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1 Introduction

Since Stock and Watson (2002), factor model based forecasting has become widely used in macro-

economic time series and empirical finance. See, for example, Stock and Watson (2005), Ludvig-

son and Ng (2007, 2009), Christiansen, Eriksen, and Møller (2014), Jurado, Ludvigson, and Ng

(2015), and Giglio, Kelly, and Pruitt (2016). This approach summarizes the information from

a large number of time-series predictors with a few common factors, and includes the estimated

common factors in a regression to forecast the object of interest.

Let

yt+h = α′Ft + β′Wt + εt+h, (1)

where h is the forecasting horizon andWt is an a-vector of observed regressors. Ft is a p-vector of

latent common factors that capture the co-movement of n candidate predictors {Xit, i = 1, · · · , n}.
We model Xit with the factor structure

Xit = λ′iFt + eit, i = 1, ..., n; t = 1, ..., T, (2)

where λi is a vector of loadings and eit is an idiosyncratic error. In this paper, p is assumed to

be known. Stock and Watson (2002) refer to this factor-augmented regression as the diffusion-

index forecasting model. Since Ft is latent, the forecast of yt+h based on (1) employs a two-stage

approach. In the first stage, we estimate Ft, denoted by F̃t, using the principal component

method based on (2). We normalize F̃ =
(
F̃1, ..., F̃T

)′
such that F̃ ′F̃ /T = Ip, so it consists of the

product of
√
T and the eigenvectors that correspond to the p largest eigenvalues of XX ′/ (nT ) in

decreasing order, where X = (X1, ..., XT )′ and Xt = (X1t, ..., Xnt)
′. Λ = (λ1, ..., λn)′ is estimated

by the least squares

Λ̃ = X ′F̃
(
F̃ ′F̃

)−1
= X ′F̃ /T. (3)

In the second stage, we regress yt+h on ẑt =
(
F̃ ′t ,W

′
t

)′
, t = 1, ..., T − h, to obtain the LS

coeffi cients

δ̂ =

(
α̂

β̂

)
=

(
T−h∑
t=1

ẑtẑ
′
t

)−1 T−h∑
t=1

ẑtyt+h. (4)

Let zt = (F ′t ,W
′
t)
′ . Based on the estimated common factors and LS coeffi cients, we estimate the

conditional mean of yT+h,

yT+h|T = E (yT+h|zT , zT−1, ...) = α′FT + β′WT := δ′zT , (5)

with

ŷT+h|T = α̂′F̃T + β̂′WT = δ̂′ẑT . (6)

As is well known, yT+h|T is the optimal forecast of yT+h in terms of the mean squared forecast

error if FT is observed and E (εT+h|zT , zT−1, ...) = 0.
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When eit are cross-sectionally correlated, (2) has an approximate factor structure as in Cham-

berlain and Rothschild (1983) and Connor and Korajczyk (1986, 1993). One of the challenges of

this approach under the approximate factor structure is to obtain a valid confidence interval for

yT+h|T . Since the limiting distribution of ŷT+h|T involves the estimation uncertainty in F̃T , we

have to estimate not only the variance of the regression coeffi cients but also that of F̃T in or-

der to construct the confidence interval. However, it is diffi cult to correctly estimate the latter

when there exists cross-sectional dependence of the idiosyncratic errors. To address this problem,

Bai and Ng (2006) provide the cross-sectional heteroskedasticity and autocorrelation consistent

(CS-HAC) variance estimator, and Gonçalves and Perron (2020) propose the cross-sectional de-

pendence (CSD) bootstrap method. Assuming that the covariance structure of {eit}ni=1 is time

invariant, these two methods utilize the fact that cross-section units are repeatedly observed over

time.

As an alternative to the CS-HAC estimation method of Bai and Ng, in the paper we con-

sider the time-series average of the spatial HAC estimators, which we refer to as the AV-SHAC

estimator, to estimate the variance of F̃T . The spatial HAC estimator was first proposed by

Conley (1999) and has been studied further in the linear regression and GMM contexts. See,

for example, Pinkse, Slade, and Brett (2002), Conley and Molinari (2007), Kelejian and Prucha

(2007), and Kim and Sun (2011). We extend the spatial HAC estimation approach to the factor

model by using the time-series average. We follow Kelejian and Prucha (2007) by modeling the

cross-sectional dependence using a linear representation in which the coeffi cients of iid innova-

tions are not assumed to be known and are not parameterized. The advantage of this approach is

that we need not rely on a mixing-type condition to establish the asymptotics, which, according

to Bai and Ng (2006), is diffi cult to justify in the cross-sectional dimension. The extension of

spatial HAC estimation to the factor model is empirically relevant in that approximate factor

model applications have become very popular in macroeconomics and empirical finance. The

extension is technically nontrivial as well. We have to examine the effect of estimation errors in

the factor model on the asymptotics, and there are several issues to be addressed in regard to its

implementation as discussed in this paper.

To examine the asymptotics, we decompose the difference of our AV-SHAC estimator from

the true variance as a sum of three terms. The first term is due to estimation errors in the

factor model, and the second and third terms represent the bias and variation of the infeasible

estimator in which model parameter values are assumed to be known. We find that the variation

of the infeasible estimator decreases faster than the effect of the estimation errors, which implies

that the optimal rate of convergence is achieved by balancing the bias and the effect of the

estimation errors. This is in sharp contrast to the asymptotics of the usual HAC estimators (e.g.,

Andrews, 1991; Kim and Sun, 2011) in which the trade-off is between the bias and the variation

of the infeasible estimator. The practical implication of this result is that an explicit formula
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for the asymptotic MSE is not available for the AV-SHAC estimator, so we cannot establish

the bandwidth selection procedure based on it. We address this practical issue by proposing a

bandwidth selection procedure based on the cluster wild bootstrap. In this approach, each cluster

contains all the units in one time period in order to replicate cross-sectional dependence of the

original data. We select the bandwidth that maximizes the bootstrap version of the AV-SHAC

estimator under the constraint of the rate condition for consistency. Simulation studies show that

the proposed bandwidth selection procedure performs well in finite samples.

Since our estimator is constructed based on the spatial HAC estimator, we need a distance

measure that characterizes the dependence structure of the data. That is, the covariance of two

potential predictors is assumed to be a decreasing function of the distance between them. A

typical approach in this regard is to find a relevant auxiliary variable that captures the decaying

pattern of dependence and use that variable as the distance measure. The choice of the auxiliary

variable tends to depend on the type of application, for example, the transportation cost (Conley

and Ligon, 2002), the geographic distance (Pinkse, Slade, and Brett, 2002), or the similarity of the

input and output structures (Chen and Conley, 2001; Conley and Dupor, 2003). An alternative

approach is to define the distance in such a way that it reflects the dependence structure directly.

For example, we define a distance dDij = |1/Corr (eit, ejt)| − 1 in our simulation and empirical

application which by definition reflects the degree of dependence very well. Using the assumption

that the covariance structure is time invariant, we can approximate this quantity using time-

series observations. A crucial advantage of this approach is that we need no prior information

for its implementation. Constructing the distance based on the correlation coeffi cient has been

considered in spatial panel data models. See, for example, Mantegna (1998), Fernandez (2011),

and Cui, Sarafidis, and Yamagata (2020).

While this paper uses our AV-SHAC estimator for the estimation of V ar
(
ŷT+h|T

)
, we note

that it is possible to use it in different contexts. For example, Ludvigson and Ng (2010) and

Gonçalves and Perron (2014) study the asymptotic bias in the factor augmented model when√
T/n → c 6= 0, and they show that the bias is a function of the asymptotic variance of F̃t. It

would be a natural extension of this paper to employ the AV-SHAC estimator to correct this bias

under the approximate factor structure.

The rest of the paper is organized as follows. Section 2 introduces the proposed variance

estimator and associated confidence interval for diffusion-index forecasts. We study their asymp-

totic properties in Section 3. In Section 4, we discuss our bootstrap based bandwidth selection

procedure. Section 5 presents simulation results and an empirical illustration in which we apply

the proposed confidence interval to the problem of forecasting the unemployment rate using data

by Ludvigson and Ng (2010). The last section concludes. The appendix consists of two parts. In

the first part, we introduce a diagnostic test for the existence of cross-sectional dependence by

comparing the spatial HAC estimator with Bai’s (2003) heteroskedasticity robust (HR) variance
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estimator. The second part provides the proofs of our theoretical results.

2 Variance estimator and confidence interval

In this section, we review the asymptotics of factor models, and introduce the AV-SHAC estimator

and associated confidence interval for yT+h|T . We follow Bai (2003) and Bai and Ng (2006) by

making the following assumptions.

Assumption F1 (i) E ‖Ft‖4 ≤ M and T−1
∑T

t FtF
′
t →p ΣF , where ΣF is nonrandom and

positive definite. (ii) E‖λi‖4 ≤ M and n−1
∑n

i=1 λiλ
′
i →p ΣΛ, where ΣΛ is nonrandom and

positive definite.

