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Abstract 

 

This paper offers one of the first evidence in a developing country context that transitory 

exposure to high temperatures may disrupt low-stakes cognitive activities across a range 

of age cohorts. By matching eight years of repeated cognitive tests among all the 

participants in a nationally representative longitudinal survey in China with weather data 

according to the exact time and geographic location of their assessment, we show that 

exposure to a temperature above 32 °C on the test date, relative to a moderate day within 

22–24 °C, leads to a sizable decline in their math scores by 0.066 standard deviations 

(equivalent to 0.23 years of education). Further, the effect on the math test scores is more 

salient for individuals who are older or less educated. 
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1. Introduction 

Climate change has brought about more frequent extreme temperatures, such as heat 

waves and cold spells. The world’s average temperature has increased 0.6 °C in the past 

three decades and 0.8 °C in the past century, and the trend is projected to continue (Hansen 

et al. 2006). The Intergovernmental Panel on Climate Change (IPCC) warns that, if 

greenhouse gas emissions continue at the current rate, by 2034 the atmosphere may warm 

up by as much as 1.5 °C (2.7 °F) above preindustrial levels (IPCC 2021). Along with the 

rising temperatures, heat waves are expected to occur more often. 

There are several channels through which extreme temperatures may impede the 

cognitive performance of humans. First, cognitive activities often rely on regions in the 

brain sensitive to heat or cold weather, potentially causing impaired brain functioning 

(Hocking et al. 2001; Kiyatkin 2007). Second, exposure to heat waves may reduce the flow 

of blood to the brain (Kiyatkin 2007; Raichle and Mintun 2006) and therefore increase 

heat-related fatigue (McMorris et al. 2006; Nybo et al. 2014). Third, thermal stress may 

diminish a person’s attention, working memory, information retention, and processing 

(Hocking et al. 2001; Vasmatzidis et al. 2002). 

There is a growing body of literature assessing the impact of extreme temperatures, 

particularly heat waves, on cognitive performance. Some studies have examined the effect 

of exposure to heat waves on students’ high-stakes exams (Park et al. 2020; Graff Zivin et 

al. 2020; Cho 2017; Park 2022; Park et al. 2021), while others have studied the impact of 

extreme temperatures on less challenging cognitive activities, often with a focus on 

children and young adults (Graff Zivin et al. 2018; Garg et al. 2020). It remains unclear, 

however, whether these findings hold true for the general population in low-stakes 

cognitive activities. 

Our paper is among the first to provide evidence of the link between the transitory 

exposure to high temperatures and the performance of low-stakes cognitive activities, by 

leveraging a nationally representative longitudinal household survey in China that includes 

almost all age cohorts, and matching these with weather data according to the exact time 

and geographic location of the cognitive tests they undertook. By exploiting the variations 

in exposure to extreme temperatures for the same individuals over eight years (2010–2018), 
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we show that exposure to heat waves impedes performance in math tests. Specifically, 

exposure to a mean temperature above 32 °C on the test date, relative to a day in the 22–

24 °C range, leads to math test scores to decline by 0.066 standard deviations (SD), 

equivalent to a loss of 0.23 years of education. The effect on the math test scores is more 

salient for individuals who are older or less educated. Some preliminary evidence suggest 

that our findings may not be driven by behavioral channels, such as the respondents being 

less cooperative, more impatient, or hastier in doing low-stakes cognitive assessments, but 

more plausibly by an impairment in the respondents’ cognitive ability. 

We contribute to the literature on several fronts. First, by including all groups above 

age 10 in low-stakes cognitive tests, we make the first attempt to identify heterogenous 

sensitivity to high temperatures by age; whereas the existing studies mainly focus on young 

children (Garg et al. 2020; Graff Zivin et al. 2018). Park et al. (2021) examine the age 

gradient of exposure to hot school days between students in elementary schools and those 

in middle schools. Our findings indicate that, while taking math tests, the impact of a day 

with a mean temperature above 32 °C, relative to a day in the 22–24 °C range, is on average 

1.5 times as large on the elderly as that on middle-aged people. As our mechanism tests 

suggest, the pronounced impact seems not to occur through behavioral channels, such as 

by being less cooperative, more impatient, or hastier to finish low-stakes cognitive 

assessments, but more plausibly through a disruption in their cognitive ability. 

Second, with detailed information on individual-level residential AC status, we 

accurately assess the role of residential AC in the linkage between extreme temperatures 

and cognitive performance. Previous studies have either relied on aggregated residential 

AC penetration data (e.g., Park et al. 2020) or imputed the probability of AC ownership 

based on social survey data (e.g., Graff Zivin et al. 2018). In line with recent work on the 

role of AC in mitigating the harmful effects of heat waves on mortality and labor 

productivity (Barreca et al. 2016; Behrer and Park 2017; Deschênes and Greenstone 2011; 

Heutel et al. 2021), we investigate the potential role of adaptive behaviors, which may 

shape the ultimate impacts of higher temperatures in a changing climate. 

Third, we are among the first to estimate the transitory impact of exposure to high 

temperatures on low-stakes cognitive performance in a developing country setting and the 

benefits of residential AC. Garg et al. (2020) offer another evaluation of the transitory 
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effect in an agrarian context in a single state of India, though they did not assess the role of 

residential AC. The penetration rates of residential AC differ vastly between developed 

countries and developing countries. For example, survey evidence suggests that while 90% 

of US households have some form of AC, only 34% and 13% of households in China and 

Mexico, respectively, have AC (Park et al. 2021). Given that the effects of climatic shocks 

on health-related outcomes vary substantially by socioeconomic status (Park et al. 2021; 

Isen et al. 2017), and that defensive investments such as AC can be effective in attenuating 

the impacts (Barreca et al. 2016; Behrer and Park 2017; Park et al. 2020), it is important to 

verify the external validity of the evidence from high-income countries. 

Fourth, building upon the three contributions summarized above, our improved 

understanding of heterogeneities in the temperature–cognition relationship by geographic 

region, potential adaptation, age cohort, and other key demographic factors may inform 

more accurate climate damage assessments in the long run. The existing assessments, 

however, have generally assumed a uniform relationship (Deschênes and Greenstone 2011; 

Hsiang et al. 2017) with few exceptions (e.g., Heutel et al. 2021). Overall, some previous 

climate damage assessments could deviate substantially from reality if the cognition effects 

of extreme temperatures vary geographically, change with the population aging, or if 

people adapt to their future climate. 

Finally, our findings also shed light on the various consequences of extreme 

temperatures. Besides raising the mortality rate and disease burden (Deschênes and 

Greenstone 2011; Huang et al. 2012; Karlsson and Ziebarth 2018; Banerjee and Maharaj 

2020; Lee and Li 2021), increasing the risk of mental illness (Obradovich et al. 2018; 

Mullins and White 2019) and suicide rates (Burke et al. 2018), and reducing labor supply 

(Deschenes 2014; Graff Zivin and Neidell 2014), as well as agricultural income and 

nutrition (Deschênes and Greenstone 2007; Shah and Steinberg 2017), we show that high 

temperatures may impair cognitive ability, which would deplete human capital and labor 

productivity, an important engine of economic growth. The impact is particularly acute for 

the elderly population. As global warming is projected to accelerate with more frequent 

high temperatures and with population aging in the coming decades, our findings suggest 

that future cognitive performance of older adults may be more frequently disrupted by hot 

weather. The total economic and social costs of heat waves would be larger than previously 
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thought, if we take this toll into account. 

The rest of the paper is organized as follows. Section 2 describes our data sources. 

Section 3 discusses our empirical strategy. Section 4 reports our findings, including 

baseline and stratified results, as well as robustness checks. Finally, section 5 concludes. 

2. Data 

2.1. Cognition data 

Data on cognitive tests were obtained from the China Family Panel Studies (CFPS), a 

nationally representative biennial longitudinal household survey of Chinese families and 

individuals. CFPS is funded by Peking University and carried out by the university’s 

Institute of Social Science Survey.1 CFPS includes questions on a wide range of topics for 

families and individuals, including family dynamics and relationships, economic activities, 

health status, subjective well-being, and cognitive abilities. 

