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Effects of electric pumps on farm-level agricultural production and 

groundwater use in West Bengal 

 

Abstract:  How does access to less expensive energy for water lifting affect agricultural 

outcomes? We address this question in the setting of West Bengal in eastern India where, in 

2011, the government relaxed a permit policy for small electric pumps mounted on low-yield 

tubewells and provided a one-time subsidy on the fixed cost of connecting the pump to the grid 

in order to ease access to groundwater. Based on purposefully selected primary data, and using 

propensity score methods, we examine the cultivated areas, yields, value-added, and duration 

and frequency of irrigation for monsoon and winter rice for electric pump owners compared to 

diesel pump owners and water buyers in West Bengal. Electric pump ownership increases 

agricultural outcomes and water use at the extensive and intensive margins in both seasons, 

suggesting that electrification may have an impact on groundwater levels.  

 

Keywords: irrigation, electric pump, agricultural production, groundwater, propensity score 

matching 

 

1. Introduction 

 

How does access to less expensive energy for water lifting affect agricultural outcomes? In 

particular, do owners of lower-variable-cost electric pumps in West Bengal cultivate their 

land more intensely, have higher staple-crop yields and value-added, and irrigate their land 

more frequently and for longer durations than owners of higher-variable-cost diesel pumps 

and water buyers? We examine this question in a context where (a) there are no major 

surface-water irrigation schemes, (b) all farmers historically needed a permit for an electric 

pump connection and had to pay the full fixed cost of installing the electric pump and 

connecting it to the grid, and (c) recent policy changes have made it easier for farmers in 

some areas to acquire electric connections. In 2011, the West Bengal government reduced the 

transaction costs of acquiring electricity connections by relaxing the permit system in 

administrative blocks that were considered ‘safe’ in terms of groundwater recharge, and by 

introducing a one-time subsidy of INR 8,000 on the (fixed) electric connection installation 

cost. Permits have never been necessary in order to use (less desirable) fossil fuel pumps, 
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which are small devices powered either by diesel or kerosene. Diesel is not subsidized for 

agricultural use in West Bengal and hence is an expensive fuel; kerosene is subsidized, in 

theory for domestic purposes, and is therefore used as an alternative to diesel even if it 

reduces the life span of the pump engine. The policies introduced by the West Bengal 

government in 2011 provide us a natural-experiment type of opportunity to estimate the 

effects of access to electricity – a less expensive and more convenient energy for water lifting 

– on agricultural outcomes. 

Prior to 2011, all farmers in West Bengal needed a permit from the State Water Investigation 

Directorate (SWID) for extraction of groundwater from their wells in order to apply for an 

electric pump connection from the West Bengal State Electricity Distribution Company 

Limited (WBSEDCL). The motivation for relaxing this permit system in 2011 was the 

observation that growth in the agricultural sector had stagnated due to a slow-down in the 

growth of electric pump use (Mukherji, Shah and Banerjee, 2012). West Bengal has three 

agricultural seasons (pre-monsoon, monsoon and winter), with the bulk of agricultural 

production taking place during the monsoon and winter seasons. Access to groundwater for 

irrigation is important for both seasons. Winter season cultivation is possible only with access 

to groundwater; and monsoon season cultivation is increasingly becoming dependent on 

supplemental irrigation due to (climate-change-induced) south-west monsoon irregularities 

(Nandargi and Barman, 2018). In the 1980s and 1990s, there was a steady increase in the 

production, areas under cultivation, and yields of winter rice (Figure 1), which coincided with 

an increase in the number of electrified tubewells (Figure 2). As the increase in the number of 

electrified tubewells stagnated in the 2000s, so did the increase in winter rice production, 

areas under cultivation, and yields (Figures 1 and 2). As a consequence of this, the West 

Bengal government relaxed constraints on accessing groundwater in an effort to induce 

growth in the agricultural sector. 

Since 2011, farmers residing in administrative blocks identified as ‘safe’1, whose tubewells 

discharge less than 30 cubic meters per hour, and who intend to use small pumps (less than 

five horsepower), no longer need permits from the SWID to apply for electric connections to 

the WBSEDCL (Mukherji et al., 2012). Since 2012, the Department of Agriculture has also 

provided farmers in ‘safe’ blocks with a one-time fixed-cost subsidy of INR 8,000 for 

connecting their pumps to the grid (called the ‘One Time Assistance for Electrification of 

Agricultural Pump-sets’ (OTA-EAP)).  The department does not provide subsidies for the 
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purchase of pumps. Farmers must make these purchases themselves. In administrative areas 

identified as ‘semi-critical’ and ‘critical’, farmers must still acquire permits from the SWID 

in order to apply for electric connections for pumps, irrespective of the discharge of the 

tubewell or the size of the pump. Irrespective of whether the farm is in a safe, semi-critical, or 

critical block, the West Bengal government does not subsidize electricity (i.e. there are no 

variable cost subsidies), and it requires all electric pumps to be metered and practices 

volumetric pricing (Mukherji and Das, 2014).2 This is a noticeable departure from the 

electricity subsidies provided by state governments in north and west India (Badiani et al., 

2012).  

Following the introduction of the policies to relax permit requirements and to provide a one-

time fixed-cost subsidy, the number of electrified tubewells in West Bengal increased 68% in 

seven years, from 176,436 in 2011 to 296,405 in 2018. The effects of electric-pump use as 

opposed to diesel-pump use or water buying, however, are not well known. As such, 

examining whether electric-pump users’ cultivated area, yields, production, value-added and 

water use during the two main agricultural seasons (monsoon and winter) differ from those of 

diesel pump owners and water buyers, can provide important information for understanding 

the effects of these policy changes.  

Estimating the effect of electric-pump ownership on agricultural outcomes is likely to be 

confounded by two factors. The first is the non-random relaxation of the permit system, 

where the permit was relaxed in blocks where groundwater was not very ‘developed’ and 

where water levels easily recharged after the monsoons (i.e. ‘safe’ blocks), while the permit 

system continued in blocks where groundwater was already developed or where water levels 

did not recharge well (‘semi-critical’ blocks). We address this bias in our sampling strategy 

by selecting blocks that are just above and just below the threshold that separates ‘safe’ from 

‘semi-critical’ blocks. This design controls for block-level features that may drive differences 

in agricultural outcomes.  The second is selection into pump ownership, where farmers who 

historically have had better outcomes may also be more likely to have electric pumps. To 

address this bias, we use propensity score matching (PSM) methods to build a counterfactual 

group of water buyers and diesel pump owners with observable characteristics that are similar 

to those of electric pump owners. 

Using primary data collected through a survey of 1,396 farming households, where 370 

households own electric pumps, 398 own just diesel pumps and 628 are water buyers, the 
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results indicate that for the monsoon season (kharif), electric-pump owners allocate more of 

their cultivated land to rice (aman), and have higher rice yields and value-added than diesel-

pump owners. They also irrigate their rice plots more times in the season and for longer 

durations than both diesel-pump owners and water buyers. For the winter season, electric-

pump owners allocate more of their cultivated land to rice (boro) than both diesel-pump 

owners and water buyers, and they irrigate their rice plots more times in the season and for 

more hours than water buyers. Finally, electric-pump owners have higher cropping intensities 

on their most irrigated plots than both diesel-pump owners and water buyers. In short, electric 

pump ownership affects agricultural outcomes and water use at the extensive and intensive 

margins in both seasons.  

A limitation of this article is that it does not directly examine the effects of the groundwater 

and electrification policy changes on agricultural outcomes, and only indirectly provides 

insights on the potential effects of the pumps’ electrification. This would have required a 

block-level analysis of all 341 administrative blocks, with panel data on agricultural 

production, electric prices, groundwater hydrology, and other confounding observable factors 

(a la Badiani-Magnusson and Jessoe, 2018, who perform such an analysis at the district level 

for all districts in India for the period 1995-2004). This was challenging to put together in 

West Bengal at the block level. Conducting such an analysis with the current dataset is not 

feasible, as the dataset only covers 24 blocks. Despite the limitations of this study, the results 

at the farm level reflect findings from district-level analysis carried out across India.  