Assumption F2 (i) Eeit = 0 and Ee8
it ≤ M for all i and t. (ii) Let σij,ts = E(eitejs) such

that |σij,ts| ≤ σ̄ij for all t and s and |σij,ts| ≤ τts for all i and j. For all T and n, and for every

t ≤ T and every i ≤ n,
∑n

j=1 σ̄ij ≤ M ,
∑T

s=1 τts ≤ M, and (nT )−1
∑

i,j,t,s |σij,ts| ≤ M. (iii)

E
∣∣n−1/2

∑n
i=1 [eiseit − E(eiseit)]

∣∣4 ≤M for all t and s.

Assumption F3 For all n and T the following hold:

(i) For each t, E
∥∥∥(nT )−1/2∑n

i=1

∑T
t=1 Ft [eiteis − E (eiteis)]

∥∥∥2
≤M.

(ii) E
∥∥∥(nT )−1/2∑n

i=1

∑T
t=1 Ftλ

′
ieit

∥∥∥2
≤M.

(iii) For each t, n−1/2
∑n

i=1 λieit →d N(0,Γt), where

Γt = lim
n→∞

V ar

(
1√
n

n∑
i=1

λieit

)
= lim

n→∞
1

n

n∑
i=1

n∑
j=1

E(λiλ
′
jeitejt)

Assumption F4 The variables {λi} , {Ft} , and {eit} are mutually independent.

Assumption F5 (i) E ‖zt‖4 ≤ M, E (εt+h|yt, zt, yt−1, zt−1, . . .) = 0 for every h > 0, and zt
and εt are independent of eis for all i and s. (ii) T−1

∑T
t=1 ztz

′
t →p Σzz, and Σzz is positive

definite. (iii) T−1/2
∑T

t=1 ztεt+h →d N (0,Σzz,ε) , where Σzz,ε = p lim T−1
∑T

t=1 ε
2
t+hztz

′
t and

Σzz,ε is positive definite.

Assumption F6 n, T →∞,
√
T/n→ 0, and

√
n/T → 0.

Assumption F1 provides moment conditions for the factors and loadings. Assumption F2

states the moment conditions, and the serial and cross-sectional heteroskedasticity and weak

dependence of the idiosyncratic errors. Assumption F3(iii) is a central limit theorem for the

moment process, which is satisfied under various conditions. The independence condition in

Assumption F4 is standard in the literature. Assumption F5(iii) states that ztεt+h is serially

uncorrelated, which is true when yT+h|T is defined as the conditional mean given past information.
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Gonçalves, Perron, and Djogbenou (2015) consider the case where serial correlation is present in

ztεt+h. Assumption F6 provides the rate condition for establishing the asymptotics of δ̂ and F̃t.

Let H = Ṽ −1
(
F̃ ′F/T

)
(Λ′Λ/n) , where Ṽ is the (p× p) diagonal matrix containing the p

largest eigenvalues of XX ′/ (nT ) in decreasing order. It is well known that F and Λ are not

separately identifiable, and that F̃t and λ̃i are the estimators of HFt and H−1λi, respectively.

We define V = p lim Ṽ , H0 = p limH, and Q = p lim F̃ ′F/T = H−1
0 . Bai and Ng (2006) show

that, under the assumptions,

ŷT+h|T − yT+h|T√
V ar

(
ŷT+h|T

) →d N (0, 1) , (7)

where

V ar
(
ŷT+h|T

)
=

1

T
ẑ′TAvar

(
δ̂
)
ẑT +

1

n
α̂′Avar

(
F̃T

)
α̂, (8)

Avar
(
δ̂
)

= Υ′−1Σ−1
zz Σzz,εΣ

−1
zz Υ−1, and Avar

(
F̃T

)
= V −1QΓTQ

′V −1,

with Υ = diag
(
V −1QΣΛ, Ia

)
and δ =

(
α′H−1, β′

)′
. The variance of ŷT+h|T in (8) consists

of two terms. The first is associated with the variance of the regression coeffi cients, and the

second is associated with the variance of the preliminary common factor estimator. Thus we

need to estimate these two quantities in order to construct the confidence interval based on (7).

Estimating Avar
(
δ̂
)
is straightforward under Assumption F5, since it is consistently estimated

with the sample counterpart

Âvar
(
δ̂
)

=

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1
1

T

T−h∑
t=1

ε̂2
t+hẑtẑ

′
t

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1

.

In contrast, it is challenging to estimate Avar
(
F̃T

)
under the approximate factor structure.

To formulate the estimation problem, let’s define FHt = H0Ft, λ
H
i = H−1

0 λi and ηHit = λHi eit.

Since Q = H−1
0 , we can write

Avar
(
F̃t

)
= V −1H−1

0 Γt
(
H−1

0

)′
V −1

= V −1ΓHt V
−1,

where

ΓHt = lim
n→∞

ΓHt,n and ΓHt,n =
1

n

n∑
i=1

n∑
j=1

E(ηHit
(
ηHit
)′

). (9)

In the absence of cross-sectional correlation, ΓHt is consistently estimated with the HR variance

estimator given by

Γ̃HRt =
1

n

n∑
i=1

η̃itη̃
′
it, (10)

5



where η̃it = λ̃iẽit, ẽit = Xit − λ̃′iF̃t, and λ̃i is the vector of estimated factor loadings from (3).

In the presence of cross-sectional dependence, Γ̃HRt is evidently inconsistent, so the associated

confidence interval is invalid. This problem would be more serious when T/n is large, because,

as implied in (8), the variance of ŷT+h|T is mainly determined by the variance of F̃T in this case.

To address the issue, Bai and Ng (2006) propose the CS-HAC estimator, which allows for

cross-sectional dependence. That estimator is defined as

Γ̃BN =
1

nsub

nsub∑
i=1

nsub∑
j=1

λ̃iλ̃
′
j

1

T

T∑
t=1

ẽitẽjt,

where nsub/min [n, T ]→ 0. They show that Γ̃BN is consistent under Assumption H1 below.

Assumption H1 E (eitejt) = σij for all i, j, t.

This assumption states that the covariance structure of {eit} remains invariant over time,
which results in

ΓHt = ΓH for all t, where ΓH = lim
n,T→∞

ΓHnT with ΓHnT =
1

T

T∑
t=1

ΓHt,n. (11)

Relying on the same assumption, we propose the AV-SHAC estimator, which is the time-series

average of the spatial HAC estimators. Our estimator is defined as

Γ̃ =
1

T

T∑
t=1

Γ̃t with Γ̃t =
1

n

n∑
i=1

n∑
j=1

K

(
dij
dn

)
η̃itη̃

′
jt, (12)

where K (·) is a real-valued kernel function and dn is the bandwidth parameter. dij is a distance
between units i and j that reflects the strength of the covariance between ηHit and η

H
jt such that∣∣∣Cov (ηHit , ηHjt)∣∣∣ is a decreasing function of dij . We make the following assumption about dij to

establish the asymptotics.

Assumption H2 (i) dij ≥ 0, dii = 0, and dij = dji; (ii) dij is time invariant.

The assumption indicates that the AV-SHAC estimator does not require dij to satisfy the

triangle inequality, dij ≤ dik + dkj , while the other properties of distance are assumed to hold.

This is in sharp contrast to the standard spatial HAC estimation literature (e.g., Conley, 1999;

Kim and Sun, 2011), which relies on this inequality to establish the asymptotics. Assumption

H2(ii) is implied by Assumption H1.

A typical approach for the construction of dij in the literature is to find a relevant auxiliary

variable that characterizes the decaying pattern of dependence in the data and use that variable

as the distance. The variable tends to be different for different applications, for example, the
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transportation cost (Conley and Ligon, 2000), the geographic distance (Pinkse, Slade, and Brett,

2002), or the similarity of the input and output structures (Chen and Conley, 2001; Conley and

Dupor, 2003). A problem with this approach in our setting is that the diffusion-index forecasts

often employ macroeconomic and financial data as candidate predictors, and such variables are

unlikely to be available in practice. For example, Stock and Watson’s (2002) dataset contains 215

macroeconomic time series in 8 different categories, including real output and income, exchange

rates, interest rates, price index, etc. It would be almost impossible to find a variable that can be

used for the distance between, for instance, the USD-JPY exchange rate and the CPI in service

goods.

An alternative approach is to define the distance in such a way that it reflects the dependence

structure directly. For example, in Section 5 we define dij = |1/Corr (eit, ejt)|−1 in the simulation

and empirical illustration, which by definition captures the degree of dependence very well. This

approach gives us a valid distance under Assumption H2 that does not require dij to satisfy the

triangle inequality. Corr (eit, ejt) is unobserved, but it is easy to approximate using time-series

observations under Assumptions H1 and H2(ii). A crucial advantage of this approach is that no

prior information is required for its implementation.

It is important to note that nontrivial information about the dependence structure is needed

for the use of Γ̃BN . Researchers should be able to select nsub observations (nsub/min [n, T ]→ 0)

which replicate the overall cross-sectional dependence structure so that T−1
∑T

s=1 V ar
(
n
−1/2
sub

∑nsub
i=1 ηHis

)
becomes a good copy of ΓH . Our simulation studies show that the performance of Γ̃BN depends

strongly on this selection. To the best of our knowledge, however, there is no practical guidance

in this regard in the literature.