The waves 2010, 2014, and 2018 of CFPS contain the same cognitive ability module, 

i.e., comprising 24 standardized mathematics questions and 34 word-recognition questions. 

The tests were conducted at respondents’ homes. All the questions were obtained from 

standard textbooks and were sorted in ascending order of difficulty. The starting question 

depends on the respondent’s education level. 2  The test ends when the individual 

incorrectly answers three questions in succession. The final test score is defined as the rank 

of the hardest question a respondent can answer correctly. If the respondent fails to answer 

any questions, the score is assigned as the rank of the starting question minus one. For 

example, a respondent with middle school education would begin with the 9th question in 

the verbal test. If the hardest question the respondent can correctly answer is the 14th 

question, then the verbal test score would be 14. However, if the respondent fails to answer 

the 9th, 10th, and 11th questions consecutively, the verbal test score would be 8. Since the 

 
1 The survey uses multistage probability proportional to size sampling with implicit stratification to better 
represent Chinese society. The 2010 CFPS baseline sample was drawn through three stages (i.e., county, 
village, and household) from 25 provinces. The 162 randomly chosen counties largely represent Chinese 
society (Xie and Hu 2014). 
2 Specifically, those whose education level is primary school or below start with the 1st question; those who 
attended middle school begin with the 9th question in the verbal test and the 13th question in the math test; 
and those who finished high school or above start with the 21st question in the verbal test and the 19th 
question in the math test. 
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respondents do not know the testing rules prior to the interviews, there should be no 

incentive to manipulate their test performance on purpose. 

CFPS is suitable for our study for several reasons. First, the survey includes several 

standardized cognitive tests. Second, the survey embodies information on residential AC 

ownership, allowing us to study the potential role of adaptation. Third, exact information 

about the geographic locations and test dates for all the respondents is available, enabling 

precisely matching the individual test scores in the survey with local weather data. Further, 

the longitudinal data allow us to remove unobserved individual factors that may bias the 

estimates. Finally, because the cognitive tests are administered to all age cohorts older than 

10 years old, we can study the effects of high temperatures across age groups. 

2.2. Weather data 

The weather data were provided by the China National Meteorological Data Service 

Center (CMDC) under the National Meteorological Information Center of China. The 

dataset contains daily weather records of 824 monitoring stations along with their 

longitudes and latitudes in China.3 The key variable for our analysis was the daily mean 

temperature. Other weather controls include precipitation, wind speed, sunshine duration, 

and relative humidity. We interpolate the weather data from the stations into a 0.1°  0.1° 

grid level based on the inverse-distance weighting (IDW) method and extract the value of 

the weather measures based on the boundaries of each county from the gridded data.4 

As some previous studies have shown that air pollution is associated with bad 

performance in cognitive tests (Ebenstein et al. 2016; Zhang et al. 2018), we also control 

for air quality, which was collected from the air quality report published by the Chinese 

Ministry of Ecology and Environment (MEE). 5  Air quality is measured using the air 

 
3 The spatial distribution of weather stations is displayed in Figure A1. Note, we are not allowed to mark the 
exact locations of the sampled counties in CFPS under Chinese privacy law. 
4 The weather dataset provided by the CMDC has been widely used in the recent literature when studying 
weather/climate change in China (for example, Agarwal et al. 2021; Graff Zivin et al. 2020). As far as we 
know, the distribution of the weather stations in this dataset is finer than that of the gridded temperature 
products, which are typically at the 0.5° 0.625° grid level. Interpolating the weather data from stations into 
the 0.1° 0.1° grid level enables us to match the weather data following the exact boundaries for each county, 
which can help ameliorate the concerns about potential measurement errors caused by the relatively small 
matching radius in some geographically large counties in western China. 
5 The report includes 86 major cities in 2000 and covers most of the cities in China since 2014. 
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pollution index (API), which ranges from 0 to 500, with larger values indicating worse air 

quality.6 We match each CFPS county to the nearest API reporting city within 100 km 

according to the distance between the county centroid and the city boundaries. 

Figure A2 depicts a histogram of the mean temperatures on the test dates in our sample. 

As most of the interviews were conducted in July and August when college students were 

employed as numerators (Figure A3), the distribution is skewed toward higher 

temperatures, with the mean being 24.40 °C. Following the general practice in the latest 

literature (Graff Zivin et al. 2018, 2020; Cho 2017), we use a state-of-the-art arrangement 

of 2 °C per bin indicators to allow for substantial flexibility and the nonlinear relationships 

between the cognitive performance and temperature exposure. Specifically, we divide the 

spectrum of temperatures into 12 bins, with the lowest bin including all temperatures below 

12 °C and the highest bin including all temperatures above 32 °C, due to data sparseness 

at the extremities of the distribution. Figure 1 shows a plot of the percentage of days that 

fall into each bin, with 11.89% falling in the 22–24 °C range, 18.67% in the 28–30 °C bin, 

and 1.58% in the greater than 32 °C bin. 

CFPS surveyed a panel of 49,652 individual respondents over 10 years old in 2010, 

2014, and 2018, for a total of 96,990 observations with cognitive test scores. Of these 

observations, 1,728 are missing values for test dates or locations. Among the remaining 

95,262 observations, 70,771 observations could be matched to weather and API data. Due 

to there being some missing values for other control variables, the final dataset used in this 

study included 70,736 observations.7 

3. Empirical strategy 

Our baseline econometric specification is as follows: 

 
6 Carbon monoxide (CO), ozone (O3), and particulate matter with a diameter smaller than 2.5 µm (PM2.5) 
were not added to the basket of the index until 2013. Because all the cognitive tests were administered 
between 2010 and 2018, we transform the air quality index (AQI) to the API in 2014 and 2018, and use the 
API based on sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with a diameter smaller 
than 10 µm (PM10) in our paper. 
7 Our further investigations confirm that the missing temperature data are not systematically correlated with 
household/county characteristics; the missing survey data are unrelated to temperature bins; and there are 
little systematic differences between the fixed effect sample and the full sample in terms of basic 
household/individual characteristics. The results are available upon request. 
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The dependent variable Scoreijt is the cognition test scores of respondent i in county j 

at date t. The two cognitive test scores we test in this paper are verbal test scores and math 

test scores. The key variables of interest TEMPjtk are a series of indicators for whether the 

mean temperature falls into temperature bin k (from 1 to 12) on the test date t in county j. 

We deploy 12 bins, i.e., lower than 12 °C bin, higher than 32 °C bin, and ten 2 °C-wide 

bins in between. We set the 22–24 °C temperature bin as the reference group as it is 

associated with the highest cognitive test scores. The vector Xijt represents demographic 

correlates, including gender, age with its square term and education level. We also control 

for a vector of contemporaneous air quality and weather conditions Wjt, involving API, 

precipitation, wind speed, sunshine duration, and relative humidity in quadratic forms. λi 

denotes individual fixed effects. δj represents county fixed effects.8 ηt indicates interview 

year, month, day-of-week, and hour-of-day fixed effects. εijt is the error term. Standard 

errors are clustered at the county level. All the key variables and their summary statistics 

are described in Table 1. 

By conditioning on the individual fixed effects and other sets of fixed effects listed 

above, the key parameters αk are identified by making use of variations in exposure to 

temperatures for the same respondent in the three waves after controlling for seasonality 

and annual shocks. Due to the unpredictability of test dates and thus the random of 

temperature fluctuations, it is reasonable to assume that this variation is orthogonal to the 

unobserved determinants of cognitive test scores. 