The paper is structured as follows. We present a conceptual framework in section 2. In 

section 3, we describe the data, and describe the empirical strategy in section 4. We present 

the results in section 5, and discuss their implications in section 6.    

 

2. Conceptual Framework 

 

Indian agriculture is heavily dependent on groundwater for irrigation, which is usually 

accessed by means of private tubewells and pumps (Mukherji, 2007; Badiani et al., 2012). 

Over 70 percent of Indian food grain production requires irrigation and groundwater accounts 

for 60 percent of the irrigated area in the country (Gandhi and Namboodiri, 2009). Many state 

governments in India have subsidized the cost of energy for agriculture (either diesel or 

electricity, or both), thus reducing barriers to accessing groundwater (Briscoe and Malik, 
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2006).  These policies, however, are not uniform across all of India. States that have 

historically provided most of the energy subsidies are located in the north, south, and west 

(Badiani et al., 2012). States in eastern India – Assam and West Bengal – have shied away 

from such policies, however, and farmers there have historically tapped groundwater using 

either expensive unsubsidized diesel or unsubsidized electricity (Mukherji and Das, 2014).  

As a consequence, farmers in these states have under-utilized groundwater, and the high 

agricultural-production costs have adversely affected their incomes (Mukherji 2007).  

In West Bengal, electricity is less expensive than diesel as an energy source for agricultural 

water lifting. Based on household survey data described below, while the variable cost of 

using a five-horsepower diesel pump was around INR 41 per hour in 2013, the cost of 

operating a similar five-horsepower electric pump was around INR 26 per hour during the 

daytime and only INR 7 per hour at night.3  The use of electric pumps is not only less 

expensive but also more convenient by relaxing the need to buy diesel regularly for example. 

As became apparent to the West Bengal government when relatively few new electricity 

connections were made between 1994 and 2010 (Figure 2), the state’s permit system for 

electricity connections imposed on farmers a substantial transaction cost on accessing a 

cheaper and more convenient source of energy. By relaxing the permit system and providing 

one-time connection subsidies in blocks where groundwater is not heavily developed and 

where significant post-monsoon recharge of groundwater levels occurs, the state government 

eased access to cheaper energy in areas that were not at risk of groundwater depletion. 

Research into the effects of energy prices on agriculture has mostly focused on variable-cost-

reducing subsidies on electricity tariffs and has found that these subsidies tend to increase farm 

value-added (Bardhan et al., 2014) and the amount of cultivated area allocated to water-

intensive crops (Badiani and Jessoe, 2018). However, they also tend to increase groundwater 

use (Badiani and Jessoe, 2018; Birner et al. 2011; Janakarajan and Moench, 2006; Moench, 

2007; Sarkar, 2011; Somanathan and Ravindranath, 2006; Balali et al. 2011). The benefits of 

an irrigation subsidy policy can be limited when social and environmental effects are accounted 

for, especially under climate change (Kahil et al. 2015).  

Some recent work has examined strategies for lowering water use in agriculture. Non-price 

measures to encourage reductions in power and groundwater use, such as compensation to 

farmers for every unit of electricity they “save” from an entitlement, are politically more 

feasible especially in developing countries; but they may not yield reductions in either power 
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or water use (Fishman et al., 2016). On the other hand, an increase in energy prices can affect 

both the extensive and intensive margins, and reduce extraction of groundwater (Pfeiffer and 

Lin, 2014); but are likely to be contentious in a context where small and marginal farmers 

dominate the agricultural sector.).  

This paper contributes to the literature on agriculture and energy prices by examining the 

effects of lowering the transaction costs associated with accessing unsubsidized but cheaper 

energy on agricultural production and groundwater use. Other work on examining the effects 

of transaction costs has looked at the effects of imposing water quantity constraints on 

agricultural growth (e.g. Chaudhry and Barbier, 2013); and the effects of the public provision 

of groundwater on its depletion in areas with high fixed-costs of acquiring private wells (e.g. 

Sekhri, 2011). The effect of the 2011 and 2012 policy changes in West Bengal has been to 

lower the transaction costs of applying for and installing electricity connections, thus 

reducing the fixed-costs of installing electric pumps and easing access to a cheaper energy 

source for water lifting. Access to this cheaper energy increases both agricultural production 

and groundwater use, in line with the literature.  

 

3. Data 

 

The analysis is based on a sample of 1,396 farming households surveyed in six districts in 

West Bengal in May and June 2013. These households reside in 93 villages that are located in 

blocks which were purposively selected from administrative units that the Government of 

India categorized as ‘safe’ and ‘semi-critical’ in terms of groundwater development and 

recharge. As we describe below, the purpose of this sampling design is to address the 

endogeneity of electric pump use that is associated with the non-random differences in the 

fixed costs of acquiring an electric pump in these respective areas. In the resulting sample, 

54% of the households reside in safe blocks, and 46% reside in semi-critical blocks. While 

the potential for groundwater recharge differs slightly in the chosen ‘safe’ and ‘semi-critical’ 

blocks, the farmers residing there all face very similar conditions in terms of access to and 

availability of groundwater. 

Using a census of diesel and electric pump-owning households conducted for each sample 

village, we selected 15 households per village for the survey based on a proportional random 

sampling. For villages with fewer than 15 pump-owning households, we randomly selected 
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water-buying households so that there were 15 households surveyed in each village. This 

procedure resulted in a sample in which 26.5% are electric pump owners, 28.5% are diesel 

pump owners, and 45.0% are water buyers. Although the sample is not representative of the 

population of rural farmers in West Bengal as a whole, the sample is large enough to provide 

adequate statistical power for comparisons of electric pump-owning households with other 

farming households.  

We gathered detailed information from each household about agricultural production over the 

course of the previous agricultural year. The one-year recall covered three cropping seasons: 

the kharif (May-October 2012), rabi (November 2012 - January 2013) and summer (January-

April 2013) seasons. For logistical reasons, we limited our very detailed questions about 

production during each cropping season to just one of the household plots. These plots were 

those with the easiest access to irrigation and were generally the largest plots cultivated by 

the household, accounting for an average of 42.2% of the total cultivated area. 

In the presence of climate change, monsoons have been arriving later than usual and weather 

shocks (excess of rains, floods, droughts) have become more frequent in West Bengal. Yet, 

the cropping seasons covered by our data are not terribly out of the ordinary. While 2012 was 

a year with a moderate deficit in monsoon rainfalls compared to the 1971-1990 mean, 2013 

was a normal year (Kothawale and Rajeevan, 2017). We, therefore, do not expect our results 

to be driven by mitigation strategies linked to major climatic shocks (Rosenzweig and Udry, 

2019). 

 

4. Empirical Strategy 

 

The effect of electric pump ownership on on-farm outcomes is likely to be confounded by 

two factors: (1) the non-random differences in transaction costs associated with acquiring an 

electric pump connection in ‘safe’ and ‘semi-critical’ blocks, and (2) the non-random 

selection into pump ownership, where farmers who have better outcomes are also more likely 

to have electric pumps. We address the former with a purposeful sampling strategy, and the 

latter with a PSM approach. 
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4.1. Non-random cost differences 

To address the bias associated with the non-random relaxation of the electricity-connection 

permit requirement and the provision of a one-time capital cost subsidy for connecting to the 

grid, we initially select blocks that are just above and just below the hydrological threshold 

that separates ‘safe’ from ‘semi-critical’ blocks, and then select households in these block for 

the final sample. The idea is that the hydrological conditions that affect on-farm outcomes 

such as cropping choices, yields, value-added, and irrigation of farming households in blocks 

that are just above and just below the threshold, are not very different on average. Hence, 

these on-farm outcomes should not differ on average due to differences in the hydrological 

conditions for households in these ‘safe’ and ‘semi-critical’ blocks. There is, however, a 

discrete difference in the transaction costs of acquiring an electricity connection for those 

below the threshold (i.e. in ‘safe’ blocks) compared to above the threshold (i.e. in ‘semi-

critical’ blocks). This exogenous difference in cost is likely to affect electric-pump ownership 

but not on-farm outcomes. 