Using Γ̃, we estimate Avar
(
F̃t

)
with

Âvar
(
F̃t

)
= Ṽ −1Γ̃Ṽ −1. (13)

We propose the confidence interval for yT+h|T at the 100 (1− α) % level with

CI
(
yT+h|T

)
=

[
ŷT+h|T + qα/2

√
V̂ ar

(
ŷT+h|T

)
, ŷT+h|T + q1−α/2

√
V̂ ar

(
ŷT+h|T

)]
, (14)

where qα denotes the α quantile of the standard normal distribution and

V̂ ar
(
ŷT+h|T

)
=

1

T
ẑ′T Âvar

(
δ̂
)
ẑT +

1

n
α̂′Âvar

(
F̃T

)
α̂. (15)

If we assume that εt ∼ N
(
0, σ2

ε

)
, we can also construct the forecasting interval for yT+h as

FI (yT+h) =

[
ŷT+h|T + qα/2

√
V̂ ar

(
ŷT+h|T

)
+ σ̂2

ε , ŷT+h|T + q1−α/2

√
V̂ ar

(
ŷT+h|T

)
+ σ̂2

ε

]
,

where

σ̂2
ε =

1

T

T−h∑
t=1

ε̂2
t+h with ε̂t+h = yt+h − ŷt+h|T .
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3 Asymptotic properties

In this section, we examine the asymptotics of Γ̃ and associated confidence interval for yT+h|T .

We first employ the following linear-array process to model ηHit . Let

ηHit = Ritε, (16)

where

Rit =


r

(1)
it,1 r

(1)
it,2 ··· r

(1)
it,nTp

...
...

. . .
...

r
(p)
it,1 r

(p)
it,2 ··· r

(p)
it,nTp

 (17)

is a p×nTp nonstochastic matrix and ε = (ε1, . . . , εl, . . . , εnTp)
′ is a vector of iid innovations. The

elements of Rit are not assumed to be known and are not parameterized. The linear-array process

includes widely used spatial/spatiotemporal parametric models as special cases, and is commonly

used to characterize spatial dependence in the literature. See, for example, Kelejian and Prucha

(2007), Kim and Sun (2011, 2013), Robinson (2011), and Pesaran and Tosetti (2011). A crucial

advantage of using a linear array is that we do not need to introduce a mixing-type condition

to establish the asymptotics, which, according to Bai and Ng (2006), is diffi cult to justify in the

cross-sectional dimension.

Define the infeasible version of Γ̃ as

Γ̃0 =
1

T

T∑
t=1

Γ̃0
t with Γ̃0

t =
1

n

n∑
i=1

n∑
j=1

K

(
dij
dn

)
ηHit
(
ηHjt
)′
, (18)

which is obtained by substituting ηHit for η̃it in Γ̃. Using Γ̃0, we decompose Γ̃− ΓHnT as a sum of

three terms:

Γ̃− ΓHnT =
(

Γ̃− Γ̃0
)

+
(

Γ̃0 − EΓ̃0
)

+
(
EΓ̃0 − ΓHnT

)
. (19)

The first term represents the effect of the estimation errors in the factor model, and the second

and third terms are due to the variance and bias of Γ̃0, respectively. We make Assumptions

H1—H7 to characterize the variance and bias of Γ̃0, and to control the effect of the estimation

errors based on Assumptions F1—F4 and F6.

Assumption H3 ε ∼ (0, InTp) , with E
(
ε4l
)
≤M, l = 1, ..., nTp, for some constant M > 0.

Assumption H3 provides the moment condition for εl. Under this assumption, ΓHnT in (11)

can be rewritten as

ΓHnT =
1

nT

n∑
i=1

n∑
j=1

T∑
t=1

RitR
′
jt.
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Assumption H4 For all c = 1, · · · , p, (i) limn,T→∞
∑n

i=1

∑T
t=1

∣∣∣r(c)
it,l

∣∣∣ < M for all t and l; (ii)

limn,T→∞
∑nTp

l=1

∣∣∣r(c)
it,l

∣∣∣ < M for all i and t.

This assumption states the summability conditions for the coeffi cients of the linear process,

which is related to the weak dependence of ηHit . Note that r
(c)
it,l represents the amount of change

in the cth element of ηHit as the result of a one-unit increase in εl. Thus Assumption H4(i) and

H4(ii) state that the aggregate absolute response of
{
ηHit
}
to a single innovation εl and the sum of

the absolute responses of ηHit to innovations εl, ..., εnTp are finite. We introduce these conditions

to control the variance of Γ̃0. An alternative approach would be to introduce some mixing and

stationarity assumptions to obtain the fourth-order cumulant condition as in the time-series case

(e.g., Andrews, 1991).

Let

`in =

n∑
j=1

1 {dij ≤ dn} and `n =
1

n

n∑
i=1

`in. (20)

`in is the number of unit i’s pseudo-neighbors whose distance from i is within the bandwidth,

and `n is the average number of pseudo-neighbors. It is obvious from (20) that `in and `n are

increasing functions of dn.

Assumption H5 `in ≤ c``n for all i = 1, ..., n with some constant c`.

Assumption H5 allows units to have different numbers of pseudo-neighbors to a certain degree,

but it excludes cases where only a few units have many correlated units while others have none

or very few.

Let q be the Parzen characteristic exponent of K (x) . That is, q is the largest value of q0 for

which

Kq0
= lim

x→0

1−K (x)

|x|q0

is finite. The following assumption is made to characterize the weak dependence of ηHit with

respect to dij .

Assumption H6 There exists a finite constant M such that

lim
n,T→∞

1

nT

n∑
i=1

n∑
j=1

T∑
t=1

∥∥∥E [ηHit (ηHjt )′]∥∥∥ dqij < M, (21)

where ‖A‖ denotes the Euclidean norm of matrix A.

Assumption H6 provides the key condition that dij should satisfy, as it implies that dij
captures the decaying pattern of the dependence structure, so that the covariance between ηHit
and ηHjt decreases to zero quickly as dij grows. This assumption practically enables us to control

9



the bias of Γ̃ caused by truncation and downweighting with the kernel function. That is, when

dij is large, K (dij/dn) assigns a weight of zero or close to zero to η̃itη̃′jt in (12), but it does not

cause much bias under this assumption, because E
[
ηHit

(
ηHjt

)′]
is also close to zero.

The results in this paper can be generalized to the case where dij is error contaminated.

Following Kim and Sun (2011), we can show that our asymptotic results are still valid under

the following conditions: (i) the measurement error is independent of {εl}; (ii) it is of order
o(dn) as dn increases; and (iii) the summability condition in Assumption H6 holds with the

error-contaminated distance measure. For simplicity, however, in this paper we do not consider

measurement errors.

The asymptotic results for Γ̃ in Theorem 1 are based on the following assumption on the

kernel function.

Assumption H7 The kernel K : R → [−1, 1] satisfies K (0) = 1, K (x) = K (−x) ,K (x) = 0

for |x| > 1.

Assumption H7 is standard and is satisfied by kernels that are commonly used for the HAC

estimator, including the Bartlett, Gaussian, Tukey—Hanning and Parzen kernels.

Theorem 1 states the consistency and convergence rate of Γ̃ based on the decomposition in

(19).

Theorem 1 Suppose that Assumptions F1—F4, F6 and H1—H7 hold, and that dn, `n, n, T → ∞
such that `n/n, `n/T → 0.

(i) EΓ̃0−ΓHnT = O

(
1

dqn

)
, (ii) Γ̃0−EΓ̃0 = OP

(√
`n
nT

)
, (iii) Γ̃−Γ̃0 = OP

(√
`n
T

)
+OP

(
`n
n

)
.

(iv) Let cR ∈ [0,∞) and τ1, τ2, τ3 ∈ (0,∞) . Then

Γ̃− ΓHnT =

 OP

(√
`n
T

)
if Tn → cR and

d2qn `n
T → τ1;

OP
(
`n
n

)
if Tn →∞,

√
T`n
n → τ2 and

dqnn
T → τ3

The proofs are given in Appendix B. The first part of the Theorem indicates that the bias of

Γ̃0 converges to zero as dn →∞. This is because the degree of truncation and downweighting with
the kernel function decreases as dn grows. The convergence of the variation of Γ̃0 is provided

in Theorem 1(ii). Since our estimator is based on the time-series average of the spatial HAC

estimators, the amount of smoothing is determined by Tn/`n and the variation decreases to zero

as nT/`n → ∞. Theorem 1(iii) implies that the difference between Γ̃ and Γ̃0, which is caused

by estimation errors in {η̃it}, vanishes as `n/n, `n/T → 0. The optimal rate of convergence is

summarized in Theorem 1(iv).

10



As `n is an increasing function of dn, the Theorem implies that both the variance and the

effect of the estimation errors increase as dn → ∞. Comparing the rates in (ii) and (iii) shows
that the variation of Γ̃0 is of smaller order, so the optimal rate of convergence for Γ̃ is achieved

with the sequence of dn that balances the bias of Γ̃0 and Γ̃− Γ̃0. This result is in sharp contrast

to Andrews (1991) and Kim and Sun (2011, 2013), where the effect of the estimation errors is

dominated by the variance of the infeasible estimator. The difference is due to the fact that

(1) Γ̃ improves the rate for the variance by employing the time-series average of Γ̃t, and (2) the

estimation errors in η̃it involve F̃t and λ̃i, which do not achieve
√
nT convergence differently from

the standard GMM/LS estimators in panel models.