4. Results 

4.1. Baseline results and interpretations 

Table A1 displays various specifications to our baseline results. Panel A corresponds 

to the verbal tests, and Panel B the math tests. The first column in each panel includes 

temperature exposure, demographic controls (i.e., gender, age with its square term, and 

 
8 The county fixed effects cannot be wiped out by individual fixed effects since some respondents do not 
live in the same counties across the three waves. 
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education level) and environmental conditions (i.e., API, precipitation, wind speed, 

sunshine duration, and relative humidity in quadratic forms), and county fixed effects, as 

well as interview year, month, day-of-week, and hour-of-day fixed effects. We find a strong 

negative effect of exposure to high temperatures (>32 °C) on the math test scores. Also, 

the pattern continues to hold when individual fixed effects are further added in the second 

column of each panel. 

Figure 2 plots the estimated results from the preferred specification in Columns (2) 

and (4) of Table A1. Figure 2A corresponds to the verbal test scores, while Figure 2B refers 

to the math test scores. Each figure reveals the estimated coefficients for 12 temperature 

bins (<12 °C, 12–14 °C, 14–16 °C, 16–18 °C, 18–20 °C, 20–22 °C, 22–24 °C, 24–26 °C, 

26–28 °C, 28–30 °C, 30–32 °C, and >32 °C) in equation (1), together with their 90% and 

95% confidence intervals (CIs). The temperature bin left out is 22–24 °C. Therefore, the 

coefficients for each bin measure the changes in test scores when the temperature falls into 

that bin relative to the reference bin. 

As revealed in Figure 2A, there is no obvious association between temperature 

exposure and cognitive performance in the verbal tests. All the coefficients on the 

temperature bins are insignificant. Therefore, we can conclude that high temperatures seem 

to have little effect on the verbal test scores. Figure 2B further presents the estimated effect 

on the math test scores. We find a nonlinear relationship between the temperature and 

cognitive performance in the math tests, where high temperatures are associated with a 

decline in math test scores. Further, when exposed to temperatures higher than 32 °C, the 

negative effect is significant at the 5% level. Specifically, a test day with a mean 

temperature above 32 °C, relative to a day in the 22–24 °C range, leads to a reduction in 

math test scores by 0.420. To put this into context, note that the SD of the math test scores 

is 6.351. Therefore, the respondents’ math test scores on a day with average temperatures 

above 32 °C are 0.066 SD lower than their scores on a day in the reference temperature bin 

(22–24 °C). 

We compare the magnitude of our estimates with other similar studies that also use a 

series of 2 °C temperature bins, though their distributions of temperatures, highest 

temperature bins, and reference bins may vary due to the differences in countries and 

seasons of the surveys. The relevant studies are summarized in Table 2. To facilitate 
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comparisons across studies, we report the effect sizes in SD change of the test scores per 

1 °C higher temperature. As for our estimates, since the difference between the bins above 

32 °C and 22–24 °C is approximately 9 °C, each 1 °C higher temperature decreases the 

math test scores by 0.0073 (0.066/9) SD.9 Meanwhile, an increase in temperature by 1 °C 

decreases the test scores by 0.0120 (0.12/10) SD in Graff Zivin et al. (2018), 0.0320 

(0.48/15) SD in Graff Zivin et al. (2020), and 0.0008 (0.0042/5) SD in Cho (2017), 

respectively. By comparison, our effect size is about two-thirds of that in Graff Zivin et al. 

(2018), who also use low-stakes test scores, and around one-third of that in Graff Zivin et 

al. (2020) for high-stakes Chinese college entrance exams. Notably, our effect size is much 

higher than that in Cho (2017) leveraging Korean college entrance exams. 

As reviewed in Table 2, the effect size varies greatly across studies between low-stakes 

and high-stakes settings, and even between high-stake settings. If test takers exert more 

effort in high-stake settings than low-stake settings to offset the negative effect of high-

temperature exposure, we should observe a larger effect in low-stakes settings. However, 

our finding of smaller effects in a low-stakes setting is puzzling. It is plausible that some 

other opposing factors are at play. First, the literature has mostly focused on school settings, 

while most of the respondents in our study have already completed their education. Relative 

to some of the school settings in which high temperatures may impose both a transitory 

effect during the tests and a longer-term effect on learning loss, our primarily transitory 

effect may tend to be smaller. Second, in addition to possibly elevated heat stress due to 

high temperature exposures, test takers often feel more pressure during high-stakes tests 

than low-stakes ones, which may further impede their cognitive performance (Cai et al. 

2019). 

Our results by test subject are consistent with the literature in which the transitory 

effect of exposure to high temperatures is more often observed in math tests than in other 

subjects, like word recognition and reading comprehension (Graff Zivin et al. 2018; Park 

2022; Garg et al. 2020). One potential explanation is that different regions of the brain 

perform distinct cognitive functions, and the regions responsible for solving math problems 

 
9 Although our measure of the marginal effect (for each 1 °C increase in temperature) follows the existing 
studies (e.g., Graff Zivin et al. 2020), our linear approximation may understate the marginal effect of exposure 
to temperature extremes. Future work with larger sample and more statistical power may refine our bin 
classification so as to offer more accurate effect estimates over a wider range of temperature exposure. 
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may be more sensitive to extreme temperatures than the regions in charge of reading 

functions (Hocking et al. 2001). These differential effects in the short run across cognitive 

tasks also provide strong evidence for the presence of a physiological channel connecting 

temperature exposure to cognitive performance. 

To make the results more intuitive, we further interpret our findings by calculating the 

years of education lost based on the estimates, as cognition and educational attainment are 

highly correlated and intrinsically linked. Figure A4 plots the average years of education 

versus cognitive test scores for respondents, as well as their correlation coefficients. A one-

point increase in verbal test scores corresponds to 0.321 years of education, while a one-

point increase in math test scores is equivalent to 0.545 years of education. As calculated 

from Table A1, exposure to a mean temperature above 32 °C on the test date, relative to a 

day in the 22–24 °C range, leads to a sizable decrease in math test scores by 0.23 years of 

education. 

4.2. Stratified analyses 

We study the potential role of adaptation to heat waves in two dimensions. First, we 

split the sample according to residential AC ownership.10 As shown in Figure 3A for the 

verbal test scores and in Figure 3B for the math test scores, the negative effect of exposure 

to high temperatures is significant only for individuals taking math tests without AC. As 

reported in Columns (4)–(5) of Table A2, the adoption of AC offsets some of the negative 

effects of hot days (>32 °C) on cognition. The effect size of high temperatures on math test 

scores with AC is 36.6% (= (0.650-0.412)/0.650) smaller than that without AC. However, 

as revealed in Column (6) of Table A2, there is no statistically significant difference in the 

impact of high temperatures between these two subsamples. 

Second, we repeat the exercises for cooler and hotter regions of China, classified 

 
10 The AC ownership information is only available in CFPS wave 2014. Therefore, we employ the same 
specification in Columns (1) and (3) of Table A1 by including demographic controls (i.e., gender, age with 
its square term and education level) and environmental conditions (i.e., API, precipitation, wind speed, 
sunshine duration, and relative humidity in quadratic forms), county fixed effects, as well as interview year, 
month, day-of-week, and hour fixed effects. We test the cross-sectional determinants of AC adoption in the 
sample. We find that higher income individuals, educated people and urban residents are more likely to have 
an AC at home, which corroborates the findings in the existing studies (Biddle 2008; Davis and Gertler 2015; 
Park et al. 2020). 
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according to the median of each county’s average temperature in summer days (from July 

to August) during 2010–2018. The results are plotted in Figure 4, and the corresponding 

numerical results are displayed in Table A3. As revealed in Figure 4, high temperatures 

(>32 °C) are more harmful to the math test performance of respondents living in cooler 

regions than those in hotter regions. Nevertheless, the cross-equation test in Column (6) of 

Table A3 indicates that the difference between cooler and hotter regions is statistically 

insignificant. In the cooler regions, participants’ math test scores, on a day with an average 

temperature above 32 °C, are on average 0.701 (0.110 SD) lower than their scores on a day 

in the reference temperature bin (22–24 °C). By contrast, people living in hotter regions 

are more sensitive to cold spells than those living in cooler regions, and the difference is 

significant at the 5% level.11 Our findings are consistent with the literature on adaptation 

behaviors. For example, Cho (2017) shows that students in cities with relatively cool 

summers are affected more than students in cities with relatively hot summers. Behrer and 

Park (2017) find that hotter places in the US seem to better adapt to heat stress than cooler 

areas. 

