are significant decreases in yield for maize of 30% or more and the importance

of vapor pressure deficit (VPD) and soil moisture in future climate scenarios (Lobell et al., 2013).

Miao et al. (2016) finds that corn and soybean production in the Eastern U.S. declines by 7%-41%

and 8%-45%, respectively, in the long-run (average for 2061-2080). In the medium-run (average

2041-2060), the authors expect yield decreases for corn between 13.4% and 13.9%. This is less

than the expected decrease in our analysis, which assumes corn yield decreases between 26.5%

and 27.7%. Our yield decrease is more in line with Crane-Droesch (2018) who finds corn yield

decreases of approximately 30% in the RCP8.5 scenario and the years 2040-2069. Arora et al.

(2020) find, for the U.S. Northern Plains, yields reductions for the 2031-2055 period of 33% and

44% for soybeans and corn, respectively. These authors use the RCP4.5 scenario. For the entire

U.S., Schlenker and Roberts (2009) project area-weighted yield decreases of 30%-46% and 63%-

82% by 2100 under slowest and fastest warming conditions, respectively. Assuming a shift in the

spatial distribution of U.S. cropping patterns, Leng and Huang (2017) find that the yield decrease

is dampened compared to the situation of fixed cropping patterns, which result in a corn yield

decrease of 20%-40% by 2050.

For Europe, Passel et al. (2017) find that, in terms of farmland value, the effects of climate

change for European farms are slightly more pronounced than for U.S. farms. In 2100, farmland

value change between -32% to 5% depending on the climate scenarios with farms in the Southern
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parts of Europe being affected more adversely. Although echoed for other regions, research for

Europe also highlights the importance of farmers’ adaptation with regard to climate change (Fezzi

and Bateman, 2011; Moore and Lobell, 2014; Fezzi et al., 2015). Moore and Lobell (2014) find

that maize is well suited for adaptation in Europe and negative consequences can be avoided by

changes in farmers’ management practice whereas barley and wheat are likely to suffer losses in

terms of farmland value.

Region-specific literature as cited before can serve as the building block for global models

to evaluate food availability and food security. Climate change affects every country and region

differently and thus, there will be changes in trade patterns. To jointly evaluate the impacts of cli-

mate change by country and the resulting trade effects, climate and crop models must be coupled

with agricultural trade models. Rosenzweig and Parry (1994) conduct one of the earliest works

on agricultural trade implications and climate change using the Basic Linked System (BLS) to

model agricultural trade. They assume 555 parts per million (ppm) by 2060, which corresponds to

a doubling of emissions and an increase of about 4◦ C. Using three GCMs (i.e., Goddard Institute

for Space Studies, Geophysical Fluid Dynamics Laboratory, and United Kingdom Meteorological

Office) and assuming no farm-level adaptation (e.g., changes in planting date, and application of

fertilizer and irrigation), they predict a reduction in global cereal production by 11%-20% com-

pared to the baseline resulting in price changes of 24%-145%. Including farm-level adaptation

results in cereal production changes from -5% to 1%. More recent analysis has highlighted the

importance of farm-level adaptation because it can lead to an increase in production of 7%-15%

compared to the case without farm-level adaptation under climate change (Challinor et al., 2014).

The adaptation is less effective for maize than it is for rice and wheat (Challinor et al., 2014;

Moore and Lobell, 2014). The yields calculated by Rosenzweig and Parry (1994) were used by

Reilly et al. (1994) in the Static World Policy Simulation (SWOPSIM) agricultural trade model to

calculate the welfare effects by country and also to producers and consumers within a country.