The Government of India uses two criteria to categorize administrative blocks as ‘safe,’ 

‘semi-critical’ and ‘critical’ in terms of groundwater potential for development: (a) the stage 

of groundwater development (SOD), and (b) long-term changes in pre- and post-monsoon 

groundwater levels. The SOD is defined as the extraction of water as a percent of the net 

renewable recharge. A SOD that is greater than 100%, for example, means that more water is 

being extracted from the stock of groundwater than is flowing in, and thus the groundwater 

level is likely to fall. Following guidelines developed by the Ground Water Estimation 

Committee (GEC, 1997), the government classifies administrative blocks according to the 

assignment rule illustrated in Table 1, which includes combinations of SOD and “significant 

long-term declines in groundwater levels” before and after the monsoons. A long-term 

decline is defined as groundwater levels falling by at least 20 cm per year on average over the 

previous 10 years. This assignment rule in Table 1 is used to categorize administrative blocks 

all over India and cannot be manipulated. At the time of the survey, the categorization for 

West Bengal was based on data collected by the State Ground Water Department and the 

Central Ground Water Board in 2009, which was before the policy change.  

The challenge for our sampling strategy, where we select blocks that are just above and just 

below the threshold that separates ‘safe’ from ‘semi-critical’ blocks, is that the ‘threshold’ 

here depends on three indicators, not just one. This means that, for our sampling purposes, we 
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must determine the appropriate criteria for all three indicators to define what levels are ‘just’ 

above and ‘just’ below. Fortunately, as illustrated in Figures 3 and 4, we can simplify the 

inclusion criteria to just two indicators: SOD and post-monsoon groundwater declines. 

Although SOD and pre-monsoon groundwater-decline levels do not cleanly distinguish ‘safe’ 

from ‘semi-critical’ blocks (Figure 3), SOD and post-monsoon groundwater-decline levels 

do. To illustrate this, note that in Figure 4, all of the blocks in West Bengal that have SOD 

levels above 90% and/or post-monsoon groundwater-levels that declined by more than 20 cm 

per year on average over the previous decade are categorized as ‘semi-critical’. Conversely, 

all of the blocks with SOD below 90% and groundwater declines of less than 20 cm 

(southwest quadrant of Figure 4) are categorized as ‘safe’. Based on these two criteria, the 

two groups are mutually exclusive. Our criteria for ‘close’ to the thresholds are then 

determined as follows. For those blocks for which the SOD is less than 90 percent, we sample 

blocks within 5 cm of the 20 cm post-monsoon groundwater-decline threshold (i.e. Zone 1 in 

Figure 4). Similarly, for those blocks for which the post-monsoon groundwater-decline is less 

than 20 cm per year, we sample blocks that are within 10 percentage points of the 90% SOD 

threshold (i.e. Zone 2 in Figure 4). From these two zones, we sample 24 blocks, 14 of which 

were ‘safe’ and 10 of which were ‘semi-critical’.  

4.2. Non-random selection into pump ownership 

While the sampling design addresses selection bias at the block level, it does not account for 

selection into pump ownership at the farmer level. Even in the same block where all farmers 

face the same conditions vis-à-vis access to electricity, not all farmers will acquire electricity 

connections for irrigation. Indeed, farmers with better outcomes may also be more likely to 

acquire electric pumps, thus biasing our estimator for the relationship between electric-pump 

ownership and these outcomes if we do not account for this likelihood. To the extent that 

acquiring an electric pump is correlated with a set of observable farmer characteristics (X) 

that are also correlated with the farm outcome variables of interest (Y), a comparison of the 

average differences in outcomes for electric-pump owners (T = 1; the ‘treated’ group) and 

non-electric-pump owners (T = 0; the ‘counterfactual’ group) with the same set of observable 

characteristics (X), provides an unbiased estimator for the average treatment effect (ATE). Of 

course, it is impractical to find a sufficient number of electric-pump-owner and non-electric-

pump-owner pairs with identical observable characteristics (X) to be able to estimate the 

ATE. Fortunately, Rosenbaum and Rubin (1983) show that the matching between the two 
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groups can be done on the basis of the probability of being ‘treated’ conditional on 

observable characteristics. In our case, this means matching electric-pump owners with non-

electric-pump owners who have similar probabilities of being electric-pump owners 

(‘treated’) conditional on observable characteristics. That is, following  Rosenbaum and 

Rubin  (1983), we compare outcomes of electric-pump owners with non-electric-pump 

owners that have similar propensity scores (i.e. Prob(T = 1 | X)). 

We estimate propensity scores using a logit model in which the dependent variable is an 

indicator of whether the farm has an electric connection for agriculture, and hence has an 

electric pump. We include three sets of observable household/farm characteristics as 

predictors. First, we use variables that capture the need for access to irrigation, and hence for 

low-variable-cost electric pumps. These include the area of land cultivated by farmers, a 

productive asset index constructed using principal component analysis4, and the proportion of 

household members involved in agriculture. Second, we include information on the 

household head (age, education, religion, and caste) and on the number of household 

members as measures social capital that may affect the household’s ability to obtain an 

electric connection. The third set of variables represents households’ economic capacities to 

invest in electric pumps, including a wealth asset index constructed using principal 

component analysis5 and an indicator of whether the household has any off-farm sources of 

income. 

Important observable predictors of electric-pump ownership are not limited to household 

characteristics. As such, we include village characteristics such as pre- and post-monsoon 

groundwater depth, status as a ‘semi-critical’ block (vs. being a ‘safe’ block), and whether 

there exist electricity connections for domestic purposes. Finally, we include three variables 

that measure how close the administrative blocks are to the thresholds that differentiate ‘safe’ 

from ‘semi-critical’ blocks. The first is the difference between the blocks’ actual SOD 

measured in 2009 and the 90% SOD threshold. The second and third are the difference 

between the 20 cm threshold in the decline in groundwater depth and the blocks’ actual pre- 

and post-monsoon measured declines, respectively. The addition of these variables 

complements the sampling design and reduces placement bias at the block level. 

Summary statistics for all the variables used in the analysis are presented in Table 2, and the 

results of the logit regression for the pooled sample (electric-pump owners, diesel-pump 

owners, and water buyers) appear in Table 3. These regression estimates are generally as 
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expected. We find a statistically significant positive relationship between electric pump 

ownership and farmers’ net cultivated area and their productive asset index. We also find that 

the domestic asset index is a significant and positive predictor of farmers’ electricity 

connections for irrigation. The set of variables related to environmental and technical 

determinants highlights some interesting results. While the effect of pre-monsoon 

groundwater levels on the electric pump ownership is non-linear, taking on an inverted-U 

shape with a turning point at 103.4 feet, post-monsoon groundwater levels have a linear 

negative association. Further, the ceteris paribus positive association between residing in a 

semi-critical block and owning an electric pump may follow from permits for connections in 

those semi-critical blocks being liberally provided prior to the policy change. Finally, none of 

the distance from the block assignment thresholds is significant, which confirms the quasi-

experimental implementation of the electrification policy in the sample selected near the 

cutoffs. 

We use the coefficients from the logit treatment model to estimate conditional probabilities 

for each farmer in the sample. This ‘propensity score’ is the predicted probability that the 

individual farmer owns an electric pump conditional on the observable characteristics 

included as regressors in the logit model. We match the two groups using the nearest-

neighbor methodology, where each treated farmer (electric-pump owner) is matched with the 

five counterfactual farmers (diesel-pump owners and water buyers6) that have the closest 

propensity scores that are within a 0.01 probability band from the treated farmer’s propensity 

score. We exclude from the sample all treated and counterfactual farmers for which there are 

no nearest neighbors within the 0.01 probability band. From the original 1,396 observations 

included in the sample, we keep 1,363 of them in the analysis after matching. We also 

experimented with alternate matching methods (first nearest neighbor, kernel matching, 

radius matching) and different calipers (from 0.01 to 0.2), and present the results with the 

cropping intensity as outcome in Appendix Figure A.1. We note that each approach gives 

similar results, and we thus proceed with the five nearest-neighbors matching method.  