We also conduct stratified analyses by age and education level. Cognitive ability 

evolves over age and often declines substantially in older ages. Therefore, individuals may 

become less cognitively resilient when getting older. To explore whether the effects of high 

temperatures on cognition differ across age cohorts, we divide the sample into three age 

groups (10–30, 31–59, and 60+ years old). Figure 5B plots the estimates and CIs on the 

temperature bins for the three age cohorts, separately. Compared to the younger cohort, hot 

days are more harmful to middle-aged or older adults taking math tests, especially among 

older adults. Specifically, a day with a mean temperature above 32 °C, relative to a day in 

the 22–24 °C range, is associated with a 0.450 (0.071 SD) and 0.692 (0.109 SD) decline in 

math test scores for the middle-aged (aged 31–59) and the old people (aged 60 or above), 

respectively. However, our small sample of school-age children lacks sufficient statistical 

power to identify any effect for this age group, preventing us from meaningfully comparing 

our results with the growing literature on this same age group taking high-stakes tests. 

 
11 As the cooler regions in Western and Northern China generally have larger geographic areas, the matched 
temperature in cooler counties may have systematically larger measurement errors than warmer places. As a 
robustness check to mitigate this concern, we exclude CFPS respondents residing in a set of large counties 
with geographic area above 3,000 km2. Our main findings still hold. The results are available upon request. 



13 

 

Furthermore, higher educational attainment tends to increase cognitive reserve and 

therefore more cognitive resilience against environmental exposures. Thus, cognitive 

responses to extreme high temperatures may differ by level of education. Dividing the 

whole sample into two subgroups at 12 years of education, Figure 5C shows that high 

temperatures impose a significant effect on the math tests of less educated people. The 

estimated coefficients indicate that a day with a mean temperature above 32 °C, relative to 

a day in the 22–24 °C range, leads to a reduction in math test scores by 0.432 (0.068 SD) 

for respondents who had received high school education level or below. 

4.3. Robustness checks 

We first conduct a placebo test to address the concern over potential omitted variables. 

Following a common strategy in the literature (Cho 2017), we examine the effect of 

extreme temperature the day after the interview on cognitive test scores. If unobserved 

factors are correlated with both the time trend of extreme temperatures and the outcome 

variables, we should find similar effects when replacing the current exposure with later 

ones. As a placebo best, Columns (1)–(2) of Table A4 display the estimates from 

regressions of the verbal and math test scores on the temperature bins on the day after the 

interview. None of the coefficients is statistically different from zero, which largely 

dismisses the concern over omitted variables. 

The transitory effect of high temperatures on cognitive performance may be driven by 

behavioral change. First, people may become less cooperative or more impatient when 

exposed to extreme high temperatures, thereby reducing their cognitive test scores. CFPS 

includes an evaluation of interviewees’ level of cooperation (waves 2010 and 2014) and 

impatience (waves 2014 and 2018), as rated by the interviewers. 12  The ratings for 

cooperation and impatience are both scaled from 1 (low) to 7 (high). We explore the effect 

of exposure to extreme high temperatures on respondents’ cooperation and impatience in 

 
12  Enumerators’ assessments of cooperation and other behaviors can be subject to bias if enumerators 
themselves are impacted by high temperatures. Take ratings on cooperation as an example. As enumerators 
are more likely to give lower ratings on hot days, some of the identified negative effects of higher 
temperatures on cooperation ratings may stem from the enumerators, thus more likely overestimating the 
actual effect on respondents. The insignificant negative effect identified in Column (3) of Table A4 means 
that the net impact of high temperatures on respondents’ cooperation behaviors is negligible, largely ruling 
out the potential bias from enumerators in the event of high temperatures. 
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Columns (3) and (4) of Table A4, respectively. We still employ equation (1) as our 

specification, except we replace the previous dependent variable with ratings on 

cooperation or impatience. The estimates indicate there is no significant association 

between extreme high temperatures (>32 °C) and respondents’ cooperation or impatience, 

partially ruling out the behavioral channel. 

Another issue related to the interpretation of these results is potential fatigue and lower 

efforts during cognitive assessments on hot days, especially for low-stakes evaluations. In 

particular, respondents may rush through the math tests on hot days, as they may feel the 

math tasks are more unpleasant. We do not have information on the completion time for 

each cognitive assessment other than the start and end time of the entire interview, which 

is an imprecise proxy for effort. Despite the shortcoming of the measure, we probe this 

channel using the time that each respondent takes to complete the whole questionnaire.13 

As shown in Column (5) of Table A4, there is no statistically significant relationship 

between temperature and the survey completion time. 

The results are also robust to a wide range of alternative specifications. First, as 

revealed in Columns (1)–(2) of Table A5, the baseline results are robust to further 

controlling for county specific linear time trends and calendar date fixed effects. Second, 

we show in Table A4 that there is an insignificant effect of heat waves on completion time. 

Columns (3)–(4) of Table A5 further document that the results are essentially the same 

after adding completion time as a control variable. Third, considering that matching 

counties to the closest city with an air pollution reading may introduce measurement errors, 

we conduct a robustness check in Columns (5)–(6) by eliminating API from the regressions. 

We find that the estimated effects for math test scores even become slightly stronger. 

Additionally, as seen in Columns (7)–(8) of Table A5, our estimates appear to be unaffected 

by working outdoors. 

Furthermore, Columns (1)–(2) of Table A6 show that our results are also robust to 

using the log form of the test scores as dependent variables. Moreover, as revealed in 

Columns (3)–(4) of Table A6, the estimated effects are qualitatively unchanged when only 

subjects with completed education levels are included in the analysis. Columns (5)–(6) of 

 
13 The average completion time in our sample is 52 minutes. 
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Table A6 indicate that migration, and thus location sorting, is unlikely to significantly bias 

our estimates. Columns (7)–(8) of Table A6 reveal that our findings still hold after we 

exclude ozone-dominated days, during which ozone may further interact with heat waves 

to impair cognition. 

4.4. Cumulative effects 

We analysis so far has shown a significantly negative effect of transitory exposure to 

high temperatures on low-stakes math test performance. In this section, we investigate the 

cumulative impact of exposure over the past month. We first add temperature bins for the 

month prior to the interview in the regression model. We calculate the number of days 

falling in each temperature bin during the past 30 days, with Figure A5 displaying the 

distribution. Figure A6 plots the estimated coefficients associated with each temperature 

bin for the verbal and math test scores with 90% and 95% CIs. Neither of the coefficients 

on the highest temperature bin (>32 °C) is significant. 

Moreover, we study the impact of high temperatures during the past month on 

cognitive performance by calculating the number of consecutive heatwave days (i.e., with 

temperatures above 32 °C) in the 30 days prior to the test date. We use two measures: the 

first is the number of consecutive heatwave days immediately before the survey; and the 

second is the longest consecutive heatwave days in the past month. Our findings show that 

a one-day increase in the longest consecutive heatwave days over the past 30 days leads to 

a reduction in math test scores by 0.061 (0.010 SD). The results are displayed in Table A7. 

5. Conclusions 

By matching a nationally representative longitudinal survey with weather data 

according to the exact date and geographic location in China, this study examines the effect 

of transitory exposure to high temperatures on cognitive performance for people above 10 

years old. Exploiting the longitudinal structure of CFPS and random fluctuations in weather 

across interviews, we identify the effect of temperatures in models with individual fixed 

effects. We find that exposure to a mean temperature above 32 °C on the test date, relative 

to a moderate day in the 22–24 °C range, leads to a decline in math test scores by 0.066 

SD, equivalent to a loss of 0.23 years of education. Further, the effect on the cognitive 
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performance in math tests is more salient for individuals who are older or less educated. 