Parry et al. (1999) use the BLS to assess the effects of climate change on trade. Their extension

of the analysis done by Rosenzweig and Parry (1994) assesses the rate of change in addition to the

magnitude. Utilizing the same trade model used by Rosenzweig and Parry (1994), Fischer et al.
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(2005) conclude that socioeconomic development is more important to food security than climate

change impacts. They also highlight the importance of adjusting planting dates and cropping sys-

tems to reduce the adverse effects of climate change. Similar to Tobey et al. (1992) and Stevanović

et al. (2016) among others, they find a shift in production from South to North, e.g., in Russia

and North America. Tropics will not benefit from climate change due to rising temperatures but

some temperate regions benefit because growing seasons are going to be longer (Rosenzweig et al.,

2014). For example, rice is tolerating more heat better than wheat, which is evident in previous

research as well as in our study (Baker et al., 2018; Baldos et al., 2019).

Hertel et al. (2010) use the Global Trade Analysis Project (GTAP) Model to estimate the

impact on commodity prices and welfare given likely crop yield shocks (i.e., low, medium, and

high productivity). Their focus is on household activity within countries because households sell-

ing surplus production in the market could benefit from climate change if commodity prices are

higher. Although their analysis results in small commodity price changes under medium produc-

tivity shocks, the negative effect on food prices and household welfare under low productivity

can total over 20% in countries like China, Bangladesh, Venezuela, and many countries in Africa.

Deryng et al. (2014) find a mean decrease in maize yields of 2.9%-12.8% by 2080 and an increase

in soybeans and spring wheat yields of 7.1%-15.3% and 9.9%-34.3%, respectively, compared to

the reference year 1980. Although they show that global soybean and wheat yields improve over

time, there are spatial variations, and tropical and sub-tropical regions could face substantial yield

declines. There will be a general shift of climate zones (and thus agricultural productivity) north-

wards (IPCC, 2020). Food security is projected to decrease with climate change especially as

more extreme events such as droughts result in effects across multiple regions and sectors (IPCC,

2020). Although at significant costs, research-and-development-led adaptation could contribute to

a slower cropland expansion, improved food security through lower prices, and to environmental

sustainability (Baldos et al., 2020).

An unintended consequence of climate change policy in the form of forest carbon sequestration

(FCS) credits is demonstrated in Peña-Lévano et al. (2019) who find that an aggressive FCS policy

can raise food prices significantly. This is caused by the increased competition of forests and
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crops for land area. This competition proves to be very detrimental if combined with decreasing

yields. This finding is also echoed by van Meijl et al. (2017) who find negative impacts of carbon

mitigation policies in all of their climate scenarios.

Besides the impact of climate change on trade pattern, the importance of unobstructed trade on

food security and malnutrition has been the subject of previous research as well (Brown et al., 2017;

Gouel and Laborde, 2018; Smith and Glauber, 2020). Baldos and Hertel (2015) use the SIMPLE

(Simplified International Model of agricultural Prices, Land-use and the Environment) Model to

assess the impact of trade restrictions, i.e., imperfect access to global crop markets by domestic

consumers, increases the head count of malnutrition. Their results highlight two aspects: First,

the presence of CO2 fertilization can reduce the head count of malnutrition and second, integrated

markets have a lower count of malnourished people than trade-restricted markets. Similar results

are shown in Stevanović et al. (2016) who assess the impact of climate change across 19 GCMs

and under a liberalized and so-called fixed trade scenario. The fixed trade scenario represents fixed

relative shares of trade flows at the regional level. They find that unconstrained global trade reduces

the adverse effects. These observations are important as many countries are implementing policies

of domestic protection in an effort to alleviate short run food crises (Smith and Glauber, 2020).

3 Modeling Approach

To quantify the effects of climate change on global agricultural production, we use a well-established

global agricultural outlook model, i.e., the CARD Model, whose changes for this analysis are de-

scribed below. Next, we outline the adaptation of the Shared Socioeconomic Pathways (SSP) to

match the countries and regions in the CARD Model. The final two section outline the climate

change scenarios as well as the yield data obtained from Iizumi et al. (2017).