The validity of the PSM methodology for causal inference relies on two necessary 

assumptions: conditional independence and common support. The conditional independence 

states that given a vector of observable characteristics (X) not affected by the treatment, the 

potential outcome Y is independent of treatment assignment T. This is akin to assuming that 

pump ownership (T) is exogenous. That is, it is only determined by the observable 
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characteristics (X) or that the outcome (Y) and the treatment (T) are not jointly determined by 

unobservable characteristics. We test for conditional independence using Durbin-Wu-

Hausman tests where the outcome (Y) is regressed on the propensity score and the residuals 

from the treatment model for the sub-sample selected by PSM. We present the results of these 

tests in Appendix Table A.1 for a selection of outcomes. We find that the significance of the 

residual coefficients is rejected for 8 out the 13 outcomes tested. In other words, we cannot 

reject conditional independence for these cases. In the three other cases in which conditional 

dependence is rejected, we must proceed with caution in our interpretation of the results. We 

also check for unobserved heterogeneity using the bounding approach proposed by 

Rosenbaum (2002). This indicates how sensitive the matching analysis is to hidden bias due 

to unobserved variables influencing both the likelihood of using an electric pump and the 

expected outcomes. We present Rosenbaum-bound significance levels in Appendix Table 

A.2. For the various outcomes considered, and with a significance level of 0.1, we find that 

the analysis is insensitive to biases that would increase the odds of treatment by 10% to 

100%. Given that we already control for observables, this indicates that the analysis is 

reasonably robust to hidden bias (Abou-Ali, et al., 2010). 

The common support assumption states that treated farmers have counterfactual observations 

with similar propensity scores. If this is not the case, then inferring causality becomes risky. 

Heckman, et al. (1997) suggest dropping the observations with weak common support. We 

present kernel density estimates of the propensity scores for the treated and counterfactual 

farmers in Appendix Figure A.2. The distributions confirm that there is a large overlapping 

support. We drop less than 1% of the observations due to weak common support. 

Finally, test for balancing. Using t-test of differences, we compare the observable 

characteristics (X), outcome variables and propensity scores of the treatment and 

counterfactual farmers before and after the matching. We present the balancing tests in 

Appendix Table A.3 and find that whereas there are differences in observable characteristics 

in the initial unmatched sample, the differences are minimal and not significant in the 

matched sample. To illustrate these differences independent from the sample size (Imbens 

and Wooldridge, 2009), we plot the standardized percentage bias7 before and after matching 

in Appendix Figure A.2. This confirms that the differences between the two groups on the 

matched sample are minimal. 
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Assuming that the assumptions of conditional independence and common support hold, we 

can interpret the mean difference in outcomes over the common support between the treated 

and the non-treated groups weighted by the propensity score for each unit as the average 

treatment effect (ATE)8. Because the standard confidence intervals computed for matching 

estimators are likely to be biased; in our results below, we present analytical standard errors 

(Abadie and Imbens, 2006; Abadie and Imbens, 2008). 

In order to complement the ATE estimates and to test the robustness of these coefficients, we 

also present results from weighted OLS regressions. That is, we estimate the following 

model, 

 Yi = α + βTi + γXi + εi , 

where Y, T and X are the outcome variable, the pump-ownership variable, and control 

variables, respectively, as defined above. When we use OLS with weights of 1 for electric 

pump owners and P(T = 1 | X)/(1 – P(T = 1 | X)) for the control observations, we get a 

consistent and fully efficient estimator for our relationship of interest, β (Hirano, Imbens and 

Ridder, 2003; Chen, Mu and Ravallion, 2009). We apply the weighted OLS estimator to the 

entire sample, not just to the sample with common support from the PSM. In doing so, we 

can view this as a robustness check in which we impose fewer restrictions and use more 

information from the observations that were excluded from the common support (Lechner, 

2001). 

 

5. Results 

 

We present the estimated effects of electric pump ownership on cropping patterns, rice yields 

and value-added, and irrigation for rice production in Tables 4, 5 and 6, respectively. We 

estimate each model on three different samples. The first is the pooled sample of electric 

pump owners, diesel pump owners, and water buyers. We interpret the coefficient estimates 

for this sample as the average difference in outcomes (dependent variables) for electric-pump 

owners compared to both diesel-pump owners and water buyers conditional on the set of 

control variables. The second is a truncated sample that includes just electric- and diesel-

pump owners (i.e. excludes water buyers). For this sample, the estimated effects can be 

interpreted as the conditional average differences in outcomes for electric-pump owners 
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compared to just diesel-pump owners. Finally, the third sample includes only electric-pump 

owners and water buyers (i.e. excludes diesel-pump owners). For this sample, we interpret 

the estimated effects as the difference between conditional averages of outcomes for electric 

pump-owners compared to water buyers.9 

For each outcome variable, we present two parameter estimates corresponding to the two 

methods that we use to estimate the impact of access to less expensive energy for water 

lifting on agricultural outcomes: the PSM ATE estimates and the weighted OLS estimates. In 

the analysis below, we interpret the ATE estimates and use the weighted OLS estimates as 

robustness checks. As a rule of thumb, we consider estimates to be robust when both 

coefficients are statistically significant. 

Finally, given that we estimate effects for 11 outcomes, we cannot ignore the fact that the 

probability of committing Type I errors (falsely rejecting the null hypothesis) increases with 

the number of hypotheses tested. We, therefore, test for multiple hypotheses using the family-

wise error rate (FEW; i.e. the probability of one or more false rejections) to adjust the p-

values. We present p-values adjusted for multiplicity based on different methods for each 

model in Appendix Table A.4. The classical method developed by Bonferroni (1935) adjusts 

the p-values for the number of outcomes considered, while Holm (1979) proposed a slightly 

more powerful method by ordering the tests based on the p-value. Finally, List, et al. (2016) 

suggest incorporating information about the joint dependence structure of the tests for a more 

restrictive test. All of the statistically significant estimates that we discuss below are also 

statistically significant when using multiplicity adjusted p-values to determine significance. 

5.1.Electric pumps and cropping patterns 

Electric-pump owners use their land more intensively than both diesel-pump owners and 

water buyers. While the average cropping intensity (gross cropped area/net sown area) of 

195.1 percent in the pooled sample (Table 2) indicates that farmers in West Bengal generally 

use their plots twice a year for production, electric-pump owners use their land 13.5 

percentage points more than otherwise-similar diesel-pump owners, and 27.0 percentage 

points more than otherwise-similar water buyers (Table 4).  

In addition to using their land more intensively, farmers with access to electricity for 

irrigation also choose to allocate more of their land to rice production, especially in the dry 

winter season. Electric-pump owners allocate 25.5 percentage points more of their net 
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cultivated area to winter rice than diesel-pump owners, and 21.2 percentage points more than 

water buyers (Table 4). Considering that only 43 percent of the land is used to produce rice in 

this season (Table 2), these large differences suggest that the lack of access to less expensive 

energy for water lifting has hindered rice production in the winter. 

Interestingly, while there is no statistically significant difference compared to water buyers in 

the monsoon season, electric-pump owners also allocate 13.0 percent more of their land to 

monsoon rice compared to diesel-pump owners (Table 4). This is a season where farmers in 

West Bengal allocate 73 percent of their land to rice production (Table 2), which is mainly 

due to the reliability of the rains. The fact that we find a difference in land allocated to rice by 

electric- and diesel-pump owners may follow from evidence in recent years suggesting that 

farmers in West Bengal tend to need additional irrigations for monsoon rice at the end of the 

growing period. With a less-expensive source of energy than diesel-pump owners, electric-

pump owners are in a position to allocate more land to rice during the monsoon period in the 

presence of this uncertainty. 

5.2.Electric pumps and rice yields and value-added 

While there is no robust statistically significant evidence that access to electric pumps for 

irrigation affects rice yields and value-added in the winter season, we do find that electric-

pump owners have higher rice yields and values added than otherwise-similar diesel-pump 

owners in the monsoon season. Monsoon season rice yields of electric-pump owners are 

126.8 kg per acre greater than for diesel-pump owners, and that their values added are INR 

2,045 per acre greater (Table 5). This is consistent with our discussion above about the 

increasing need for West Bengali farmers to irrigate at the end of the monsoon-season 

growing period. The greater flexibility that farmers have around irrigation when they have 

lower energy-cost electric pumps accords them more of the opportunity to irrigate more 

appropriately when the monsoon rains are less predictable than owners of diesel pumps. 