These results survive a placebo test and a set of robustness checks. 

People living in hotter regions or with AC installed in their homes are not as 

vulnerable to extreme high temperatures, indicating a potential role of adaptation. 

Specifically, residential AC could mitigate the harmful effect of heat waves on math test 

scores by 36.6%. Yet, the adaptation is still limited. People residing in hotter regions are 

vulnerable to low temperatures, while people in cooler regions or without AC are 

susceptible to high temperatures, especially during math tests. 

While this study mainly focuses on transitory exposures to heat events, the impact is 

sizable. Compared to previous work, the cognitive tests in our study setting are close to our 

day-to-day, low-stakes cognitive activities. The salient effect in our setting suggests that 

the quality of routine math-related decision-making in our daily lives is compromised by 

temperature extremes. Moreover, cognitive functions are essential for our everyday life. 

Damage to cognitive performance in math domains caused by extreme temperatures would 

compromise the quality of decision-making, generating inefficiencies and imposing 

additional costs on individual and social welfare. Previous studies evaluating the welfare 

cost of extreme temperatures have neglected its potential damage to cognition among older 

adults. As old people still need to make many critical decisions using math skills, the total 

social costs of heat waves, which are often inferred from the estimates on young people, 

are likely understated. 
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Figure 1 Distribution of daily mean temperature on the test date 
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Figure 2 Transitory effects of temperatures on cognitive test scores 

 

 
Note: The figures plot the estimated coefficients on temperature bins based on the results in Columns 
(2) and (4) of Table A1. Both 90 (short caps) and 95 percent (long lines) confidence intervals are 
displayed. The left-out temperature bin is 22-24 °C. The coefficients can be interpreted as effects of a 
day in the corresponding temperature bin on cognitive test scores relative to the reference temperature 
category. Panel A refers to verbal test scores, while Panel B refers to math test scores. 
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Figure 3 Transitory effects of temperatures on cognitive test scores, by residential AC ownership 

 

 
Note: The figures plot the estimated coefficients on temperature bins for the households with and 
without AC based on the results in Columns (1)-(2) and (4)-(5) of Table A2. Both 90 (short caps) and 
95 percent (long lines) confidence intervals are displayed. The left-out temperature bin is 22-24 °C. The 
coefficients can be interpreted as effects of a day in the corresponding temperature bin on cognitive test 
scores relative to the reference temperature category. Panel A refers to verbal test scores, while Panel B 
refers to math test scores. 
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Figure 4 Transitory effects of temperatures on cognitive test scores, by region 

 

 
Note: The figures plot the estimated coefficients on temperature bins for the cool and hot regions based 
on the results in Columns (1)-(2) and (4)-(5) of Table A3. Both 90 (short caps) and 95 percent (long 
lines) confidence intervals are displayed. The left-out temperature bin is 22-24 °C. The coefficients can 
be interpreted as effects of a day in the corresponding temperature bin on cognitive test scores relative 
to the reference temperature category. Panel A refers to verbal test scores, while Panel B refers to math 
test scores. 
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Figure 5 Stratified analysis of temperatures on cognitive test scores 

  
Note: Panels A and B plot the stratified effects of high temperatures on cognitive test scores by age 
cohort and education level, respectively. All the regressions control the temperature bins “<12 °C, 12-
14 °C, 14-16 °C, 16-18 °C, 18-20 °C, 20-22 °C, 22-24 °C, 24-26 °C, 26-28 °C, 28-30 °C, 30-32 °C, 
and >32 °C” and the figure only plots the estimated coefficients on the temperature bin “>32 °C”. The 
left-out temperature bin is 22-24 °C. All the regressions include individual fixed effects, county fixed 
effects, year, month, day-of-week, and hour-of-day fixed effects. Demographic controls include age with 
its square term, education level and completion time. Environmental controls include air pollution index 
(API), total precipitation, wind speed, sunshine duration, and relative humidity in quadratic forms. Both 
90 (short caps) and 95 percent (long lines) confidence intervals are displayed. The coefficients can be 
interpreted as effects of a day in the corresponding temperature bin on cognitive test scores relative to 
the reference temperature category. 
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Table 1 Summary statistics 

Variable 
whole sample  normal temp. (< 32°C)  high temp. (> 32 °C)  difference 

p-value Mean Std. Dev.  Mean Std. Dev.  Mean Std. Dev.  
CFPS data           

verbal test scores 18.536 10.539  18.528 10.541  19.031 10.424  0.113 
math test scores 10.220 6.351  10.229 6.353  9.659 6.172  0.003 
gender 0.487 0.500  0.488 0.500  0.456 0.498  0.036 
age 44.609 18.544  44.566 18.532  47.238 19.106  0.000 
years of education 7.433 4.620  7.435 4.619  7.363 4.664  0.604 

Temperature           
mean temperature, °C 24.397 6.309  24.260 6.265  32.887 0.834  0.000 
indicator for days >32 °C 0.016 0.125  0.000 0.000  1.000 0.000  - 

Environmental controls           
API 64.557 35.281  64.585 35.506  62.785 15.921  0.090 
precipitation, mm 4.281 12.382  4.345 12.464  0.320 3.197  0.000 
wind speed, m/s 2.102 1.061  2.101 1.065  2.172 0.747  0.027 
sunshine duration, hour 6.383 4.223  6.313 4.215  10.719 1.697  0.000 
relative humidity, % 74.602 12.599  74.805 12.555  61.975 8.137  0.000 
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Table 2 Relevant studies on the effects of high temperatures on cognitive performance 
Study Country Years Outcomes Temperature bins Matching method Effects 

Graff Zivin 
et al. (2018) 
JAERE 

the United 
States (951 
counties) 

1988-
2006 

mathematics, 
reading 
recognition, and 
reading 
comprehension 
from NLSY79 

indicators for temperature in 
2 °C-wide bins from 12 °C 
to 32 °C, with 20-22 °C as 
the reference category 

linearly interpolate 
temperatures at each 
county centroid using 
readings from the seven 
nearest stations 

Changing the daily mean temperature from 20 °C–22 °C 
to 30 °C–32 °C decreases a child’s math scores by 0.12 
SD. The effect of temperature bin above 32 °C on math 
test scores is insignificant 
each 1 °C higher temperature decreases test scores by 
0.0120 (0.12/10) SD 

Graff Zivin 
et al. (2020) 
JEEM 

China 
(2227 
counties) 

2005-
2011 

total scores for 
National college 
entrance 
examination 

indicators for temperature in 
2 °C-wide bins from 12 °C 
to 28 °C, with 12-14 °C as 
the reference category 

calculate weather for a 
given county based on 
inverse-distance weighted 
averages of readings from 
all weather stations within 
a 200 km radius of the 
county centroid 

Exposure to a daily mean temperature above 28 °C, 
relative to a day in the 12–14 °C range, leads to a 
reduction in total exam scores by 0.0553 log points 
(convert to 0.48 SD) 
each 1 °C higher temperature decreases test scores by 
0.0320 (0.48/15) SD 

Cho (2017) 
JEEM 

Korea (164 
cities) 

2009-
2013 

reading, math 
and English test 
scores for 
Korean college 
entrance exam 

indicators for maximum 
temperature in 2 °C-wide 
bins from 22 °C to 34 °C, 
with 28-30 °C as the 
reference category 

match weather data based 
on school location at the 
city level (weather data 
from adjacent cities is used 
for eight cities without 
weather information) 

An additional day with a maximum daily temperature 
above 34 °C during the summer, relative to a day with a 
maximum daily temperature in the 28–30 °C range, 
reduces the math test scores by 0.0042 SD 
each 1 °C higher temperature decreases test scores by 
0.0008 (0.0042/5) SD 