3.1 CARD Model

The CARD Model is a deterministic agricultural modeling system used to quantify the impact of

changes in market conditions and policies on global price, land allocation, production, and trade.
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The model uses a partial-equilibrium framework to solve for a set of commodity prices to equate

global supply and demand for agricultural products. The model is non-spatial in the sense that

trade flows are not assessed between individual countries but are aggregated. The CARD Model

has been used in numerous academic publications to evaluate U.S. and international biofuel policy

(Elobeid and Tokgoz, 2008; Dumortier et al., 2011; Elobeid et al., 2012; Carriquiry et al., 2019)

and carbon policies (Dumortier et al., 2012).

The version of the CARD Model used in this analysis is modified compared to the previ-

ous modeling system to better capture the long-term nature of climate change. These changes

include (1) an extension of the time horizon projected to 40 years as opposed to the original 10-

15 years used in previous versions to better reflect the longer time horizon associated with cli-

mate change processes, (2) the incorporation of nutritional restrictions (such as appropriate limits

on caloric intake) on the demand side, which become increasingly more important in the longer

time horizon planned, and (3) crop coverage is restricted to corn, soybeans, rice, and wheat. The

model is calibrated on 2013/14 marketing-year data for crops and 2013 calendar-year data for

livestock and biofuels, and 40-year projections are generated for the period between 2014/15 and

2050/51. The model is recursively solved for 40 successive annual equilibria. Instead of the

separate, commodity-specific models found in the previous version of the CARD Model, the cur-

rent version of the modeling system is comprised of countries/regions with all agricultural sectors

(commodities) contained within each country or region. There are 22 regional models included in

the enhanced system selected according to their significance in the agricultural commodity mar-

ketplace.2

On the demand side, given the 40-year horizon, per capita demand for food increases with

income but at a decreasing rate. That is, as consumers’ per capita income increases and their food

demands become increasingly satisfied, they devote smaller shares of the additional income to

food products. Therefore, while there is no cap on caloric or nutritional intakes, these do not rise

indefinitely as time passes and incomes increase.

2The countries/regions modeled are Argentina, Australia, Brazil, Canada, Chile, China, Egypt, the European

Union, India, Indonesia, Japan, Malaysia, Mexico, New Zealand, Nigeria, Peru, Russia, South Africa, Ukraine, the

United States, Vietnam, and the aggregate rest of the world (ROW) region required to close the model.
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3.2 Shared Socioeconomic Pathways

Shared socioeconomic pathways (SSP) are future scenarios of socioeconomic development in

terms of Gross Domestic Product (GDP) and population to facilitate comparability of climate

change studies and models (Valin et al., 2014; Schmitz et al., 2014). The three pathways used

in this analysis, i.e., SSP1, SSP2, and SSP3, can be broadly differentiated among two dimensions:

(1) mitigation challenges and (2) adaptation challenges (van Vuuren et al., 2011; O’Neill et al.,

2014). SSP1 has low mitigation and adaptation challenges whereas SSP3 has high challenges

along both dimensions. SSP2 can be thought of as an intermediate case between SSP1 and SSP3

(O’Neill et al., 2014). The future yield evolution in Iizumi et al. (2017) are based on the nitrogen

application rates, the knowledge stock of agricultural technologies, and the use of improved tech-

nologies and management systems. All of these components are influenced by the evolution of the

GDP and population from the SSPs and thus, the CARD Model is run separately for each of the

three SSPs in order to be consistent with the yield data used.

The SSP data provides GDP projections in real 2005 U.S. Dollars (USD) in purchasing power

parity (PPP) for each country and also for aggregate regions such as the European Union (Cuaresma,

2017). All monetary values in the CARD Model are based on 2010 USD and we recalibrate the

model to 2010 USD PPP using GDP data from the World Bank’s World Development Indicator

(WDI) database. The WDI database provides time-series PPP conversion factors for total GDP and

private consumption (household final consumption expenditure).