Note that the Theorem establishes the consistency and the convergence rate but does not

establish the asymptotic MSE. Alternatively, we may follow Kim and Sun (2011), who make

a set of more restrictive assumptions in order to derive the asymptotic bias and variance of

the infeasible estimator in the cross-sectional setting. They introduce a certain version of the

stationarity condition in the cross-sectional dimension (Assumption 6) and assume that the effect

of units in the boundary is asymptotically negligible. They also require the distance measure to

satisfy the triangle inequality. However, these conditions may not be suitable in the diffusion-

index forecast model, where macroeconomic and financial data are often employed as candidate

predictors. By showing the validity of Γ̃ without such restrictive assumptions, our procedure

becomes applicable to a variety of factor model applications. The practical usefulness of having

explicit formulas for the bias and variance is to establish the MSE optimal bandwidth selection

based on them (see Andrews (1991) and Kim and Sun (2011, 2013)). However, this does not

apply to our model, because, as discussed above, the variance of Γ̃0 is dominated by the effect of

the estimation errors in η̃it so the asymptotic MSE of Γ̃ does not consist of the bias and variance

of Γ̃0.

As emphasized in the literature since Newey and West (1987), positive semi-definiteness of

Γ̃ is highly desirable. In the time-series context, the HAC estimator is a weighted average of

periodogram, and we can obtain a psd estimator by choosing a kernel for which the Fourier

transform is nonnegative. However, this is not the case for Γ̃, which is the average of the spatial

HAC estimators. In this regard, Kelejian and Prucha (2007) introduce a class of kernels that

generate a psd spatial HAC estimator. An example is

Kv (x) =

{
(1− x)v ,
0,

0 ≤ x ≤ 1
x > 1

.

This class of kernels ensures that Γ̃ is psd if v ≥ (p+ 1) /2 and the Euclidean distance is employed.

Another solution to this problem is to modify Γ̃ to render a psd estimator. This method is

suggested by Politis (2011). Consider the eigen-decomposition of Γ̃, that is, Γ̃ = ΨΞΨ′, where

Ξ = diag (µ1, ..., µp) is a diagonal matrix containing the eigenvalues of Γ̃ and Ψ is the matrix of

11



orthonormal eigenvectors. We can define the modified psd estimator as

Γ̃+ = ΨΞ+Ψ′, (22)

where Ξ+ = diag
(
µ+

1 , ..., µ
+
p

)
, µ+

ι = max (µι, cµ) , and cµ is a small nonnegative number. It is

easy to show that Γ̃+ has the same convergence rate as Γ̃. We use this method (with cµ = 10−6)

in the simulation and empirical illustration.

Corollary 1 below follows directly from Theorem 1.

Corollary 1 Under the conditions in Theorem 1 and Assumptions F5 and F6, we have

ŷT+h|T − yT+h|T√
V̂ ar

(
ŷT+h|T

) →d N (0, 1) .

4 Bandwidth selection procedure

An important issue in implementing the AV-SHAC estimator is to select the bandwidth parameter

properly. While the inference based on Corollary 1 is valid in the asymptotic sense, the theory

does not provide practical guidance on the choice of dn, which the finite sample performance

depends strongly on. This is a particularly challenging problem in this setting, because, as

discussed in the previous section, the conventional MSE optimal bandwidth parameter is not

available.

To address this, we consider a bandwidth selection procedure based on the cluster wild boot-

strap. LetDn =
{
d

(1)
n , ..., d

(M)
n

}
be the set of reasonable dn for a given sample size. The procedure

involves the following steps.

Step 1 For t = 1, ..., T, let ẽt = (ẽ1t, ..., ẽnt)
′ denote the n-vector of residuals in time period t.

Generate B bootstrap samples
{
X∗k,t, t = 1, ..., T

}B
k=1

based on

X∗k,t︸︷︷︸
n×1

= Λ̃F̃t + e∗k,t.

The vector of bootstrap errors e∗k,t =
(
e∗k,1t, ..., e

∗
k,nt

)′
is generated from the following

process:

e∗k,t = ẽtξk,t, where ξk,t
iid∼ (0, 1) .

Step 2 Using the principal component method, estimate the bootstrap factors and bootstrap load-

ings in order to obtain
{
F̃ ∗k,t

}T
t=1

and
{
λ̃∗k,i

}n
i=1

, and construct the bootstrap version of the

AV-SHAC estimator with d(1)
n :

Γ̃∗k

(
d(1)
n

)
=

1

nT

n∑
i=1

n∑
j=1

T∑
t=1

K

(
dij

d
(1)
n

)
η̃∗k,it

(
η̃∗k,jt

)′
,

12



where η̃∗k,it = λ̃∗k,iẽ
∗
k,it and ẽ

∗
k,it = X∗k,it −

(
λ̃∗k,i

)′
F̃ ∗k,t.

Step 3 Compute

T ∗
(
d(1)
n

)
=

1

B

B∑
k=1

T ∗k

(
d(1)
n

)
, where T ∗k

(
d(1)
n

)
= α̂′Ṽ −1Γ̃∗k

(
d(1)
n

)
Ṽ −1α̂.

Step 4 Repeat Steps 1 and 3 for each dn ∈ Dn. Let `n (dn) denote the value of `n with bandwidth

dn, π ∈ (0, 1) , and cπ > 0. Our bandwidth selection d†n solves

d†n = arg max
dn∈Dn

T ∗ (dn) s.t. `n (dn) ≤ cπ min {n, T}π . (23)

As we can see in Step 1, we use the cluster wild bootstrap to generate bootstrap samples{
X∗k,t

}
. Each cluster contains all the units in one time period, and the external random variable

ξk,t is common to all units in t, which enables replication of the cross-sectional dependence of the

original samples. Thus T ∗
(
d

(m)
n

)
is expected to be a good approximation to α̂′Ṽ −1Γ̃Ṽ −1α̂ with

dn = d
(m)
n . We employ the Rademacher random variable for ξk,t in our simulation and empirical

application.

Recall that the proposed confidence interval for yT+h|T at the 100 (1− α) % level is

CI
(
yT+h|T

)
=

[
ŷT+h|T + qα/2

√
V̂ ar

(
ŷT+h|T

)
, ŷT+h|T + q1−α/2

√
V̂ ar

(
ŷT+h|T

)]
,

where

V̂ ar
(
ŷT+h|T

)
=

1

T
ẑ′T Âvar

(
δ̂
)
ẑT +

1

n
α̂′Âvar

(
F̃T

)
α̂ and Âvar

(
F̃t

)
= Ṽ −1Γ̃Ṽ −1.

Our bootstrap criterion function in (23) is designed to choose a d†n that improves the coverage of

CI
(
yT+h|T

)
, because the coverage rates can be much lower than its confidence level under the

approximate factor structure. The constraint that `n (dn) ≤ cπ min {n, T}π with π ∈ (0, 1) and

cπ > 0 is given to impose the rate condition for consistency in Theorem 1. In our simulation and

empirical illustration in Section 5, we set cπ = 1 and π = 2/3.
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Figure 1: Bandwidth selection for different degrees of cross-sectional dependence

Figure 1 illustrates the relationship between the bootstrap bandwidth selection and cross-

sectional dependence. The data in our simulation were generated based on DGP1, where γ is

the parameter that determines the degree of cross-sectional dependence. The DGP is explained

in detail in Section 5.1. The figure shows that when the degree of dependence increases, our

procedure tends to yield a larger bandwidth, which reduces the bias of Γ̃. We can also see that

given γ, the procedure tends to choose a smaller bandwidth if n decreases, and this enables Γ̃ to

control its variance.

Different bootstrap methods could be used in Step 1 as long as they replicate the cross-

sectional dependence. For example, we could use the CSD bootstrap by Gonçalves and Perron

(2020) that employs the thresholding technique. In the current setting, our cluster wild bootstrap

seems to be easier to use than the CSD bootstrap, because the latter requires selecting the

thresholding parameter. If information about the location of each unit is available, we could also

consider a parametric bootstrap based on the Cliff—Ord type spatial regression or the parametric

spatial covariance model (e.g., the Matérn function). However, it is unlikely that such information

is available with macroeconomic and financial data that the factor model usually employs in the

diffusion-index forecasting context. This paper does not examine the theoretical properties of

our cluster wild bootstrap, and we leave that for future research.

14



5 Simulation and empirical illustration

5.1 Simulation

In this section, we report the results of simulation studies that we conducted to investigate the

finite sample properties of the proposed inference procedure. For comparative purposes, we also

consider existing methods which are based on Γ̃HRT and Γ̃BN . The following simulation design is

employed.

yt+h = β0 + α1F1t + α2F2t + εt+h; εt+h ∼ N (0, 1)
Xit = λ′iFt + eit,
λi ∼iid U (0, 1) ,

Fjt = θjFjt−1 +
√

1− θ2
jujt, θj = 0.3j , j = 1, 2;

ujt ∼iid N
(
0, σ2

u (j)
)
, σ2

u (j) = U [.5, 1.5] .

We set β0 = α1 = α2 = 1 and h = 4. The number of common factors, p, is 2, and is assumed to

be known. The number of replications is 3000. We consider two DGPs to generate cross-sectional

dependence in idiosyncratic errors.

The first DGP follows Bai and Ng (2013) and Gonçalves and Perron (2020).