The higher value-added that we observe for electric-pump owners’ rice production compared 

to diesel-pump owners in the monsoon season may follow from a combination of yield and 

price effects. The higher rice yields that electric-pump owners have during this season, 

contributes to greater value of production per acre. Combine this with lower costs of inputs 

such as electric-pump-lifted water used for production (though, admittedly, more water 
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pumped at lower cost per unit can result in higher overall cost), and it is not surprising to find 

higher value-added associated with access to electricity. 

5.3.Electric pumps and irrigation practices 

Electric-pump owners irrigate their rice plots more frequently and for longer durations than 

both diesel-pump owners and water buyers. Although there is evidence that this is the case in 

the winter season, the results are more robust for the monsoon season. We find that electric 

pump owners conduct 3.7 more irrigations on their monsoon rice plots on average than do 

otherwise-similar diesel-pump owners, and 4.6 more than otherwise-similar water buyers 

(Table 6). In doing so, they also irrigate their rice plots for a total of 39.1 more hours per acre 

than diesel-pump owners, and 27.4 more hours per acre than water buyers during the 

monsoon season. These differences are especially large when we consider that, during the 

monsoon season, the average number of irrigations on rice plots is 8.7, and the average total 

duration is 57.3 hours per acre (Table 2). 

We also find that during the winter season, electric-pump owners conduct 7.7 more 

irrigations on their rice plots and irrigate for 45.8 more hours per acre compared to the pooled 

group of diesel-pump owners and water buyers (Table 6). These differences are not as 

economically significant as during the monsoon season considering that farmers conduct 

substantially more irrigations (34.1) for longer durations (203.0 hours/acre) during the dry 

winter season than during the monsoons (Table 2). Moreover, when we disaggregate the 

counterfactual sample, we only find a robust significant effect of electric-pump ownership on 

the number of irrigations for winter rice plots compared to water buyers. Electric-pump 

owners conduct 10.9 more irrigations on their rice plots than water buyers in the winter 

season (Table 6). 

We must qualify these results – electric-pump owners irrigate their rice plots more frequently 

and for longer durations than diesel-pump owners and water buyers – with a word of caution. 

The implicit assumption is that these results indicate that electric-pump owners thus use more 

water. While this may seem likely, we cannot conclude this with great certainty. In order to 

do so, we would need to measure the quantities of water applied to the crops during the 

appropriate cropping cycles. Doing so with survey data is extremely challenging and costly, 

and was not possible for our survey. 
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6. Conclusion and discussion 

In this article, we address the question of how access to less expensive energy for water 

lifting affects agricultural outcomes? In particular, we ask if owners of lower-variable-cost 

electric pumps in West Bengal cultivate their land more intensely, have higher staple-crop 

yields and value-added, and irrigate their land more frequently and for longer durations than 

owners of higher-variable-cost diesel pumps and water buyers? We examine this question in 

a context where (a) there are no major surface-water irrigation schemes, (b) all farmers 

historically needed a permit for an electric pump connection and had to pay the full fixed cost 

of installing the electric pump and connecting it to the grid, and (c) recent policy changes 

have made it easier for farmers in some areas to acquire electric connections. In 2011, the 

West Bengal government reduced the transaction costs of acquiring electricity connections by 

relaxing the permit system in administrative blocks that were considered ‘safe’ in terms of 

groundwater recharge, and by introducing a one-time subsidy of INR 8,000 on the fixed 

installation cost. Permits have never been necessary in order to use less desirable fossil fuel 

pumps, which are small devices powered either by diesel or kerosene. The policies 

introduced by the West Bengal government in 2011 provide us a natural-experiment type of 

opportunity to estimate the effects of access to electricity – a less expensive energy for water 

lifting – on agricultural outcomes. 

Most of the research on the effects of energy prices on agriculture have focused on variable-

cost-reducing subsidies on electricity tariffs. Less has been done on understanding the 

agricultural-production and groundwater-use effects of the transaction costs associated with 

accessing water with unsubsidized energy. The effect of the 2011 and 2012 policy changes in 

West Bengal has been to lower the transaction costs of applying for and installing electricity 

connections, thus reducing the fixed-costs of installing electric pumps and easing access to a 

cheaper energy source for water lifting. This article examines the effect of that cheaper 

energy source on farm-level outcomes and water use. 

Estimating the effect of electric-pump ownership on agricultural outcomes is likely to be 

confounded by two factors. The first is the non-random relaxation of the permit system, 

where the permit was relaxed in blocks where groundwater was not very ‘developed’ and 

where water levels easily recharged after the monsoons (i.e. ‘safe’ blocks), while the permit 

system continued in blocks where groundwater was already developed or where water levels 

did not recharge well (‘semi-critical’ blocks). To address this bias, we purposefully sampled 
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blocks that are just above and just below the threshold that separates ‘safe’ from ‘semi-

critical’ blocks. This sampling design controls for block-level features that may drive 

differences in agricultural outcomes.  The second is selection into pump ownership, where 

farmers who historically have had better outcomes may also be more likely to have electric 

pumps. To address this bias, we use PSM methods to build a counterfactual group of water 

buyers and diesel pump owners with observable characteristics that are similar to those of 

electric pump owners. 

Using primary data collected through a survey of 1,396 farming households, the results 

indicate that for the monsoon season (kharif), electric-pump owners allocate more of their 

cultivated land to rice (aman), and have higher rice yields and value-added than diesel-pump 

owners. They also irrigate their rice plots more times in the season and for longer durations 

than both diesel-pump owners and water buyers. For the winter season, electric-pump owners 

allocate more of their cultivated land to rice (boro) than both diesel-pump owners and water 

buyers, and they irrigate their rice plots more times in the season and for more hours than 

water buyers. Finally, electric-pump owners have higher cropping intensities on their most 

irrigated plots than both diesel-pump owners and water buyers. In short, electric pump 

ownership affects agricultural outcomes and water use at the extensive and intensive margins 

in both seasons.  

A back-of-the-envelope calculation gives a sense of the additional value-added that electric 

pump owners benefit from. Electric pump owners accrued an additional value-added of INR 

1,273 per acre for monsoon rice, and INR 2,659 per acre for winter rice (Table 5, Panel A). 

With an average farm size of about 2 acres, the additional value-added in 2013 for electric 

pump owners was INR 7970. The subsidy of INR 8000 per farm that the government of West 

Bengal has provided to reduce the fixed cost of electric pump connections would be 

transferred to the farmer through additional benefit from agriculture production within one 

year.  This back-of-the-envelope calculation does not take into consideration the additional 

income electric pump owners receive from water selling; electric pump owners received INR 

12,000 more as compared to diesel pump owners from selling water to neighboring farmers 

in 2013. These results provide an economic rationale for subsidizing fixed costs of electric 

connections, as a pro-smallholder strategy in a context of financial constraint.  

It should however also consider the risk of overusing irrigation and be coupled with 

economic and social incentives to avoid depletion of the groundwater resource. 
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Figure 1. Area, production and yields of winter rice produced in West Bengal 

Source: Own calculation from authors based on data published by the Bureau of Applied Economics and 

Statistics, Department of Statistics and Programme Implementation, Government of West Bengal. 