In a first step, we deflate the GDP data in current local currency units by the GDP deflator for

the year 2010 in each country to obtain the real GDP. Next, we apply the 2010 PPP conversion

factor for each country to the real GDP to obtain the purchasing power parity GDP in 2010 U.S.

Dollars. We then calculate the GDP growth rates associated with the SSP projections and apply

these growth rates to the GDP data transformed into 2010 PPP U.S. Dollars. Thus, our GDP growth

rates are consistent with the SSP scenarios. In a final step, the country data is added up to match

the 22 regions in the CARD Model.

Historic population levels prior to the beginning of the simulation period calibrate the agricul-

tural demand in the 22 regions of the CARD Model. Population data from the SSP Database is
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used to drive future projections (Riahi et al., 2017; KC and Lutz, 2017). Using the growth rates for

the population projections instead of the level data ensures a smooth transition between the historic

and projected data. We then use the same approach as for the GDP data by aggregating the SSP

population data for the 22 regions and projecting the population data out based on the SSP growth

rates. Hence, our scenarios are consistent with the projected SSP growth rates of population and

GDP. Note that the SSP database reports the data in 5-year intervals and we interpolate between

those years assuming a constant annual growth rate.

3.3 Climate Change Scenarios and Yield Data

To determine the effects of climate change on crop yields for maize, rice, soybeans, and wheat,

we use the yield estimates presented in Iizumi et al. (2017). We refer the reader to the original

publication for the detailed calculations and we frame our description of their approach in terms

of how we use the data in our model. The calculations by Iizumi et al. (2017) cover a wide range

of scenarios under various climate and socioeconomic scenarios. Their scenarios are differentiated

by shared socioeconomic pathways (SSP1, SSP2, and SSP3), representative concentration pathway

(RCP) (i.e., RCP2.6, RCP4.5, RCP6.0, RCP8.5), general circulation model (GCM) (i.e., GFDL-

ESM2M, IPSL-CM5A-LR, MIROC-ESM-CHEM, HadGEM2-ES, and NorESM1-M), presence

and absence of CO2 fertilization, and rainfed versus irrigated crop production. The inclusion of

the different SSPs at the global scale for the four crops considered also represent an extension of

the Agricultural Model Intercomparison and Improvement Project (AgMIP) found in Villoria et al.

(2016). Besides presenting the results for the RCPs, the authors also calculate the evolution of

yields in the absence of any climate change. The yield GIS data is at a 0.5◦ grid size. In order

to determine upper and lower bounds in terms of production, prices, and trade for our analysis,

we use the no climate change data in Iizumi et al. (2017) as our baseline and use RCP8.5 as the

climate change scenario. This approach of focusing on RCP8.5 is similar to Müller and Robertson

(2014); Baker et al. (2018); Baldos et al. (2019). In order to use the data in the CARD Model and

address our research questions, we proceed in three steps.

First, we calculate the average yield across the five GCMs, i.e., GFDL-ESM2M, IPSL-CM5A-
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LR, MIROC-ESM-CHEM, HadGEM2-ES, and NorESM1-M, to obtain the ensemble mean/average,

which is consistent with the approach in Iizumi et al. (2017). This is also an approach suggested by

Auffhammer et al. (2013) to avoid relying on one GCM. The authors suggest reporting the range of

outcomes from the different GCMs for transparency purposes (Figure 1). Since the CARD Model

does not differentiate between irrigated and rain-fed crop yields, we calculate the weighted average

of crop yields in a second step. To do so, we use the data by Portmann et al. (2010), which includes

estimates of the annual harvested area for the four crops differentiated by rainfed and irrigated area

at the global scale. Although the data is for the year 2000, the data is used by Iizumi et al. (2017) to

construct the yield projections implicitly assuming that the distribution does not change over time.