Garg et al. 
(2020) 
JAERE 

India 

2006-
2014; 
2002-
2011 

math and 
reading test 
scores for 
children in 
primary and 
secondary 
school 

number of days in the 
calendar year prior to the 
year of the test falling in 
2 °C-wide bins from 13 °C 
to 29 °C, with 15-17 °C as 
the reference category 

construct an inverse-
distance weighted average 
of all the weather grid 
points (on a 11° latitude-
longitude grid level) 
within a 100-kilometer 
range of the district 
centroid 

10 extra days with average daily temperature above 29°C 
(85°F) during the prior year, relative to 15°–17°C (59°–
63°F), reduce math and reading test scores by 0.03 and 
0.02 SD, respectively 

Park (2022) 
JHR 

the United 
States 
(New York 
City) 

1998-
2011 

high stakes 
exam scores, 
likelihood of 
passing exam, 
educational 
attainment 

indicators for temperature 
in >90 °F, 80-90 °F, 70-
80 °F; 
>90 °F, 85-90 °F, 80-85 °F, 
75-80 °F, 70-75 °F 

match schools to the 
nearest weather station in 
the NYC area 

Taking an exam when outdoor temperatures are 90 °F 
reduces performance by approximately 13 percent of a 
SD relative to a temperature of 75 °F, and results in a 
roughly 10 percent lower likelihood of passing a 
particular subject. 

Park et al. 
(2020) 
AEJ EP 

the United 
States 

1998-
2012 

the PSAT math 
and reading 
scores 

number of days in the year 
prior to the test falling in 
10 °F-wide bins from 40 °F 
to 100 °F, with 60-70 °F as 
the reference category 

assign each high school to 
the nearest weather station, 
the average matching 
distance is 9.7 miles 

Three additional days above 90 °F in the year prior to the 
test lower achievement by 0.002 SD 

Note: Our estimates indicate that each 1 °C higher temperature decreases math test scores by 0.0073 (0.066/9) SD. For the studies closest to ours, we mark their identified effect 
sizes in italic fonts using a comparable metric based on a linear approximation. 
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Online Appendix A: Supplementary Figures and Tables 

Figure A1 The distribution of weather stations 

 
Note: This figure is plotted using ArcMap 10.3.1. 
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Figure A2 Histogram of mean temperature (°C) on the test date 
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Figure A3 Distribution of interview months in 2010, 2014 and 2018 
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Figure A4 Relationship between cognitive test scores and mean values of education years 

 

 
Note: k values indicate the coefficients from regressing mean values of education years on verbal test 

scores/math test scores. 
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Figure A5 Distribution of mean temperature (°C) in the past 30 days 
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Figure A6 Cumulative effects of temperatures on cognitive test scores 

  
Note: The figure plots the estimated coefficients on the number of days in each temperature bin “<12 °C, 

12-14 °C, 14-16 °C, 16-18 °C, 18-20 °C, 20-22 °C, 22-24 °C, 24-26 °C, 26-28 °C, 28-30 °C, 30-32 °C, 

and >32 °C” during the past 30 days. The left-out temperature bin is 22-24 °C. Both 90 (short caps) and 

95 percent (long lines) confidence intervals are displayed. The coefficients can be interpreted as effects 

of an additional day in the corresponding temperature bin on cognitive test scores relative to the 

reference temperature category. All the regressions control the 12 temperature bins (“<12 °C, 12-14 °C, 

14-16 °C, 16-18 °C, 18-20 °C, 20-22 °C, 22-24 °C, 24-26 °C, 26-28 °C, 28-30 °C, 30-32 °C, and >32 °C”) 

on the interview date. Other controls include individual fixed effects, county fixed effects, year, month, 

day-of-week, and hour-of-day fixed effects. Demographic controls include age with its square term and 

education level. Environmental controls include air pollution index (API), total precipitation, wind 

speed, sunshine duration, and relative humidity in quadratic forms. Robust standard errors are clustered 

at the county level. 
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Table A1 Transitory effects of temperatures on cognitive test scores 

Dependent variable A. verbal test scores  B. math test scores 

 (1) (2)  (3) (4) 

temperature bins      

<12 °C -0.263 -0.228  0.307 0.125 

 (0.436) (0.469)  (0.231) (0.229) 

12-14 °C 0.402 0.616  0.300 0.381 

 (0.420) (0.482)  (0.203) (0.274) 

14-16 °C -0.400 -0.014  0.047 -0.056 

 (0.374) (0.485)  (0.147) (0.211) 

16-18 °C 0.197 0.146  0.156 -0.037 

 (0.242) (0.244)  (0.125) (0.160) 

18-20 °C -0.005 0.035  0.066 0.075 

 (0.192) (0.208)  (0.097) (0.120) 

20-22 °C -0.033 -0.063  -0.062 -0.080 

 (0.177) (0.200)  (0.069) (0.089) 

22-24 °C      

      

24-26 °C -0.007 -0.098  0.020 0.012 

 (0.125) (0.133)  (0.054) (0.070) 

26-28 °C 0.155 0.188  0.036 0.059 

 (0.143) (0.167)  (0.064) (0.089) 

28-30 °C -0.005 0.136  -0.050 -0.033 

 (0.161) (0.215)  (0.074) (0.111) 

30-32 °C 0.108 0.169  -0.002 0.001 

 (0.219) (0.308)  (0.088) (0.138) 

>32 °C 0.315 0.211  -0.342** -0.420** 

 (0.426) (0.440)  (0.160) (0.203) 

demographic controls Yes Yes  Yes Yes 

environmental controls Yes Yes  Yes Yes 

individual fixed effects No Yes  No Yes 

county fixed effects Yes Yes  Yes Yes 

interview year, month, day-

of-week, and hour-of-day 

fixed effects 

Yes Yes  Yes Yes 

Observations 70,736 70,736  70,736 70,736 

Adjusted R-squared 0.622 0.072  0.751 0.178 

Note: The left-out temperature bin is 22-24 °C. The coefficients can be interpreted as effects 

of a day in the corresponding temperature bin on cognitive test scores relative to the reference 

temperature category. Demographic controls include gender, age with its square term and 

education level. Environmental controls include air pollution index (API), total precipitation, 

wind speed, sunshine duration, and relative humidity in quadratic forms. Robust standard 

errors, clustered at the county level, are presented in parentheses. * 10% significance level; 

** 5% significance level; *** 1% significance level. 
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Table A2 Transitory effects of temperatures on cognitive test scores, by AC ownership 

Dependent variable verbal test scores  math test scores 

 with AC without AC difference  with AC without AC difference 

 (1) (2) (3)  (4) (5) (6) 

temperature bins        

<12 °C -2.063 0.530 -2.593  -0.621 0.361 -0.982* 

 (1.811) (0.802) (2.062)  (0.466) (0.238) (0.550) 

12-14 °C -1.542 0.577 -2.120  -0.294 0.140 -0.434 

 (1.417) (0.760) (1.475)  (0.372) (0.238) (0.456) 

14-16 °C -0.377 -0.272 -0.105  -0.203 0.166 -0.369 

 (0.865) (0.785) (1.131)  (0.305) (0.266) (0.390) 

16-18 °C -0.309 0.064 -0.373  -0.070 0.084 -0.154 

 (0.736) (0.461) (0.801)  (0.261) (0.244) (0.350) 

18-20 °C -0.851 -0.251 -0.600  0.115 0.068 0.046 

 (0.871) (0.380) (0.977)  (0.255) (0.172) (0.326) 

20-22 °C -0.298 0.316 -0.614  -0.085 0.161 -0.246 

 (0.567) (0.297) (0.628)  (0.224) (0.143) (0.272) 

22-24 °C        

        

24-26 °C 0.098 -0.136 0.233  0.145 0.150 -0.004 

 (0.373) (0.260) (0.429)  (0.144) (0.113) (0.173) 

26-28 °C 0.380 0.018 0.362  0.226 0.139 0.087 

 (0.421) (0.312) (0.485)  (0.155) (0.139) (0.197) 