DGP1
et = Ω̄ (γ)1/2 vt, et = (e1t, ..., ent)

′ , vt = (v1t, ..., vnt)
′ ,

vit ∼iid N
(
0, σ2

v (i)
)
, σ2

v (i) = U [.5, 1.5] ,

where vit is independent of ujt. Ω̄ (γ)1/2 is the Choleski decomposition of n× n Toeplitz matrix
in which the ιth main diagonal is γι if ι ≤ 10 and zero otherwise. Thus we can generate cross-

sectional dependence by choosing a nonzero γ.

The second DGP generates cross-sectionally dependent data using a popular spatio-temporal

parametric model. The design is based on an Ln×Ln square integer lattice (Ln = 10, 12), where

unit i is located at a lattice point (i1, i2) .

DGP2
et = 0.3et−1 + (In + %M) υt, e0 = (0, ..., 0)′ ,
υt = (υ1t, ..., υnt)

′ , υit ∼iid N (0, 1),

where υit is independent of ujt. M = [mij ]
n
i,j=1 is an n × n spatial weight matrix such that for

units i, j,

mij =

{
1
0
if dij = 1
if dij 6= 1

,

where dij =
√

(i1 − j1)2 + (i2 − j2)2. Thus units i and j are dependent on each other if the

distance dij is 1.
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To construct Γ̃, we employ two different distance measures. The first one, denoted by dTij , is

the true distance, that is, dTij = |i− j| for DGP1 and dTij =
√

(i1 − j1)2 + (i2 − j2)2 for DGP2.

The second distance measure, denoted by dDij , is defined as

dDij =
1

|ρij |
− 1,

where ρij = Corr (eit, ejt). By definition, this reflects the degree of dependence between i and

j very well. Strictly speaking, dDij is not a valid distance, since it does not satisfy the triangle

inequality. However, as discussed in Section 2, the triangle inequality is not required for our

method. Though dDij is unknown in practice, we can approximate it under Assumptions H1 and

H2(ii) by utilizing information obtained from the time dimension:

d̃Dij = min

{
1

|ρ̃ij |
, 100

}
− 1,

where ρ̃ij =
∑T

t=1 ẽitẽjt/
√∑T

t=1 ẽ
2
it

∑T
t=1 ẽ

2
jt. An important advantage of using d̃

D
ij is that no prior

information about the dependence structure is needed for its construction. For the selection of

dn, we use the bootstrap based selection procedure proposed in Section 4. The Parzen kernel is

employed.

Γ̃BN is constructed in two different ways. The first one, denoted by CS-HACT, supposes that

the true covariance structure is known. For DGP1, we randomly select nsub
(

= min
{√

n,
√
T
})

consecutive units g times to obtain Γ̃BN(1) , ..., Γ̃
BN
(g) and then take their average. For DGP2, we

randomly select g blocks of units. The block sizes are 3×3 units (nsub = 9) whenmin
{√

n,
√
T
}

=

10, and 3×4 units (nsub = 12) when min
{√

n,
√
T
}

= 12. The second approach, denoted by CS-

HACR, selects nsub units randomly, so the selected observations do not maintain the dependence

of the data at all. We set g =
⌊
min

(√
n,
√
T
)⌋
, where bxc represents the largest integer that

does not exceed x.

Table 1 presents the empirical coverage probabilities (ECPs) of the 95% confidence interval

for yT+h|T and the forecasting interval for yT+h under DGP1. A few patterns emerge. First,

while the ECP of HR for yT+h is generally close to the nominal coverage probability regardless

of the existence and strength of cross-sectional dependence, its ECP for yT+h|T tends to be very

sensitive to cross-sectional dependence. For example, when γ = 0.4, n = 100, and T = 50, the

ECPs of HR for yT+h and yT+h|T are 0.931 and 0.873, respectively. When γ = 0.7, n = 100,

and T = 50, the ECP for yT+h|T decreases to 0.774, which implies that the distortion of the

ECPs becomes more serious as the strength of the dependence increases. We also find that

the performance of HR in the presence of cross-sectional dependence becomes worse when T/n

is large. See, for example, that the ECP for yT+h|T decreases further to 0.664 when γ = 0.7,

n = 100, and T = 200. This is well expected from (8), which shows that the variance of ŷT+h|T

is mainly determined by Avar
(
F̃T

)
when T/n is large.
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Second, our method improves upon coverage rates regardless of whether the true distance

dTij or the data-driven distance d̃
D
ij is employed. The former tends to perform slightly better in

general. For example, when γ = 0.7, n = 150, and T = 200, the ECPs of AV-SHAC with dTij
and d̃Dij for yT+h|T are 0.907 and 0.886, respectively, which are comparable to the ECP of CS-

HACT (= 0.902) and are substantially superior to the ones based on HR (= 0.701) and CS-HACR
(= 0.688). In the absence of cross-sectional dependence, that is, γ = 0, AV-SHAC performs as

well as HR, which is constructed under the zero covariance assumption.

The finding that AV-SHAC performs well with d̃Dij gives us an important implication from an

empirical point of view. A typical approach for the construction of dij is to find a relevant aux-

iliary variable that characterizes the dependence structure of the data. However, such a variable

is unlikely to be available in the diffusion-index forecast which often uses macroeconomic and

financial data as candidate predictors. Our simulation studies show that even without observing

such a variable, we can still use our method with d̃Dij , which is directly obtained from time-series

observations.

Third, the performance of CS-HAC depends strongly on how the nsub observations are se-

lected. CS-HACT, in which Γ̃BN is constructed with consecutive units, improves the accuracy

of the confidence intervals for yT+h|T substantially. For example, when γ = 0.7, n = 150, and

T = 200, its ECP is 0.902, while the ECP of HR is only 0.701. However, the results are remark-

ably different if Γ̃BN is constructed with randomly selected observations that do not maintain

the dependence of the data. When γ = 0.7, n = 150, and T = 200, CS-HACR has an ECP of

0.688, so its performance is similar to HR.

We also compare the performance based on the mean absolute error to examine the precision

of each estimator. The results of comparison are similar to the ones based on the ECP, and we

omit the table to save the space.

Table 2 reports the ECPs when the data are generated from DGP2. The results are similar to

those presented in Table 1. All the estimators yield accurate confidence intervals in the absence

of cross-sectional dependence. However, when % = 0.2, 0.4, HR and CS-HACR are substantially

inferior to AV-SHAC and CS-HACT.

We conduct additional simulations to examine the sensitivity of the finite sample performance

to the choices of kernel function and cµ, which is a threshold parameter for the modified psd

variance estimator in (22). We find that our procedure is robust to those choices.

5.2 Empirical Illustration

In this section, we report the results of applying the proposed confidence interval to the problem

of forecasting the unemployment rate. Our forecasting exercise is based on the dataset used by

Ludvigson and Ng (2010), which contains 131 monthly macroeconomic time series for 1964:1—

2007:12. The dataset is available at Ludvigson’s webpage (https://www.sydneyludvigson.com/).
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We consider one-period ahead (h = 1) forecasts of the monthly growth in the unemployment rate

using the following model:

∆UERt+1 = β0 + β1∆UERt + α1F1,t + α2F2,t + εt+1, (24)

where ∆UERt+1 = log (UERt+1/UERt) and UERt is the unemployment rate in time period t.

Thus the model employs two common factors and uses ∆UERt as the observed predictor.

The forecasting exercise begins by estimating factors with the data from 1964:1 to 1988:12 (300

months). We then estimate the coeffi cients in (24) by regressing∆UERt+1 on
(

1,∆UERt, F̃1,t, F̃2,t

)′
for t = 1964:1 to 1988:11 and obtain the estimate of the conditional mean of ∆UER1989:1 given

by

∆̂UER1989:1 = β̂0 + β̂1∆UER1988:12 + α̂1F̃1,1988:12 + α̂2F̃2,1988:12.

Finally, we construct the 95% confidence interval for the conditional mean of ∆UER1989:1. This

is constructed in two different ways. The first is the one that we propose, in which we employ Γ̃

with d̃Dij and use the bootstrap based bandwidth selection method. The second approach is based

on Γ̃HRT , which does not account for cross-sectional dependence. Using the same procedure, we

obtain ∆̂UER1989:2 and the associated confidence intervals based on data from 1964:2 to 1989:1.

The procedure is repeated until the forecast is made for ∆UER2007:12.

The result is summarized in the table below.

95% Confidence intervals for the conditional mean of ∆UERT+1

HR AV-SHAC (d̃Dij)
Average (1989:1—2007:12) [−0.0495, 0.0586] [−0.0546, 0.0636]

The table reports the averages of the confidence intervals for the conditional mean of ∆UERT+1

over the period 1989:1—2007:12. By taking cross-sectional dependence of the data into account,

our procedure produces confidence intervals which are about 9.3% wider, on average, than the

conventional confidence intervals based on Γ̃HRT .

Figure 2 presents the diffusion-index forecast of ∆UERT+1 and the associated confidence

intervals in each time period between 2006:1 and 2007:12. Differences of two confidence intervals

show how important it is to account for cross-sectional dependence. We can see that our procedure

produces wider confidence intervals in most of the time periods.
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Figure 2: Diffusion-index forecast and confidence interval for the growth rate of unemployment

rate.