 

 

 

 

 

Figure 2. Number of tubewells permanently electrified in West Bengal 

Source: Own calculation from authors based on WBSEDCL Annual reports 
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Figure 3. Stages of groundwater development and pre-monsoon groundwater decline of 

administrative blocks in West Bengal 

 

 

Figure 4. Stages of groundwater development and post-monsoon groundwater decline of 

administrative blocks in West Bengal 
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Table 1. Criteria Adopted for the Categorization, GEC 1997 Methodology 

 

  
Stage of groundwater 

development 

Significant long term decline of 

groundwater level 

Categorisation 

Pre monsoon Post monsoon 

≤ 70% No No Safe 

≤ 70% Yes No Safe 

≤ 70% No Yes Semi critical 

≤ 70% Yes Yes Semi critical 

>70% and ≤90% No No Safe 

>70% and ≤90% Yes No Semi critical 

>70% and ≤90% No Yes Semi critical 

>70% and ≤90% Yes Yes Critical 

>90% and ≤100% No No Semi critical 

>90% and ≤100% Yes No Semi critical 

>90% and ≤100% No Yes Semi critical 

>90% and ≤100% Yes Yes Critical 

>100% No No Semi critical 

>100% Yes No Over exploited 

>100% No Yes Over exploited 

>100% Yes Yes Over exploited 
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Table 2. Summary Statistics 

VARIABLES   
Obs Mean 

Standard 

deviation 
Minimum Maximum 

 
    

 Electric pump owner, dummy 1,396 0.27 0.44 0 1 

N
ee

d
 f

o
r 

el
ec

tr
if

ic
at

io
n

 Net cultivated area 1,396 2.0 2.4 0 20 

Productive assets index 1,396 0.00 0.73 -1.23 1.42 

Proportion of the members in agriculture 1,396 0.47 0.25 0.00 1.00 

S
o
ci

al
 c

ap
it

al
 

Age head of household 1,396 53.4 11.8 17.0 95.0 

No education, dummy 1,396 0.01 0.08 0 1 

Primary level of education, dummy 1,396 0.49 0.50 0 1 

Hindu, dummy 1,396 0.68 0.47 0 1 

Number of household members 1,396 5.7 2.8 1 17 

E
co

n
o
m

ic
 

ca
p
ac

it
y

 Domestic assets index 1,396 0.00 0.86 -1.81 1.52 

Sources of income apart from agriculture, dummy 1,396 0.75 0.44 0 1 

E
n

v
ir

o
n

m
en

ta
l 

an
d

 t
ec

h
n

ic
al

 

su
it

ab
il

it
y

 

Domestic electric connection, dummy 1,387 0.92 0.27 0 1 

Pre-monsoon depth of groundwater (GW) 1,396 71.7 32.0 25.0 170.0 

(Pre-monsoon depth of GW)2 1,396 6,164.8 5630.1 625.0 28,900.0 

Post-monsoon depth of GW 1,396 47.8 21.9 10.0 100.0 

(Post-monsoon depth of GW)2 1,396 2,763.1 2295.8 100.0 10,000.0 

Semi-critical block, dummy 1,396 0.46 0.50 0 1 

D
is

ta
n

ce
 f

ro
m

 

th
re

sh
o

ld
 

Distance from SOD 90% cutoff 1,396 34.6 21.9 -9.7 69.4 

Distance from 20 cm GW depth threshold (pre-monsoon) 1,396 11.0 13.1 -9.0 58.0 

Distance from 20 cm GW depth threshold (post-monsoon) 1,396 1.43 5.70 -17.3 17.0 

D
ep

en
d
en

t 
v
ar

ia
b
le

s 

Crop intensity 1,396 195.1 76.6 0.0 300.0 

Winter rice      

   Share of net cultivated area  1,396 0.43 0.44 0.0 1.00 

   Yield (kg/acre) 645 1,763.4 604.3 50.5 4,848.5 

   Value added (INR/acre) 644 2,992.2 12,417.1 -174,248.9 54,012.1 

   Number of irrigations 649 34.1 23.1 0 99 

   Duration of irrigation (hours/acre) 665 203.0 202.9 0 2,400.0 

Monsoon rice      

   Share of net cultivated area  1,396 0.73 0.40 0.00 1.00 

   Yield (kg/acre) 1,093 1,418.4 494.2 30.3 4,242.4 

   Value added (INR/acre) 1,092 987.4 6,414.0 -20,046.3 28,363.6 

   Number of irrigations 1,074 8.7 13.2 0 90 

   Duration of irrigation (hours/acre) 1,104 57.3 91.9 0 1,212.1 
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Table 3. Logit Model of Electric Pump Ownership (PSM) 

VARIABLES  Logit 

 Electric Pump owner 

N
ee

d
 f

o
r 

el
ec

tr
if

ic
at

io
n

 Net cultivated area  0.136*** 

  (0.0389) 

Productive assets index  0.662*** 

  (0.126) 

Proportion of the members in agriculture  -0.364 

  (0.305) 

S
o

ci
al

 c
ap

it
al

 

Age head of household  -0.00447 

  (0.00656) 

No education, dummy  0.602 

  (0.865) 

Primary level of education, dummy  0.106 

  (0.147) 

Hindu, dummy  -0.543** 

  (0.212) 

Number of household members  -0.0221 

  (0.0293) 

E
co

n
o

m
ic

 

ca
p

ac
it

y
 Domestic assets index  0.403*** 

  (0.109) 

Sources of income apart from agriculture, dummy  -0.291* 

  (0.163) 

E
n

v
ir

o
n

m
en

ta
l 

an
d

 t
ec

h
n

ic
al

 

su
it

ab
il

it
y

 

Domestic electric connection, dummy  0.194 

  (0.328) 

Pre-monsoon depth of groundwater (GW)  0.0811*** 

  (0.0201) 

(Pre-monsoon depth of GW)2  -0.000392*** 

  (0.000103) 

Post-monsoon depth of GW  -0.0499* 

  (0.0263) 

(Post-monsoon depth of GW)2  0.000325 

  (0.000220) 

Semi-critical block, dummy  0.921*** 

  (0.216) 

D
is

ta
n

ce
 f

ro
m

 

th
re

sh
o

ld
 

Distance to SOD 90% cutoff  -0.00419 

  (0.00574) 

Distance to 20 cm decline in GW depth in pre-monsoon  -0.00180 

  (0.00737) 

Distance to 20 cm decline in GW depth in post-monsoon  -0.00254 

  (0.0164) 

 Constant  -1.718** 

   (0.863) 

 Caste dummies Wald test 3.78 

  P-value (0.436) 

 District dummies Wald test 31.40 

  P-value (0.000) 

 Observations  1387 

 Pseudo R2  0.223 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Effects of Electricity Connections on Cropping Patterns 

     Share of net cultivated area allocated to…   

A. Sample = electric, diesel & water buyers Crop intensity  Monsoon rice  Winter rice  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 17.2 *** 25.7 *** 0.077 *** 0.031 *** 0.210 *** 0.330 *** 

    (5.41)   (3.3)   (0.026)   (0.013)   (0.033)   (0.018)   

Common support sample Non treated 1,010    1,010    1,010  
  

 Treated 353    353    353  
  

Sample size 1,363  1,387  1,363  1,387  1,363  1,387  

Adjusted R2     0.16       0.36       0.44   
   Share of net cultivated area allocated to…  

B. Sample = electric & diesel Crop intensity  Monsoon rice  Winter rice  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 13.5 * 17.2 *** 0.130 *** 0.081 *** 0.255 *** 0.398 *** 

    (8.7)   (4.8)   (0.047)   (0.019)   (0.049)   (0.024)   

Common support sample Non treated 384    384  
  384    

 Treated 307    307  
  307    

Sample size 691  765  691  765  691  765  
Adjusted R2     0.29       0.48       0.50   
   Share of net cultivated area allocated to…  

C. Sample = electric & water buyers Crop intensity  Monsoon rice  Winter rice  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 27.0 *** 37.5 *** 0.012   -0.005   0.212 *** 0.336 *** 

    (10.6)   (3.7)   (0.056)   (0.015)   (0.037)   (0.021)   

Common support sample Non treated 538    538  
  538    

 Treated 327    327  
  327    

Sample size 865  990  865  990  865  990  
Adjusted R2     0.25       0.30       0.48   

Note: ATE = Average Treatment Effect, OLS = Ordinary Least Squares. Figures in parentheses are analytical standard errors for the ATE and standard errors for the weighted OLS. The entire 

list of control variables was included in the weighted OLS regressions but results are omitted here. *** stands for 1% of significance, ** for 5% and * for 10%. 
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Table 5. Effects of Electricity Connections on Rice Yields and Value-Added 

 Monsoon Rice   Winter Rice   

A. Sample = electric, diesel & water buyers Yield  Value Added  Yield  Value Added  

  (kg/acre)  (INR/acre)  (kg/acre)  (INR/acre)  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 82.4 * 61.8 ** 1,273.0 ** 629.1 * 179.3 ** 44.4  2,659.0 ** 380.4  

    (55.9)   (29.7)   (622.5)   (369.4)   (101.0)   (51.7)   
(1344.296

) 
  (1,185.0)   