After aggregating the data by Portmann et al. (2010) to match the resolution by Iizumi et al. (2017),

we calculate the average yield weighted by the rainfed and irrigated area for the 22 countries and

regions of the CARD Model. As mentioned by Iizumi et al. (2017), “year-to-year comparison

between the reported and modeled country mean yields is difficult to justify” due to the production

overlapping two years. Thus, we calculate a rolling mean for each year t using the yields from

t − 4, . . . , t, . . . , t + 4 to analyze decadal means, which is consistent with Iizumi et al. (2017).

Thus, for each of the three SSPs, we end up with a baseline and a scenario. The baseline

assumes no climate change and corresponds to an agricultural outlook given the status quo. We

also focus our calculations on the scenarios, which include CO2 fertilization noting that the yields

in the RCP8.5 scenarios are higher with CO2 fertilization than without. Note that C4 crops (i.e.,

maize) have lower responsiveness to CO2 fertilization compared to C3 crops (i.e., rice, soybeans,

and wheat) (Hertel et al., 2010; Hertel and Lobell, 2014).

4 Results

In 2050, we see a price increase compared to the no climate change scenario for maize, soybeans,

and wheat whereas a price decline is observed for rice (Figure 2). For the crops which experi-

ence a higher price, the increases are highest for the SSP1 scenario ranging from 11.1% (wheat)

to 80.9% (maize) compared to the baseline with no climate change. For the SSP3 scenario, the

price increases are lower and range from 5.4% (wheat) to 61.3% (maize). The increase in soy-
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bean prices ranges between 36.7% in the SSP3 scenario and 51.7% in the SSP1 scenario. Global

economic growth is lowest under the SSP3 scenario, which dampens the demand for agricultural

commodities. In terms of population growth, the effects on price are slightly more complicated

because some major countries/regions experience highest population growth in the SSP3 scenario,

e.g., Brazil, China, Indonesia, India, and the rest of the world aggregate (ROW), whereas others

experience the lowest population growth in the SSP3 scenario, e.g., EU and the United States.

Across all SSPs, the decline in the price of rice is relatively consistent between 19.5% and

19.9%. Iizumi et al. (2017) whose yield data forms the basis for our analysis note that “modeled

global mean relative yield for rice for years before 2000 showed some discrepancies with the

reported data, causing the modeled rice yield growth to occur at a rate higher than the actual rate.”

The authors also mention that rice theoretically has the highest CO2 fertilization under extreme

climate, i.e., RCP8.5, but find a yield stagnation at very high concentration levels. Note that the

concentration levels at which rice yield stagnates in Iizumi et al. (2017) are beyond the year 2050

and towards the year 2100.

Baker et al. (2018) find average world price responses for maize, rice, soybeans, and wheat of

26.2%, 3.1%, 30.3%, and 26.2%, respectively, across RCPs and GCMs. They note that there is

significant variation in the maize prices across the scenarios ranging from -12% to over 100% under

severe climate change by 2050. Their results are in line with corn prices significantly increasing

under climate change and rice prices being the least affected. Our results are also consistent with

Ciscar et al. (2018) who states that the effects of CO2 fertilization have larger implications on

yields than adaptation.

The evolution of commodity prices over the projection period also shows that, under no climate

change, the prices for maize and soybeans stabilize close to historic levels in the SSP1 and SSP2

scenarios (Figure 3). Consistent with the population increase in populous countries in the SSP3

scenario, prices for all commodities increase. Note that the price for rice in SSP1 peaks shortly

after 2040 and decreases thereafter.

From an environmental perspective, one important aspect of future food production is land-use.

Although our model does not include a feedback effect of carbon emissions due to land clearing be-

13



cause of potentially lower commodity yields, our model quantifies land-use change. In the absence

of climate change, total global area of maize, rice, soybeans, and wheat will be 5.0%, 7.5%, and

10.3% higher in 2050 compared to 2015 under SSP1, SSP2, and SSP3, respectively. As depicted

in Figure 3, the maximum amount of land used for the four commodities in the absence of climate

change occurs before 2050. For SSP1, SSP2, and SSP3, the maximum extension occurs in 2035

(6.8% above 2015), 2039 (8.1%), and 2049 (10.3%), respectively depending on the interactions be-

tween economic and population growth as well as yield dynamics. The increase in area compared

to 2015 under RCP8.5 is 7.7%, 9.5%, and 11.7% for SSP1, SSP2, and SSP3, respectively.