6 Conclusion

In this paper, we propose the time-series average of the spatial HAC estimators for the variance

of the estimated common factors under the approximate factor structure. We then provide the

confidence interval for the conditional mean of the diffusion-index forecasts, which is robust to

the cross-sectional heteroskedasticity and dependence of unknown forms in idiosyncratic errors.

We establish the asymptotics under very mild conditions. Since the performance of our procedure

depends strongly on the choice of bandwidth, we provide a bandwidth selection procedure using

the cluster wild bootstrap. A crucial advantage of our procedure is that no prior information

about the dependence structure is required for its implementation.

19



Table 1: Empirical coverage probabilities of 95% confidence intervals

using different variance estimators: DGP1

Method AV-SHAC (dTij) AV-SHAC (d̃Dij) CS-HACT CS-HACR HR
n T ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h

γ = 0.0

100 50 0.935 0.923 0.935 0.923 0.932 0.923 0.932 0.923 0.936 0.923
100 100 0.944 0.944 0.944 0.944 0.933 0.943 0.934 0.944 0.942 0.943
100 200 0.936 0.946 0.936 0.946 0.930 0.945 0.927 0.945 0.936 0.946
150 50 0.940 0.931 0.940 0.931 0.938 0.931 0.939 0.931 0.943 0.931
150 100 0.941 0.941 0.941 0.941 0.942 0.938 0.941 0.938 0.941 0.943
150 200 0.942 0.948 0.942 0.948 0.935 0.948 0.935 0.948 0.942 0.948

γ = 0.4

100 50 0.905 0.934 0.882 0.931 0.904 0.934 0.867 0.931 0.873 0.931
100 100 0.915 0.942 0.888 0.941 0.909 0.942 0.848 0.938 0.857 0.939
100 200 0.921 0.948 0.898 0.947 0.918 0.947 0.838 0.946 0.846 0.947
150 50 0.922 0.938 0.898 0.936 0.923 0.939 0.888 0.935 0.889 0.935
150 100 0.931 0.943 0.905 0.942 0.929 0.943 0.875 0.940 0.880 0.941
150 200 0.935 0.947 0.913 0.947 0.927 0.947 0.854 0.944 0.863 0.945

γ = 0.7

100 50 0.862 0.935 0.837 0.934 0.869 0.936 0.771 0.929 0.774 0.929
100 100 0.874 0.945 0.838 0.944 0.873 0.945 0.706 0.940 0.712 0.940
100 200 0.859 0.950 0.837 0.949 0.861 0.950 0.653 0.943 0.664 0.944
150 50 0.863 0.933 0.851 0.932 0.875 0.934 0.788 0.930 0.792 0.930
150 100 0.899 0.947 0.874 0.946 0.901 0.947 0.757 0.941 0.762 0.941
150 200 0.907 0.954 0.886 0.953 0.902 0.954 0.688 0.947 0.701 0.948
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Table 2: Empirical coverage probabilities of 95% confidence intervals

using different variance estimators: DGP2

Method AV-SHAC (dTij) AV-SHAC (d̃Dij) CS-HACT CS-HACR HR
n T ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h

% = 0.0

100 100 0.935 0.948 0.935 0.948 0.920 0.948 0.926 0.948 0.938 0.948
100 150 0.939 0.948 0.939 0.948 0.923 0.948 0.928 0.948 0.937 0.948
100 200 0.946 0.948 0.946 0.948 0.927 0.947 0.935 0.948 0.945 0.948
144 100 0.935 0.942 0.935 0.942 0.925 0.942 0.931 0.942 0.935 0.942
144 150 0.945 0.937 0.945 0.937 0.938 0.937 0.939 0.937 0.942 0.938
144 200 0.950 0.948 0.950 0.948 0.940 0.948 0.940 0.948 0.948 0.949

% = 0.2

100 100 0.901 0.945 0.869 0.944 0.887 0.945 0.821 0.943 0.835 0.943
100 150 0.891 0.952 0.864 0.951 0.870 0.951 0.796 0.948 0.809 0.949
100 200 0.899 0.951 0.879 0.950 0.881 0.949 0.801 0.945 0.817 0.945
144 100 0.913 0.941 0.875 0.941 0.889 0.941 0.834 0.939 0.840 0.940
144 150 0.907 0.951 0.879 0.950 0.901 0.951 0.818 0.948 0.830 0.948
144 200 0.910 0.949 0.890 0.948 0.908 0.949 0.817 0.947 0.829 0.947

% = 0.4

100 100 0.870 0.944 0.836 0.943 0.849 0.944 0.737 0.939 0.749 0.940
100 150 0.861 0.960 0.835 0.959 0.831 0.959 0.704 0.954 0.717 0.955
100 200 0.859 0.953 0.840 0.953 0.832 0.952 0.900 0.947 0.713 0.947
144 100 0.893 0.945 0.863 0.942 0.867 0.943 0.765 0.939 0.774 0.939
144 150 0.887 0.956 0.865 0.954 0.880 0.955 0.738 0.948 0.749 0.948
144 200 0.883 0.957 0.865 0.956 0.874 0.957 0.722 0.952 0.729 0.952
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Appendix A: Testing cross-sectional dependence

In this appendix, we consider a diagnostic test for the existence of cross-sectional dependence in

case where each candidate predictor can be mapped onto an integer lattice. This test is useful

for choosing an appropriate estimator of ΓHT when researchers use spatial variables as candidate

predictors.

If there is no cross-sectional dependence, it may be preferable to use Γ̃HRT , since that is

generally more effi cient. Otherwise, an estimator that is robust under the approximate factor

structure should be employed. We consider the following null and alternative hypotheses:

H0 : α̂′Ṽ −1Γ̃HRT Ṽ −1α̂ is consistent for α′Avar
(
F̃T

)
α,

H1 : α̂′Ṽ −1Γ̃HRT Ṽ −1α̂ underestimates α′Avar
(
F̃T

)
α.

Define

Tt =
α̂′Ṽ −1Γ̃tṼ

−1α̂

α̂′Ṽ −1Γ̃HRt Ṽ −1α̂
. (A.1)

Note that Tt is based on Γ̃t with Γ̃HRt and does not employ the AV-SHAC estimator. We de-

rive the asymptotically equivalent distribution of Tt using the theory of fixed-b asymptotics in
which `n/n is assumed to be fixed with the sample size. Under this asymptotics, the numerator

α̂′Ṽ −1Γ̃tṼ
−1α̂ becomes asymptotically equal in distribution to a random variable that is pro-

portional to a′Avar
(
F̃t

)
α, while the denominator, α̂′Ṽ −1Γ̃HRt Ṽ −1α̂, is consistent only in the

absence of cross-sectional dependence.

To establish the fixed-b asymptotics of Tt, we follow Conley (1999) and Bester, Conley, Hansen,
and Vogelsang (2016) in assuming that each unit is mapped onto a two-dimensional integer lattice.

The extension of this to a higher-dimensional lattice is straightforward. In a lattice setting, a

variable is indexed based on location, and we let (i1, i2) ∈ [1, 2, ..., Ln]⊗ [1, 2, ...,Mn] denote the

location of unit i. Let

ηH(i1,i2),t =

{
ηHit , if a unit is present at (i1, i2)
0, otherwise.

dij is now a distance between two locations, (i1, i2) and (j2, j2).

Assumption A1 `n/n→ bo ∈ (0, 1] , and `n/T = o (1) .

Under Assumption A1, the bias of Γ̃t vanishes, but the variation does not disappear even

as n, T → ∞, so Γ̃t converges in distribution to a random matrix. The second part of this

assumption is made to control the effect of the estimation errors in the factor model.

We follow Kim and Sun (2013) in making Assumptions A2 and A3, which present conditions

on the distance measure and the kernel functions.
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Assumption A2 Let d(i1,i2),(j1,j2) denote the distance between the two units located at (i1, i2)

and (j2, j2) . Then
d(i1,i2),(j1,j2)

dn
= d

(
|i1 − j1|
dn

,
|i2 − j2|
dn

)
and d (·, ·) is continuously differentiable.

Assumption A2 implies that dij = d(i1,i2),(j1,j2) is a function of |i1 − j1| and |i2 − j2| and
homogeneous, and p-norm distances satisfy this condition. Let b = (b1, b2) with b1 = dn/Ln and

b2 = dn/Mn, and let

Kb
((

i1
Ln

,
i2
Mn

)
,

(
j1
Ln

,
j2
Mn

))
= K

((
i1
b1Ln

,
i2

b2Mn

)
,

(
j1
b1Ln

,
j2

b2Mn

))
(A.2)

= K

(
d(i1,i2),(j1,j2)

dn

)
.

Based on (A.2), we can rewrite the spatial HAC estimator as

Γ̃t =
1

n

Ln∑
i1,j1=1

Mn∑
i2,j2=1

Kb
((

i1
Ln

,
i2
Mn

)
,

(
j1
Ln

,
j2
Mn

))
η̃(i1,i2)η̃

′
(j1,j2).

Assumption A3 (i) Assumption H7 holds. (ii) For all x1, x2 ∈ R, there is a constant cK <∞
such that |K (x1)−K (x2)| ≤ cK |x1 − x2| . (iii) Kb ((v1, v2) , (w1, w2)) is continuous and contin-

uously differentiable almost everywhere on [0, 1]2 × [0, 1]2 .