Common support sample Non treated 751    750    387    386    

 Treated 320    320    255    255    

Sample size 1,071  1,090  1,070  1,089  642  642  641  641  

Adjusted R2   0.09    0.21    0.11    0.06  
                  

  Monsoon Rice   Winter Rice   

B. Sample = electric & diesel Yield  Value Added  Yield  Value Added  

  (kg/acre)  (INR/acre)  (kg/acre)  (INR/acre)  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 126.8 * 110.0 *** 2,045.0 ** 1,515.0 *** 56.7   97.5   2,744.0 *   2,503.0   

    (93.3)   (39.0)   (1004.1)   (537.5)   (312.6)   (86.2)   (2104.2)   (1,962.0)   

Common support sample Non treated 264  
  264    108    107    

 Treated 277  
  277    255    136    

Sample size 541  609  541  609  383  383  243  382  
Adjusted R2   0.09    0.17  

  0.11    0.05                    

  Monsoon Rice   Winter Rice   

C. Sample = electric & water buyers Yield  Value Added  Yield  Value Added  

  (kg/acre)  (INR/acre)  (kg/acre)  (INR/acre)  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 47.9   11.0   932.4 * 183.9   143.5  -68.0   1,074.0   -1,586.0   

    (78.2)   (35.3)   (650.5)   (416.0)   (154.7)   (54.3)   (1,501.1)   (1,249.0)   

Common support sample Non treated 481    481    209    209  
  

 Treated 296    296    176    176  
  

Sample size 717  816  717  815  385  514  385  514  
Adjusted R2     0.09       0.27       0.12       0.07   

Note: ATE = Average Treatment Effect, OLS = Ordinary Least Squares. Figures in parentheses are analytical standard errors for the ATE and standard errors for the weighted OLS. The entire 

list of control variables was included in the weighted OLS regressions but results are omitted here. *** stands for 1% of significance, ** for 5% and * for 10%. 
   



 
 

30 
 

Table 6. Impact on Water Uses 

  Monsoon Rice   Winter Rice   

A. Sample = electric, diesel & water buyers Total Irrigations  Hours  Total Irrigations  Hours  

  (number/crop)  (hours/acre/crop)  (number/crop)  (hours/acre/crop)  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 4.8 *** 3.6 *** 33.8 *** 27.9 *** 7.7 *** 9.2 *** 45.8 ** 66.1 *** 

    (1.5)   (0.8)   (10.8)   (5.3)   (3.4)   (1.9)   (23.5)   (17.5)   

Common support sample Non treated 734    760    364    377    

 Treated 319    322    223    228    

Sample size 1,053  1,070  1,082  1,101  587  646  605  662  

Adjusted R2   0.48    0.44    0.76    0.52  
                  

  Monsoon Rice   Winter Rice   

B. Sample = electric & diesel Total Irrigations  Hours  Total Irrigations  Hours  

  (number/crop)  (hours/acre/crop)  (number/crop)  (hours/acre/crop)  

 ATE  Weighted 

OLS 
 ATE  Weighted 

OLS 
 ATE  Weighted 

OLS 
 ATE  Weighted 

OLS 
 

Electric pump owner 3.7 ** 2.4 ** 39.1 *** 28.5 *** -1.2   2.8   45.4  43.1   

    
(2.1)   (1.2)   

(14.0

2)   (7.2)   (8.6)   (3.2)   (40.4)   (31.7)   

Common support sample Non treated 248    278    108    112    
 Treated 269    337    142    148    
Sample size 517  602  615  615  250  389  260  397  
Adjusted R2   0.49    0.48    0.79    0.51  
                                    

  Monsoon Rice   Winter Rice   

C. Sample = electric & water buyers Total Irrigations  Hours  Total Irrigations  Hours  

  (number/crop)  (hours/acre/crop)  (number/crop)  (hours/acre/crop)  

    ATE   
Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  ATE   

Weighted 

OLS 
  

Electric pump owner 4.6 *** 4.7 *** 27.4 ** 19.9 *** 10.9 *** 11.1 *** 41.1 * 31.2   

    (1.2)   (0.9)   (10.5)   (6.4)   (3.5)   (2.0)   (28.6)   (19.1)   

Common support sample Non treated 409    426    209    214    

 Treated 288    298    180    183    

Sample size 697  803  724  823  389  520  397  529  
Adjusted R2     0.47       0.41       0.77       0.56   

Note: ATE = Average Treatment Effect, OLS = Ordinary Least Squares. Figures in parentheses are analytical standard errors for the ATE and standard errors for the weighted OLS. The entire 

list of control variables was included in the weighted OLS regressions but results are omitted here. *** stands for 1% of significance, ** for 5% and * for 10%. 
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Appendix Figure A.1. Sensitivity analysis - Propensity score matching method and caliper  

 

Note: The blue segments are the values of the estimated ATE by the different matching methods and the vertical 

lines are the 95% confidence intervals. 
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Appendix Figure A.2. Kernel distributions of propensity scores, common support 
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Appendix Figure A.3. Standardized percentage bias across covariates 
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Appendix Table A.1. Hausman-Wu-Rubin test, conditional inference 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 

 

 

VARIABLES 

Crop 

intensity 

Share of  net 

cultivated 

area - 

monsoon rice 

Share of net 

cultivated 

area -  

winter rice 

Yield 

(kg/acre) - 

winter rice 

Value added 

(INR/acre) - 

winter rice 

Yield 

(kg/acre) - 

monsoon rice 

Value added 

(INR/acre) - 

monsoon rice 

Number of 

irrigations - 

winter rice 

Number of 

irrigations - 

monsoon rice 

          

Propensity score 17.93 0.477*** 0.414*** -178.4 3,402 363.3*** 6,130*** -42.69* -7.310 

 (11.12) (0.0552) (0.0675) (128.3) (2,855) (82.13) (1,037) (22.70) (7.541) 

Residuals from logit regression -28.71 -0.229* -0.600*** -161.7 3,673 91.65 6,080** -25.41 8.526 

 (25.29) (0.126) (0.154) (295.8) (6,564) (192.4) (2,429) (52.86) (17.64) 

Constant 203.8*** 0.702*** 0.573*** 1,887*** 708.7 1,277*** -3,103*** 124.1*** 23.19*** 

 (11.21) (0.0557) (0.0681) (133.2) (2,958) (85.04) (1,073) (23.74) (7.789) 

          

Observations 910 910 910 468 467 749 749 477 754 

R-squared 0.005 0.090 0.069 0.004 0.003 0.026 0.047 0.007 0.002 

Note: Figures in parentheses are standard errors. *** stands for 1% of significance, ** for 5% and * for 10%. 
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Appendix Table A.2. Rosenbaum bounds 

Gamma 

Crop 

intensity 

Share of  net 

cultivated 

area - 

monsoon rice 

Share of net 

cultivated 

area -  

winter rice 

Yield 

(kg/acre) - 

winter rice 

Value added 

(INR/acre) - 

winter rice 

Yield 

(kg/acre) - 

monsoon rice 

Value added 

(INR/acre) - 

monsoon rice 

Number of 

irrigations - 

winter rice 

Duration of 

irrigation 

(hours/acre) - 

winter rice 

Number of 

irrigations - 

monsoon rice 

Duration of 

irrigation 

(hours/acre) - 

monsoon rice 

1.0 0.0000 0.0035 0.0000 0.0307 0.0512 0.0021 0.0048 0.0011 0.0164 0.0863 0.0009 

1.1 0.0000 0.0247 0.0000 0.1035 0.1520 0.0170 0.0318 0.0073 0.0650 0.2652 0.0082 

1.2 0.0000 0.0966 0.0000 0.2395 0.3167 0.0732 0.1176 0.0295 0.1712 0.5173 0.0418 

1.3 0.0000 0.2441 0.0000 0.4208 0.5116 0.2002 0.2828 0.0836 0.3329 0.7455 0.1318 

1.4 0.0001 0.4479 0.0000 0.6065 0.6905 0.3913 0.4968 0.1806 0.5186 0.8911 0.2902 

1.5 0.0008 0.6526 0.0000 0.7606 0.8249 0.5986 0.6983 0.3161 0.6888 0.9614 0.4892 

1.6 0.0040 0.8111 0.0000 0.8684 0.9105 0.7709 0.8446 0.4711 0.8185 0.9884 0.6788 

1.7 0.0141 0.9104 0.0000 0.9339 0.9581 0.8858 0.9303 0.6213 0.9037 0.9969 0.8229 

1.8 0.0390 0.9624 0.0000 0.9693 0.9819 0.9497 0.9724 0.7481 0.9530 0.9993 0.9136 

1.9 0.0877 0.9858 0.0000 0.9867 0.9927 0.9802 0.9902 0.8436 0.9787 0.9999 0.9622 

2.0 0.1662 0.9951 0.0000 0.9946 0.9972 0.9929 0.9969 0.9088 0.9909 1.0000 0.9850 

Note: Upper bounds significance level are presented for different levels of gamma. 
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Appendix Table A.3. Balancing tests, before and after matching 