Figure 4 presents the absolute change in area harvested for the modeled countries.3 Global

agricultural area for all scenarios is expected to be higher between 1.3% and 2.3% in 2050. For

some large agricultural producers such as Brazil, Canada, China, and India, there are large varia-

tions in area used across the scenarios. Total crop area in Brazil increases by 0.7 and 0.3 million

hectares in the SSP1 and SSP2 scenario, respectively, but decreases by 0.3 million hectares in the

SSP3 scenario. Only India, Indonesia, and Vietnam see a reduction in total crop area in 2050. Note

that all three countries are large rice producers and the increase in rice yields with CO2 fertilization

are a contributing factor. The decline of yields in the U.S. for maize, rice, and soybeans does not

translate into a large variation in area harvested. The combined effect of lower yields and a shift

in cropland allocation results in changes in production (Figure 5). Especially for SSP3, there are

significant changes for corn in the rest of the world, for rice in Brazil and China, and wheat in

Russia and the Ukraine.

Comparing the no climate change scenario to the RCP8.5 scenario in 2050 reveals changes in

the comparative advantage and trade between countries. Canada and the EU switch from being im-

porting countries for maize to exporting countries under the RCP8.5 scenario for SSP1 and SSP2.

The EU also changes to an exporting nation for corn under SSP3. Although the production of rice

increases globally due to beneficial yield effects, the rest of the world changes from being an im-

porting region to an exporting region only in SSP1. This also represents the shared socioeconomic

pathway with the lowest population growth. Under the higher population growth rates in SSP2 and

3Although modeled individually, the following countries were added to the group ROW: Chile, Egypt, Japan,

Malaysia, Nigeria, New Zealand, and Peru.
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SSP3, the rest of the world remains an importer of rice. Under the SSP2 and SSP3 scenario, the

U.S. switches from a corn exporter to an importer although barely in the SSP3 scenario. This is the

result of significant yield decline in the U.S. by 2050 and almost no change in area. For soybeans,

no country changes its net export situation, i.e., no switch from exporter to importer or vice versa

occurs. For wheat, we observe that India switches from an exporting nation to an importer in SSP1

and SSP2. India’s wheat exports are minimal in the no climate change scenario and the increase in

population results in wheat imports in the climate change scenario.

Large increases in maize export quantities are observed for Argentina (11.7%-24.4%) and

the Ukraine (32.8%-43.2%). Brazilian corn exports decrease between 89.3% (SSP3) and 98.3%

(SSP1) in the RCP8.5 scenario whereas its soybean exports increase between 3.2% (SSP3) and

17.1% (SSP1). Rice exports of Vietnam increase between 43.9% and 45.7% across the SSPs.

A relatively constant decrease around 35% in soybean exports across all SSPs is experienced by

the United States. Chinese imports of soybeans are lower in the RCP8.5 scenarios. Wheat trade

presents interesting results because large wheat-producing countries and regions such as Canada,

China, the EU, Russia, and the Ukraine see an increase in wheat yields (Figure 1). This results

in a strengthening of their export position. For the five countries/regions, the lowest and highest

increase in exports is observed in the SSP3 and SSP1 scenarios, respectively. Canada increases

exports by 38.5%-44.4%, China by 21.4%-26.4%, EU 46.5%-108.0%, Russia by 24.3%-36.6%,

and the Ukraine by 25.1%-48.2%.