Assumption A3 accommodates all kernels commonly used in HAC estimation, but it excludes

the rectangular kernel. Under this assumption, we have the Fourier series representation

Kb ((v1, v2) , (w1, w2)) = lim
L→∞

L∑
ι=1

κιψb,ι (v1, v2)ψb,ι (w1, w2) , (A.3)

where {ψb,ι (v1, v2)ψb,ι (w1, w2)} is a sequence of continuously differentiable functions on L2
(

[0, 1]2 × [0, 1]2
)
.

By default, we set ψb,1 (·, ·) to be a constant function. The convergence in (A.3) is absolute and
uniform in (v1, v2) ∈ [0, 1]2 and (w1, w2) ∈ [0, 1]2 . We state the high level assumptions below.

Assumption A4 Let ξi ∼iid N (0, Ip). For a given t, the following holds:

P

([
1√
n

Ln∑
i1=1

Mn∑
i2=1

ψb,ι

(
i1
Ln

,
i2
Mn

)
ηH(i1,i2)

]
< c for ι = 1, 2, ...,L

)

= P

([
Jt√
n

Ln∑
i1=1

Mn∑
i2=1

ψb,ι

(
i1
Ln

,
i2
Mn

)
ξ(i1,i2)

]
< c for ι = 1, 2, ...,L

)
+ oP (1)

as n→∞ for every fixed L, where c ∈ Rp, b ∈ (0, 1]× (0, 1] , and Jt is the matrix square root of

ΓHt , that is, JtJ
′
t = ΓHt .
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Assumption A4 implies that n−1/2
∑Ln

i1=1

∑Mn
i2=1 ψb,ι

(
i1
Ln
, i2
Mn

)
ηH(i1,i2) is asymptotically equiv-

alent in distribution to a normal random variable with mean zero and variance ΓHt .We make this

assumption to approximate the distribution of Tt under the fixed-b asymptotics. This condition
is satisfied if a CLT holds jointly over ι = 1, ...,L. Primitive conditions for Assumption A4 are
provided in Sun and Kim (2015).

Assumption A5 Let ΣΛH = H−1ΣΛH
−1. For all (r1, r2) ∈ [0, 1]2 ,

1

n

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

λH(i1,i2)

(
λH(i1,i2)

)′
→p r1r2ΣΛH .

Assumption A6 For each t, E
∥∥∥(nT )−1/2∑n

i=1

∑T
s=1

(
FHs eiseit − E

(
FHs eiseit

))∥∥∥ ≤M.

Proposition A1 provides the asymptotically equivalent distribution of Γ̃t under the fixed-b

asymptotics.

Proposition A1 Suppose that Assumptions F1—F4, F6 and A1—A6 hold. For a given t, we have

Γ̃t ∼a JtΓ̃aJ ′t

and

Γ̃a =
1

n

n∑
i=1

n∑
j=1

K

(
dij
dn

)(
ξi − ξ̄

) (
ξj − ξ̄

)′
with ξ̄ = n−1

∑n
i=1 ξi. ‘ ∼a’denotes asymptotic equivalence in distribution as n, T →∞.

The proof is in the supplementary appendix. This proposition states that, under the fixed-b

asymptotics, Γ̃t is asymptotically equivalent in distribution to a random matrix which is propor-

tional to ΓHt in the matrix sense. We develop our cross-sectional dependence test based on this

result.

As α̂ and Ṽ are consistent for α and V, Proposition A1 implies that α̂′Ṽ −1Γ̃tṼ
−1α̂ is asymp-

totically equivalent to α′V −1JtΓ̃
aJ ′tV

−1α. Note that α′V −1Jt︸ ︷︷ ︸
1×p

ξi︸︷︷︸
p×1

=d

√
α′Avar

(
F̃t

)
αζi with

ζi ∼iid N (0, 1) . Thus, we have

α′V −1JtΓ̃
aJ ′tV

−1α =
1

n

n∑
i=1

n∑
j=1

K

(
dij
dn

)(
α′V −1Jt

(
ξi − ξ̄

)) (
α′V −1Jt

(
ξj − ξ̄

))′
=d α′Avar

(
F̃t

)
α

1

n

n∑
i=1

n∑
j=1

K

(
dij
dn

)(
ζi − ζ̄

) (
ζj − ζ̄

)
. (A.4)
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If α̂′Ṽ −1Γ̃HRt Ṽ −1α̂ is consistent for α′Avar
(
F̃t

)
α, we have

Tt ∼a
1

n

n∑
i=1

n∑
j=1

K

(
dij
dn

)(
ζi − ζ̄

) (
ζj − ζ̄

)
:= Ψbn. (A.5)

We summarize the result in the theorem below.

Theorem A1 Let Assumptions F1—F4, F6 and A1—A6 hold. Then, for a given t, if α̂′Ṽ −1Γ̃HRt Ṽ −1α̂

is consistent for α′Avar
(
F̃t

)
α we have

P (Tt < c)− P (Ψbn < c) = o (1) as n, T →∞

for fixed b.

The proof is omitted, because it is directly implied by Proposition A1 and the consistency of

Γ̃HRt in the absence of cross-sectional dependence. This theorem enables us to use TT as the test
statistic and the (1− α) quantile of Ψbn as the critical value for the cross-sectional dependence

test at the significance level α. If α̂′Ṽ −1Γ̃HRT Ṽ −1α̂ underestimates α′Avar
(
F̃T

)
α, the rejection

probability exceeds the nominal level α. The distribution of Ψbn is easy to simulate based on

(A.5). Some simulation results are provided in the supplementary appendix.

Appendix B: Proofs

Lemma B1 Let δnT = min
{√

n,
√
T
}
. Under Assumption F1—F4, we have the following:

(i) λ̃i − λHi = T−1
∑T

s=1 F
H
s eis +OP

(
δ−2
nT

)
(ii) T−1

∑T
t=1 eit

(
F̃t − FHt

)
= OP

(
δ−2
nT

)
(iii) T−1

∑T
t=1

∥∥∥F̃t − FHt ∥∥∥2
= OP

(
δ−2
nT

)
(iv) T−1

∑T
t=1

(
F̃t − FHt

)′
Ft = OP

(
δ−2
nT

)
The proofs of all four parts of this lemma are given in Bai (2003).

Proof of Theorem 1 Since Γ̃− Γ =
(
EΓ̃0 − Γ

)
+
(

Γ̃0 − EΓ̃0
)

+
(

Γ̃− Γ̃0
)
, we can establish

the asymptotics of Γ̃ by examining each term on the right-hand side. Note that the equation

Γ̃−Γ = oP (1) holds if and only if a′Γ̃a−a′Γa for any a ∈ Rp. Therefore, without loss of generality,
we assume that Γ̃ is a scalar, that is, p = 1.

(i) EΓ̃0 − ΓHnT = O
(

1
dqn

)
We have

EΓ̃0 − ΓHnT =
1

dqn

1

nT

n∑
i=1

n∑
j=1

T∑
t=1

E
(
ηHit
(
ηHjt
)′)

dqij

K
(
dij
dn

)
− 1(

dij
dn

)q


=
1

dqn

(
Γ(q)Kq + o (1)

)
= O

(
1

dqn

)
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as n, T, dn →∞.
(ii) Γ̃0 − EΓ̃0 = OP

(√
`n
nT

)
We note that

E
(

Γ̃0 − EΓ̃0
)2

=
1

n2T 2

n∑
i,j=1

n∑
a,b=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dab
dn

)[
E
(
ηHit η

H
jtη

H
asη

H
bs

)
− E

(
ηHit η

H
jt

)
E
(
ηHasη

H
bs

)]
=

1

n2T 2

n∑
i,j=1

n∑
a,b=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dab
dn

)[{
E
(
ηHit η

H
jtη

H
asη

H
bs

)
− E

(
ηHit η

H
jt

)
E
(
ηHasη

H
bs

)
−E

(
ηHit η

H
as

)
E
(
ηHjtη

H
bs

)
− E

(
ηHit η

H
bs

)
E
(
ηHasη

H
jt

)}
+ E

(
ηHit η

H
as

)
E
(
ηHjtη

H
bs

)
+E

(
ηHit η

H
bs

)
E
(
ηHasη

H
jt

)]
= A1 +A2 +A3.

For A1, we use the linear representation of ηHit in (16) to obtain

E
(
ηHit η

H
jtη

H
asη

H
bs

)
− E

(
ηHit η

H
jt

)
E
(
ηHasη

H
bs

)
− E

(
ηHit η

H
as

)
E
(
ηHjtη

H
bs

)
− E

(
ηHit η

H
bs

)
E
(
ηHasη

H
jt

)
=

nTp∑
l=1

rit,lrjt,lras,lrbs,l
(
Eε4lt − 3

)
.