VARIABLES   

Means 

t-test of 

difference 

 
Treated Control t-stat p-value 

  Propensity score Unmatched 0.455 0.197 22.06 0.000 

  Matched 0.437 0.437 0.00 1.000 

N
ee

d
 f

o
r 

el
ec

tr
if

ic
at

io
n

 Net cultivated area (acres) Unmatched 3.4 1.5 13.39 0.000 

 Matched 3.1 3.4 -1.32 0.187 

Productive assets index Unmatched 0.414 -0.145 13.32 0.000 

 Matched 0.388 0.372 0.31 0.757 

Proportion of the members in agriculture Unmatched 0.452 0.475 -1.51 0.132 

 Matched 0.456 0.462 -0.38 0.707 

S
o

ci
al

 c
ap

it
al

 

Age head of household (years) Unmatched 54.2 53.1 1.48 0.138 

 Matched 54.2 54.0 0.28 0.782 

No education, dummy Unmatched 0.005 0.008 -0.47 0.639 

 Matched 0.006 0.008 -0.41 0.679 

Primary level of education, dummy Unmatched 0.470 0.502 -1.06 0.288 

 Matched 0.476 0.422 1.45 0.148 

Hindu, dummy Unmatched 0.717 0.667 1.77 0.078 

 Matched 0.714 0.681 0.94 0.349 

Number of household members Unmatched 6.1 5.6 3.08 0.002 

 Matched 6.0 6.0 -0.07 0.945 

E
co

n
o

m
ic

 

ca
p

ac
it

y
 Domestic assets index Unmatched 0.355 -0.121 9.41 0.000 

 Matched 0.331 0.403 -1.27 0.204 

Sources of income apart from agriculture, dummy Unmatched 0.685 0.766 -3.09 0.002 

 Matched 0.697 0.674 0.64 0.521 

E
n

v
ir

o
n

m
en

ta
l 

an
d

 t
ec

h
n

ic
al

 

su
it

ab
il

it
y

 

Domestic electric connection, dummy Unmatched 0.959 0.908 3.16 0.002 

 Matched 0.960 0.968 -0.57 0.571 

Pre-monsoon depth of ground water (GW) Unmatched 77.5 69.8 3.98 0.000 

 Matched 77.4 77.2 0.09 0.930 

(Pre-monsoon depth of GW)2 Unmatched 6,687.1 6,008.6 1.98 0.048 

 Matched 6,688.9 6,790.2 -0.28 0.780 

Post-monsoon depth of GW Unmatched 53.8 45.7 6.14 0.000 

 Matched 53.4 50.9 1.64 0.102 

(Post-monsoon depth of GW)2 Unmatched 3,318.8 2,577.1 5.36 0.000 

 Matched 3,277.3 3,001.4 1.72 0.085 

Semi-critical block, dummy Unmatched 0.595 0.409 6.21 0.000 

 Matched 0.586 0.508 2.09 0.037 

D
is

ta
n

ce
 t

o
 

th
re

sh
o

ld
 

Distance from SOD 90% cutoff Unmatched 36.4 34.2 1.67 0.095 

 Matched 36.2 36.3 -0.02 0.980 

Distance from 20 cm decline in GW depth (pre-monsoon) Unmatched 12.1 10.7 1.83 0.067 

 Matched 12.0 12.3 -0.35 0.724 

Distance from 20 cm decline in GW depth (post-monsoon) Unmatched 0.7 1.7 -3.05 0.002 

 Matched 0.7 1.4 -1.54 0.124 

  



 
 

37 
 

Appendix Table A.4. Multiple hypothesis testing 

Subgroup 

Difference in 

means between 

treated and 

control 

P-values 

Unadjusted Multiplicity adjusted 

 

List, 

Shaikh, Xu Bonferroni Holm 

Crop intensity 24.8 0.0003*** 0.0003*** 0.0036*** 0.0023*** 

Winter rice      

   Share of net cultivated area  0.339 0.0003*** 0.0003*** 0.0036*** 0.0016*** 

   Yield (kg/acre)  82.0 0.1003 0.1866 1.0000 0.2006 

   Value added (INR/acre)  2,845.5 0.0133 0.036** 0.1466 0.0400** 

   Number of irrigations  9.5 0.0003*** 0.0003*** 0.0036*** 0.0026*** 

   Duration of irrigation (hours/acre)  20.9 0.2136 0.2136 1.0000 0.2136 

Monsoon rice      

   Share of net cultivated area 0.176 0.0003*** 0.0003*** 0.0036*** 0.0036*** 

   Yield (kg/acre)  135.2 0.0003*** 0.0003*** 0.0036*** 0.002*** 

   Value added (INR/acre)  2,027.4 0.0003*** 0.0003*** 0.0036*** 0.003*** 

   Number of irrigations 4.7 0.0003*** 0.0003*** 0.0036*** 0.0033*** 

   Duration of irrigation (hours/acre)  21.3 0.0076*** 0.0283** 0.0843* 0.0306** 

Note: *** stands for 1% of significance, ** for 5% and * for 10%. 
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1 ‘Safe” blocks are those where groundwater has not been heavily developed and where groundwater levels recharge 

significantly post-monsoon. See Table 1 for thresholds used to categorize blocks. 

2 Prior to 2011, West Bengal charged a flat tariff for electricity. This was changed to metering and volumetric pricing 

by 2011. This change reduced the number of pumping hours in the winter season, but did not influence either the 

cropping patterns or the yields of the winter rice crop (Meenakshi et al., 2013).  

3 In West Bengal, the West Bengal State Electricity Department Corporation Limited (WBSED) applies three different 

tariffs over 24 hours for agricultural connections. Nights rates are much lower and are supposed to incentive farmers 

to irrigate during the nights to balance the power consumption. 

4 The productive assets in this index include ploughs, power tillers/tractors, spay machine, husking machine, treadle 

pump, manual pumps, bullocks, cows, calves, buffalos, goats, sheep, chickens, ducks, and geese. 

5 The wealth assets in this index include beds, chairs, tables, sofas, cupboards, wooden or steel boxes, radios, 

televisions, sewing machines, stoves, mobile phones, bicycles, motorcycles, solar panels, batteries, and water storage 

tanks. 

6 We describe the PSM procedure here for the full sample. We also conducted the analysis separately for two 

subsamples in which (1) electric-pump owners are the treated farmers and diesel-pump owners are the counterfactual 

farmers, and (2) electric-pump owners are the treated farmers and water buyers are the counterfactual farmers. 

7 The standardised percentage bias is the difference of the sample means in the treated and control sub-samples as a 

percentage of the square root of the average of the sample variances in the treated and non-treated groups 

(Rosenbaum and Rubin, 1985).  

8 The treatment is here defined as the ownership of an electric pump. In theory, Average Treatment Effect on 

Treated (ATT) could be calculated by considering the use or not of the electric pump by electric pump owners; 

however, only 1.08% of the owners did not use their pumps during the growing seasons for which the data was 

collected. 

9 We conduct propensity score matching separately for the separate sub-samples (electric- and diesel-pump owners, 

and electric-pump owners and water buyers). Results of the logit prediction models and tests of conditional 

independence, common support, and balancing for these sub-samples are similar to those for the pooled sample and 

are available from the authors upon request. 

 

                                                      