4.1 Self-Sufficiency Ratio

One important measure that policy makers may be interested in at the global level is the so-called

food self-sufficiency ratio (SSR). The SSR measures the ability of a country’s agricultural pro-

duction to produce food for its population. To make different crops comparable to each other,

the SSR is often measured on a caloric basis. The SSR is calculated as S S R = Production ×

100/(Production + Imports − Exports) (Clapp, 2017). An SSR of 100 indicates that a country

produces the same amount of food that they consume. A value above (below) 100 indicates that the

country produces more (less) food than it consumes. We use a calorie content (in kilojoule per 100
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grams) for maize, rice, soybeans, and wheat of 1527, 1506 , 614, and 1368, respectively.4 Note

that the SSR definition is such that globally self-sufficiency is attained in any type of scenario. This

is also the reason why we see little change for the rest of the world (Figure 6). Some countries

do benefit from climate change through increased yields such as Argentina, Canada, the EU, and

Ukraine. The U.S. faces a slight decrease in its SSR. India sees a switch from a situation where the

SSR is above 100 in the baseline without climate change to below 100 in the RCP8.5 scenario for

all SSPs. The reverse is true for South Africa. Population size must be taken into account when

interpreting the results. For example, Brazil, India, and the U.S. see a decrease in their SSR, which

is significant given the population size of the country. This is not comparable to countries such

as Chile, New Zealand, and South Africa — which have a relatively small population — that see

an increase. Intracountry adaptation by farmers will lessen the effects of climate change and the

CARD Model only accounts for changes at the national level (Baldos et al. (2019)).

5 Policy Implications

Evaluating the consequences of climate change is a highly complex undertaking and we are pre-

senting results for the agricultural sector. Policies can aim at avoiding further long-term increases

of carbon in the atmosphere (mitigation) or aim at dampening the effects of climate change on

producers and consumers (adaptation). In this paper, we focus on agricultural production under

climate change and in the context of three socioeconomic environments and we are going to frame

our policy discussion mostly in the context of economic growth and population.

SSP1 exhibits the highest GDP growth for all countries considered in our analysis. With regard

to population growth, SSP1 also exhibits the highest growth for developed countries/regions such

as Australia, Canada, the EU, Japan, New Zealand, South Africa and the United States. For all

other countries, it is SSP3 that results in the highest population. For SSP1, focusing on economic

growth seems to result in a higher increase commodity prices given the information in Figure 2

but a closer examination of the price level reveals that prices are lower in SSP1 in absolute terms

4The data is obtained from https://fdc.nal.usda.gov/ for corn grain (yellow), rice (white, medium-grain,

raw, unenriched), soybeans (green, raw), and wheat (hard red winter).
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(Figure 3). Combined with higher overall income, this suggests poverty alleviation and improved

food security for vulnerable populations. From an environmental perspective, the cost to focus on

higher economic growth is a higher percentage increase in land area (Figure 4). Our results also

suggest that changes in trade are least pronounced in the SPP3 scenario. This is consistent with

the higher Self-Sufficiency ratio for food in SSP3 (Figure 6). Policy makers — besides focusing

on mitigation and adaptation — can focus on economic growth to increase food security at the

cost of more cropland use. Cropland use is lowest in SSP1 and reduced expansion into native

vegetation can potentially decrease carbon emissions and thus, mitigate climate change. There are

trade-offs from a policy perspective because higher economic growth can also lead to additional

carbon emissions accelerating climate change. Under high economic growth, other detrimental

environmental consequences from agriculture could emerge such as increased fertilizer use (and

resulting nitrous oxide emissions) and irrigation use which has negative effects on water quality

and quantity.

From a producers’ perspective, there will be “winners” and “losers” depending on the location

within and across countries with distributional consequences. This will bring attention to current

and future policies. For example, the availability of crop insurance in the United States currently

protects farmers from adverse weather and pest events. The expected decline in U.S. maize yields

due to extreme climate change may call into question the feasibility and affordability of crop insur-

ance (Tack et al., 2018). At the same time, a shift in cropping patterns to different regions, which

become more suitable and more productive for crop production, may require long-term planning

to dampen the effects of structural change. In this line, planning for the development or the redi-

recting of infrastructure and logistical channels for changing trading patterns may be needed.