28-30 °C 0.353 -0.206 0.559  0.211 -0.085 0.296 

 (0.436) (0.301) (0.493)  (0.163) (0.141) (0.211) 

30-32 °C 0.570 0.065 0.504  0.211 -0.008 0.220 

 (0.480) (0.435) (0.638)  (0.183) (0.225) (0.301) 

>32 °C 0.570 1.429 -0.859  -0.412 -0.650** 0.238 

 (0.954) (1.069) (1.384)  (0.482) (0.294) (0.571) 

Observations 11,052 13,807   11,052 13,807  

Adjusted R-squared 0.604 0.619   0.759 0.748  

Note: Based on data from CFPS 2014. The left-out temperature bin is 22-24 °C. The coefficients can be interpreted as effects of a 

day in the corresponding temperature bin on cognitive test scores relative to the reference temperature category. All the regressions 

include county fixed effects, year, month, day-of-week, and hour-of-day fixed effects. Demographic controls include gender, age 

with its square term and education level. Environmental controls include air pollution index (API), total precipitation, wind speed, 

sunshine duration, and relative humidity in quadratic forms. The results in Columns (3) and (6) indicate the differences of 
temperature bins between the AC and without AC groups. Robust standard errors, clustered at the county level, are presented in 

parentheses. * 10% significance level; ** 5% significance level; *** 1% significance level. 
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Table A3 Transitory effects of temperatures on cognitive test scores, by region 

Dependent variable verbal test scores  math test scores 

 cool hot difference  cool hot difference 

 (1) (2) (3)  (4) (5) (6) 

temperature bins        

<12 °C -0.651 -2.288* 1.637  0.532 -0.838* 1.369** 

 (0.712) (1.362) (1.541)  (0.347) (0.487) (0.599) 

12-14 °C 0.094 -0.024 0.118  -0.298 0.217 -0.515 

 (0.691) (0.928) (1.159)  (0.438) (0.422) (0.610) 

14-16 °C -0.017 -0.927 0.910  -0.203 -0.380 0.177 

 (0.817) (0.683) (1.067)  (0.308) (0.259) (0.403) 

16-18 °C 0.202 -0.435 0.637  -0.087 -0.193 0.106 

 (0.287) (0.435) (0.522)  (0.208) (0.257) (0.331) 

18-20 °C -0.120 0.103 -0.223  -0.087 0.254 -0.341 

 (0.234) (0.414) (0.476)  (0.138) (0.215) (0.256) 

20-22 °C -0.163 0.273 -0.435  -0.130 0.067 -0.197 

 (0.222) (0.321) (0.391)  (0.098) (0.175) (0.201) 

22-24 °C        

        

24-26 °C -0.194 0.210 -0.404  -0.023 0.067 -0.090 

 (0.149) (0.285) (0.321)  (0.085) (0.132) (0.157) 

26-28 °C 0.129 0.490* -0.362  -0.035 0.259 -0.294 

 (0.187) (0.291) (0.346)  (0.114) (0.163) (0.199) 

28-30 °C 0.225 0.383 -0.159  -0.143 0.229 -0.371 

 (0.234) (0.356) (0.427)  (0.139) (0.190) (0.236) 

30-32 °C 0.113 0.399 -0.286  -0.107 0.262 -0.370 

 (0.266) (0.481) (0.551)  (0.167) (0.232) (0.287) 

>32 °C 1.460 -0.035 1.495  -0.701** -0.190 -0.511 

 (0.947) (0.544) (1.094)  (0.339) (0.291) (0.448) 

Observations 20,833 20,498   35,311 35,425  

Adjusted R-squared 0.067 0.083   0.181 0.181  

Note: The left-out temperature bin is 22-24 °C. The coefficients can be interpreted as effects of a day in the corresponding 

temperature bin on cognitive test scores relative to the reference temperature category. All the regressions include individual fixed 

effects, county fixed effects, year, month, day-of-week, and hour-of-day fixed effects. Demographic controls include age with its 

square term and education level. Environmental controls include air pollution index (API), total precipitation, wind speed, sunshine 

duration, and relative humidity in quadratic forms. The results in Columns (3) and (6) indicate the differences of temperature bins 
between the cool and hot regions. Robust standard errors, clustered at the county level, are presented in parentheses. * 10% 

significance level; ** 5% significance level; *** 1% significance level. 
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Table A4 Placebo tests and behavioral channels 

Dependent variable Placebo test  Ruling out other behavioral channels 

 verbal math  cooperation impatience 
completion 

time (min) 

 (1) (2)  (3) (4) (5) 

Dep. Var. mean    5.723 2.301 52.084 

       

temperature bins       

<12 °C -0.264 0.299  -0.290 -0.172 3.292 

 (0.457) (0.237)  (0.195) (0.364) (4.570) 

12-14 °C 0.196 0.086  -0.297* 0.252 1.896 

 (0.428) (0.211)  (0.176) (0.354) (4.025) 

14-16 °C 0.507* 0.178  -0.056 -0.003 2.468 

 (0.278) (0.149)  (0.164) (0.387) (3.626) 

16-18 °C 0.407* 0.135  -0.150 -0.434* 2.940 

 (0.232) (0.160)  (0.125) (0.255) (4.002) 

18-20 °C -0.152 0.090  0.009 -0.227 0.285 

 (0.226) (0.099)  (0.105) (0.195) (2.154) 

20-22 °C -0.102 0.132  -0.100 0.093 1.693 

 (0.178) (0.100)  (0.068) (0.136) (1.297) 

22-24 °C       

       

24-26 °C -0.098 0.102  -0.113** 0.171 1.282 

 (0.143) (0.081)  (0.055) (0.132) (0.985) 

26-28 °C -0.025 0.015  -0.090 0.094 1.828 

 (0.181) (0.089)  (0.090) (0.152) (1.318) 

28-30 °C 0.184 0.119  -0.066 0.184 1.682 

 (0.184) (0.099)  (0.097) (0.169) (1.329) 

30-32 °C 0.213 0.003  -0.129 0.161 2.165 

 (0.261) (0.121)  (0.116) (0.204) (2.259) 

>32 °C -0.029 -0.263  -0.284 -0.068 -3.807 

 (0.321) (0.160)  (0.181) (0.298) (2.559) 

Observations 70,710 70,710  47,028 48,592 70,736 

Adjusted R-squared 0.072 0.178  0.045 0.042 0.047 

Note: Results in Column (3) are based on data from CFPS 2010 and 2014. Results in Column (4) is 

based on data from CFPS 2014 and 2018. The placebo test is conducted using temperature exposure the 

next day. The left-out temperature bin is 22-24 °C. The coefficients can be interpreted as effects of a day 

in the corresponding temperature bin on cognitive test scores relative to the reference temperature 

category. All the regressions include individual fixed effects, county fixed effects, year, month, day-of-

week, and hour-of-day fixed effects. Demographic controls include gender, age with its square term and 

education level. Environmental controls include air pollution index (API), total precipitation, wind 

speed, sunshine duration, and relative humidity in quadratic forms. Robust standard errors, clustered at 

the county level, are presented in parentheses. * 10% significance level; ** 5% significance level; *** 

1% significance level. 
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Table A5 Robustness checks 

Dependent variable 

Adding county specific 

linear time trends and 

calendar date fixed effects 

 Adding completion time  Removing API  
Adding an indicator for 

working outdoors 

 verbal math  verbal math  verbal math  verbal math 

 (1) (2)  (3) (4)  (5) (6)  (7) (8) 

temperature bins            

<12 °C 0.710 0.211  -0.239 0.119  -0.162 0.133  -0.040 0.256 

 (0.565) (0.306)  (0.470) (0.229)  (0.474) (0.226)  (0.476) (0.225) 

12-14 °C 0.653 0.178  0.610 0.378  0.691 0.391  0.734 0.363 

 (0.591) (0.358)  (0.482) (0.274)  (0.485) (0.273)  (0.475) (0.274) 