Thus under Assumption H4,

nT |A1| ≤
1

nT

n∑
i,j=1

n∑
a,b=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dab
dn

) nTp∑
l=1

|rit,lrjt,lras,lrbs,l|
∣∣Eε4lt − 3

∣∣
≤ |M − 3|

nT

nTp∑
l=1

(
T∑
t=1

n∑
i=1

|rit,l|
)

︸ ︷︷ ︸
≤M

 n∑
j=1

|rjt,l|


︸ ︷︷ ︸

≤M

(
T∑
s=1

n∑
a=1

|ras,l|
)

︸ ︷︷ ︸
≤M

(
n∑
b=1

|rbs,l|
)

︸ ︷︷ ︸
≤M

= O (1) . (B.6)

For A2,

nT

`n
|A2| ≤

1

`nnT

T∑
t=1

T∑
t=1

n∑
i=1

n∑
a=1

∑
j∈{dij≤dn}

∑
b∈{dab≤dn}

∣∣E (ηHit ηHas)∣∣ ∣∣E (ηHjtηHbs)∣∣
≤ 1

`nnT

T∑
t=1

n∑
i=1

∑
j∈{dij≤dn}

(
nTp∑
l=1

|rit,l|
)(

T∑
s=1

n∑
a=1

|ras,l|
)(

nTp∑
k=1

|rjt,k|
)(

n∑
b=1

|rbs,k|
)

= O (1) . (B.7)

Using the same argument, we can show that

nT

`n
|A3| = O (1) . (B.8)
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Combining (B.6) through (B.8), we have E
(

Γ̃0 − EΓ̃0
)2

= O
(

1
nT

)
+O

(
`n
nT

)
, which implies

that

Γ̃0 − EΓ̃0 = OP

(√
`n
nT

)
as `n, n, T →∞ such that `n/nT → 0.

(iii) Γ̃− Γ̃0 = OP

(√
`n
T

)
+OP

(
`n
n

)
We can write

Γ̃− Γ̃0 =
1

nT

n∑
i=1

n∑
j=1

T∑
t=1

(
dij
dn

)(
λ̃iλ̃j − λHi λHj

)
ẽitẽjt

+
1

nT

n∑
i=1

n∑
j=1

T∑
t=1

(
dij
dn

)
λHi λ

H
j (ẽitẽjt − eitejt)

:= B1 +B2.

Since ẽit = eit −
{
F̃t

(
λ̃i − λHi

)
+
(
F̃t − FHt

)
λHi

}
, we have

B1 =
1

nT

n∑
i=1

n∑
j=1

T∑
t=1

K

(
dij
dn

)[(
λ̃i − λHi

)(
λ̃j − λHj

)
+ 2

(
λ̃i − λHi

)
λHj

]
eitejt

− 2

nT

n∑
i=1

n∑
j=1

T∑
t=1

K

(
dij
dn

)[(
λ̃i − λHi

)(
λ̃j − λHj

)
+ 2

(
λ̃i − λHi

)
λHj

]
eit

×
{
F̃t

(
λ̃j − λHj

)
+
(
F̃t − FHt

)
λHj

}
+

1

nT

n∑
i=1

n∑
j=1

T∑
t=1

K

(
dij
dn

)[(
λ̃i − λHi

)(
λ̃j − λHj

)
+ 2

(
λ̃i − λHi

)
λHj

]
×
{
F̃t

(
λ̃i − λHi

)
+
(
F̃t − FHt

)
λHi

}{
F̃t

(
λ̃j − λHj

)
+
(
F̃t − FHt

)
λHj

}
:= B11 +B12 +B13. (B.9)

For B11,

B11 =
1

nT

n∑
i=1

n∑
j=1

T∑
t=1

K

(
dij
dn

)(
λ̃i − λHi

)(
λ̃j − λHj

)
eitejt

+
2

nT

n∑
i=1

n∑
j=1

T∑
t=1

K

(
dij
dn

)(
λ̃i − λHi

)
λHj eitejt

:= B
(1)
11 +B

(2)
11
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For B(1)
11 , it is easy to show that

T
`n

∣∣∣B(1)
11

∣∣∣ = OP (1) . For B(2)
11 ,

√
T

`n

∣∣∣B(2)
11

∣∣∣ ≤ 2

T

T∑
t=1



 1

n

n∑
i=1

(
1√
T

T∑
s=1

FHs eis

)4
1/4(

1

n

n∑
i=1

e4
it

)1/4


×

 1

n

n∑
i=1

 1√
`n

n∑
j=1

K

(
dij
dn

)
λHj ejt

21/2
+ oP (1)

= OP (1) .

Therefore,

B11 = OP

(√
`n
T
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by Lemma B1(ii). Similarly, we can show that
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Similarly, we can show that T
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which, together with (B.10) and (B.13), implies that
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For B22, we have
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This completes the proof.
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Supplementary Appendix

Simulation for the cross-sectional dependence test

We conduct simulation studies to examine the finite sample properties of our cross-sectional

dependence test. DGP1 and DGP2 in Section 5.1 are employed to generate the data. Since this

test is based on the spatial HAC estimator Γ̃T and does not employ AV-SHAC, we consider the

MSE criterion and parametric plug-in method proposed by Kim and Sun (2011) to select the

bandwidth. We first approximate the MSE of α′V −1Γ̃TV
−1α with

AMSE =
1

d2q
n

K2
q

(
α′V −1Γ

(q)
T V −1α

)2
+
`n
n

2K̄T
(
α′V −1ΓHT V

−1α
)2
, (S.1)

where Γ
(q)
T = limn→∞

1
n

∑n
i=1

∑n
j=1E

[
ηHiT

(
ηHjT

)′]
dqij . To avoid the effect of an unduly small

value of dn, our bandwidth selection is based on the following modified MSE criterion,

d∗n = max

{
arg min

dn
AMSE, d

}
, (S.2)

where d is the prespecified minimum value of the bandwidth.

For the plug-in method, we employ the SAR(1) model

ηHa,iT = φaWηHa,iT + uiT , (S.3)

where ηHa,iT is the ath component of η
H
iT and uiT ∼iid (0, 1), and we estimate φa by the QML

method, which is given by

φ̂a = arg max
φ

logL (η̃a,iT |φa) (S.4)

with

logL (η̃a,iT |φa) = −n
2

log (η̃a,iT − φaW η̃a,iT )′ (η̃a,iT − φaW η̃a,iT )− log |In − φaW|+ const.

W is a contiguity matrix in which we treat units i and j as neighbors if dij ≤ 1. For this matrix,

row standardization is applied and all the diagonal elements are zero. See Kim and Sun (2011)

for details of this plug-in method.

Table S1 below reports the empirical rejection probabilities (ERPs) of our cross-sectional

dependence test. The table shows that the test works very well. The empirical sizes of TT are
always close to the nominal level α = 0.05. In the presence of cross-sectional dependence, the

ERP becomes larger than α and grows as the strength of the dependence and/or n, T increase.

We set d = 20 for DGP1, and d = 4 for DGP2. Additional simulations (not reported here to save

space) show that the test tends to lose power when d becomes larger.
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Table S1: Empirical rejection probabilities of the cross-sectional dependence test (α = 0.05)

DGP1 DGP2
n T γ ERP n T % ERP

0.0 0.045 0.0 0.065
100 50 0.3 0.303 100 50 0.1 0.308

0.5 0.656 0.3 0.690
0.7 0.925 0.5 0.790
0.0 0.050 0.0 0.058

100 100 0.3 0.328 100 100 0.1 0.323
0.5 0.686 0.3 0.710
0.7 0.939 0.5 0.800
0.0 0.060 0.0 0.060

100 200 0.3 0.331 100 200 0.1 0.333
0.5 0.682 0.3 0.718
0.7 0.944 0.5 0.817
0.0 0.044 0.0 0.060

150 50 0.3 0.406 144 50 0.1 0.396
0.5 0.821 0.3 0.783
0.7 0.986 0.5 0.869
0.0 0.050 0.0 0.057

150 100 0.3 0.413 144 100 0.1 0.421
0.5 0.827 0.3 0.798
0.7 0.990 0.5 0.890
0.0 0.050 0.0 0.049

150 200 0.3 0.427 144 200 0.1 0.445
0.5 0.845 0.3 0.813
0.7 0.993 0.5 0.894

Proof of Proposition A1

Lemma S2 Under Assumption T5,

1

n

Ln∑
i1=1

Mn∑
i2=1

ψb

(
i1
Ln

,
i2
Mn

)
λH(i1,i2)

(
λH(i1,i2)

)′
→p 1

n

Ln∑
i1=1

Mn∑
i2=1

ψb

(
i

Ln
,
i2
Mn

)
ΣΛH .

The proof of this lemma is included in the proof of Lemma 1 in Kim and Sun (2013).
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Proof of Proposition A1 Let Γ0
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For C(4)
12 ,
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From (S.7), (S.8), (S.9), and (S.10), we have

C12 = oP (1) ,

as `n/T, `n/
√
nT → 0 and dn, `n, n, T →∞.

For C13,
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For C(1)
13 ,
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Based on similar procedures, it is easy to show that

C
(2)
13 = C

(3)
13 = oP (1) .

Thus we have

C1 = oP (1) . (S.11)

For C2,
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C21 can be rewritten as
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For C(1)
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For C22,
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Under the rate condition `n/n→ bo with `n/T = o (1) , we have

Γ̃t = Γ̃0
t + C

(3)
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22 + oP (1) .
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Using matrix notation, we have
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According to Lemma 1, we have
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where we use ΣΛHV
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→p Ip. Substituting this result in (S.12), we have
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where the asymptotic equivalence is a direct application of Proposition 2 in Kim and Sun (2013).

This completes the proof.
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