6 Conclusion

There is a large body of literature on the adverse impacts of climate change on yields whereas mod-

els quantifying those effects on agricultural trade and commodity prices are limited. In this paper,

we differentiate our scenarios by shared socioeconomic pathways using previously published yield

data to determine the effect on prices, land-use, production, and trade under a baseline without
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climate change and the scenario using the highest representative concentration pathway in terms of

warming. Our results show that there can be significant variations in terms of land-use, trade, and

production in 2050 depending on the macroeconomic environment. Rice production benefits in

the extreme climate change scenarios presented in this analysis whereas all other commodities see

a decline in production. Price changes are most pronounced for maize and soybeans and least for

rice and wheat. Total area for all crops increases in every scenario. The largest increase in land-use

occurs in the SSP1 scenario characterized by high GDP and low population growth, which sug-

gests that GDP plays a larger role in future agricultural production than population growth. We

also evaluate the food self-sufficiency ratio for our scenario that indicates whether a country or re-

gion can fulfil all its caloric needs by its own agriculture. Noting that the ratio is constructed such

that the entire world is self sufficient, there are some countries such as Argentina, Canada, and the

Ukraine that significantly increase their self-sufficiency ratio because of higher yields. Thus, more

agricultural production occurs in those countries under climate change.

There are several aspects that are not explicitly addressed in this paper. First, the increase in

area harvested due to globally lower yield may result in the conversion of native vegetation such

as grassland and forests to cropland. The resulting carbon release will exacerbate climate change

leading to a different emission pathway. Second, the reduction in yields will result in increased

irrigation water and fertilizer use with likely detrimental consequences on environmental quality.

Changes in water usage also have policy implications on water use and property rights. These

water usage changes and their location call for the integration of water models into climate change

assessments. Third, commodity price increases negatively affect the welfare of consumers depend-

ing on the geographic distribution of yield changes and the macroeconomic environment. And last,

this paper does not evaluate the impacts of trade restrictions on food security. Previous research

has argued that the absence of trade restrictions results in a unobstructed shift of the comparative

advantage to regions that benefit from higher temperatures. The hypothesized consequences are

dampened effects on commodity prices and adverse welfare changes. This study analyzes four

crops, which cover a significant caloric intake of global food and feed demand, but it does not

include all crops and fisheries encompassing total caloric consumption. Currently, the availability
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of global data including more crops besides the ones covered in this analysis — and covering the

SSPs and technological change as in this model — is limited (although there is significant progress

of the Agricultural Model Intercomparison and Improvement Project (AgMIP)). Previous research

points out that intracountry adaptation by farmers will lessen the effects of climate change. How-

ever,the CARD Model only accounts for changes at the national level. The CARD Model was

developed to assess trade and production from a partial equilibrium perspective and is not set up

as an integrated assessment model (IAM). Hence, we cannot iteratively take into account GHG

emissions from farmers’ decision and their effects on climate change.

As highlighted throughout the paper, using trade as a means to dampen the negative welfare

effects of climate change will be important. Future research is needed to better understand the role

of CO2-fertilization on yields and to integrate the feedback mechanism from increased land-use

and carbon emissions resulting in higher global temperatures on yields and farmers’ decision mak-

ing. As pointed out in previous literature, the possibility of forest carbon credits as an additional

revenue source for land owners has the potential to create the unintended consequence of increas-

ing commodity prices further. Thus, a careful assessment is necessary to meet food security and

climate goals.
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Figure 1. Minimum and maximum yield change in 2050 across the five GCMs.
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Figure 2. Changes in price compared to the no climate change scenario in 2050.
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Figure 3. Price, area, and production for the Shared Socioeconomic Pathway scenarios.
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Figure 4. Difference in total area harvest in 2050 compared to the scenarios without climate change.
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