14-16 °C -0.337 -0.314  -0.023 -0.060  0.042 -0.048  0.095 0.025 

 (0.621) (0.277)  (0.486) (0.210)  (0.483) (0.212)  (0.438) (0.205) 

16-18 °C 0.086 -0.048  0.136 -0.042  0.179 -0.032  0.216 -0.018 

 (0.260) (0.191)  (0.246) (0.161)  (0.238) (0.157)  (0.229) (0.137) 

18-20 °C -0.079 -0.037  0.034 0.074  0.054 0.077  0.051 0.096 

 (0.219) (0.127)  (0.208) (0.120)  (0.207) (0.120)  (0.215) (0.122) 

20-22 °C -0.147 -0.088  -0.069 -0.083  -0.063 -0.080  -0.047 -0.069 

 (0.184) (0.088)  (0.199) (0.088)  (0.202) (0.089)  (0.202) (0.093) 

22-24 °C            

            

24-26 °C -0.085 -0.003  -0.102 0.009  -0.105 0.011  -0.155 -0.006 

 (0.144) (0.078)  (0.133) (0.070)  (0.133) (0.071)  (0.140) (0.073) 

26-28 °C 0.252 0.031  0.182 0.055  0.170 0.056  0.127 0.019 

 (0.182) (0.094)  (0.166) (0.089)  (0.164) (0.090)  (0.172) (0.093) 

28-30 °C 0.109 -0.073  0.130 -0.037  0.112 -0.036  0.087 -0.083 

 (0.229) (0.121)  (0.215) (0.111)  (0.211) (0.111)  (0.216) (0.105) 

30-32 °C 0.134 -0.096  0.161 -0.003  0.140 -0.003  0.119 -0.025 

 (0.318) (0.167)  (0.308) (0.138)  (0.304) (0.137)  (0.307) (0.138) 

>32 °C 0.337 -0.383*  0.224 -0.413**  0.183 -0.424**  0.154 -0.484** 

 (0.409) (0.213)  (0.440) (0.202)  (0.433) (0.201)  (0.434) (0.197) 

Observations 70,736 70,736  70,736 70,736  70,736 70,736  67,421 67,421 

Adjusted R-squared 0.111 0.210  0.072 0.179  0.071 0.178  0.039 0.122 

Note: The left-out temperature bin is 22-24 °C. The coefficients can be interpreted as effects of a day in the corresponding temperature bin on cognitive 

test scores relative to the reference temperature category. All the regressions include individual fixed effects, county fixed effects, year, month, day-of-

week, and hour-of-day fixed effects. Demographic controls include age with its square term and education level. Environmental controls include air 

pollution index (API), total precipitation, wind speed, sunshine duration, and relative humidity in quadratic forms. Robust standard errors, clustered at 

the county level, are presented in parentheses. * 10% significance level; ** 5% significance level; *** 1% significance level. 
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Table A6 Robustness checks (continued) 

Dependent variable log form of test scores  
Using subjects with time-

invariant education levels 
 Using non-migrants only  

Excluding ozone 

dominated days 

 verbal math  verbal math  verbal math  verbal math 

 (1) (2)  (3) (4)  (5) (6)  (7) (8) 

temperature bins            

<12 °C 0.000 0.026  -0.044 0.018  -0.161 0.158  -0.294 0.124 

 (0.052) (0.042)  (0.530) (0.237)  (0.488) (0.240)  (0.493) (0.261) 

12-14 °C 0.057 0.010  1.030* 0.365  0.656 0.365  0.408 0.326 

 (0.045) (0.047)  (0.572) (0.275)  (0.492) (0.286)  (0.539) (0.312) 

14-16 °C 0.000 -0.012  0.303 0.037  0.039 -0.077  0.055 -0.064 

 (0.055) (0.045)  (0.471) (0.205)  (0.517) (0.225)  (0.564) (0.231) 

16-18 °C -0.017 -0.032  0.450* -0.096  0.111 -0.055  -0.002 -0.146 

 (0.026) (0.029)  (0.252) (0.149)  (0.260) (0.169)  (0.318) (0.180) 

18-20 °C -0.008 0.011  0.161 0.063  0.047 0.087  0.062 0.128 

 (0.025) (0.024)  (0.226) (0.132)  (0.214) (0.123)  (0.262) (0.133) 

20-22 °C -0.009 -0.022  -0.105 -0.089  -0.028 -0.073  -0.112 -0.101 

 (0.026) (0.019)  (0.214) (0.107)  (0.206) (0.095)  (0.235) (0.099) 

22-24 °C            

            

24-26 °C -0.014 -0.000  -0.110 -0.033  -0.089 0.005  0.010 0.037 

 (0.015) (0.014)  (0.155) (0.079)  (0.138) (0.074)  (0.173) (0.089) 

26-28 °C 0.006 0.007  0.169 -0.003  0.186 0.063  0.245 0.074 

 (0.019) (0.018)  (0.190) (0.094)  (0.174) (0.091)  (0.215) (0.115) 

28-30 °C -0.000 -0.009  0.123 -0.094  0.145 -0.027  0.026 -0.072 

 (0.025) (0.022)  (0.223) (0.108)  (0.226) (0.115)  (0.278) (0.144) 

30-32 °C 0.007 0.002  0.038 -0.009  0.176 0.018  0.230 0.145 

 (0.035) (0.030)  (0.307) (0.138)  (0.319) (0.141)  (0.454) (0.187) 

>32 °C -0.013 -0.068**  0.356 -0.416*  0.156 -0.436**  -0.328 -0.546** 

 (0.045) (0.034)  (0.448) (0.227)  (0.463) (0.209)  (0.514) (0.251) 

Observations 70,728 70,735  57,705 57,705  67,322 67,322  54,664 54,664 

Adjusted R-squared 0.039 0.048  0.037 0.124  0.069 0.172  0.072 0.159 

Note: The left-out temperature bin is 22-24 °C. The coefficients can be interpreted as effects of a day in the corresponding temperature bin on cognitive 

test scores relative to the reference temperature category. All the regressions include individual fixed effects, county fixed effects, year, month, day-

of-week, and hour-of-day fixed effects. Demographic controls include age with its square term and education level. Environmental controls include 

air pollution index (API), total precipitation, wind speed, sunshine duration, and relative humidity in quadratic forms. Robust standard errors, clustered 

at the county level, are presented in parentheses. * 10% significance level; ** 5% significance level; *** 1% significance level. 
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Table A7 Effects of consecutive heat waves on cognitive performance 

 

Number of consecutive heatwave 

days (with temperatures > 32 °C) 

immediately before the survey 

 

The longest consecutive heatwave 

days (with temperatures > 32 °C) in 

the past month 

 verbal test scores math test scores  verbal test scores math test scores 

 (1) (2)  (3) (4) 

Number of consecutive heatwave 

days (with temperatures > 32 °C) 

immediately before the survey 

-0.032 -0.070    

(0.082) (0.049)    

The longest consecutive heatwave 

days (with temperatures > 32 °C) in 

the past month 

   -0.057 -0.061** 

   (0.082) (0.026) 

      

demographic controls Yes Yes  Yes Yes 

environmental controls Yes Yes  Yes Yes 

individual fixed effects Yes Yes  Yes Yes 

county fixed effects Yes Yes  Yes Yes 

interview year, month, day-of-

week, and hour-of-day fixed effects 
Yes Yes  Yes Yes 

Observations 70,738 70,738  70,738 70,738 

Adjusted R-squared 0.071 0.178  0.071 0.178 

Note: Demographic controls include age with its square term and education level. Environmental controls include air 

pollution index (API), total precipitation, wind speed, sunshine duration, and relative humidity in quadratic forms. Robust 

standard errors, clustered at the county level, are presented in parentheses. * 10% significance level; ** 5% significance 

level; *** 1% significance level. 


