7 times and 9 times (and more)

(Dall-e creation)

Keeping at every step the last digit of 7*a(n) reproduces the sequence S digit by digit.
We want of course S to be the lexicographically earliest sequence of distinct terms >0.
S = 5, 13, 9, 7, 1, 3, 19, 23, 17, 6, 29, 33, 11, 8, 16, 27, 39, 49, 43, 53, 4, 63, 18, 26, 21, 59, 37, 2, 47, 12, 69, 15, 79, 22, 28, 89, 73, 14, 36, 38, 46, 83, 25, 57, 99, 31, 56, 32, 41, 93, 66, 48, 67, 103, 35, 51, 77, 76, 86, 96, 24, 34, 87, 61, 109, 113, 42, 119, 58, 129, 44, 52, 68, 54, 139, 106, 45, 55, 71, 97, 107, 149, 123, 65, 78, 159, 116, 62, 133, 117, 169, 88, 98, 72, 64, 108, 81, 143, 10, 179,...
___________________________________________________________________________________
Keeping at every step the last digit of 9*a(n) reproduces the sequence T digit by digit.
We want of course T... etc.
T = 5, 19, 1, 9, 11, 29, 39, 8, 21, 7, 31, 2, 18, 49, 3, 17, 59, 28, 69, 12, 6, 41, 27, 79, 13, 15, 51, 38, 22, 4, 61, 89, 48, 14, 16, 99, 58, 23, 33, 71, 109, 37, 119, 25, 35, 129, 47, 32, 68, 78, 26, 24, 139, 42, 81, 36, 52, 149, 46, 159, 34, 91, 101, 45, 62, 88, 57, 67, 77, 43, 169, 179, 10, 111, 87, 53, 189, 199, 121, 98, 55, 97, 65, 209, 108, 131, 56, 63, 107, 118, 44, 72, 73, 82, 128, 54, 138, 66, 219, 117,...
___________________________________________________________________________________
Keeping at every step the first digit of [a(n)^2] reproduces the sequence U digit by digit. We want of course... etc. No zero is present in U, except a(1).
U = 0, 1, 11, 4, 2, 5, 23, 15, 6, 12, 24, 8, 13, 16, 17, 7, 9, 14, 18, 32, 25, 33, 27, 28, 3, 34, 21, 35, 29, 19, 45, 46, 71, 55, 56, 47, 84, 48, 91, 57, 58, 22, 49, 36, 59, 72, 51, 31, 37, 95, 64, 73, 65, 26, 85, 38, 74, 75, 76, 78, 66, 86, 92, 67, 68, 93, 96, 39, 77, 87, 224, 94, 52, 53, 69, 97, 61, 79, 225, 98, 88, 54, 226, 41, 62, 42, 63, 89, 99, 227, 81, 211, 265, 174, 82, 228, 142, 83, 283, 229, ... 
___________________________________________________________________________________
Keeping at every step the first digit of [a(n) + a(n+1)] reproduces the sequence V digit by digit. We want of course... etc. No zero is present in V (we guess the graph must be surprising!)
V = 1, 9, 81, 2, 8, 12, 68, 32, 168, 432, 368, 3, 17, 83, 517, 283, 117, 183, 18, 13, 47, 33, 4, 6, 64, 16, 14, 36, 65, 5, 15, 66, 234, 766, 235, 465, 535, 265, 35, 67, 19, 82, 218, 182, 518, 2482, 519, 3481, 2519, 3482, 521, 479, 121, 7, 34, 266, 334, 267, 233, 268, 732, 4268, 1732, 4269, 15731, 14269, 25731, 44269, 15732, 44268, 155732, 144268, 355732, 44271, 15729, 34271, 15733, 14267, 35733, 164267, ...
Graph of V hereunder
___________________________________________________________________________________


Keeping at every step the last digit of [a(n) + a(n+1)] reproduces the sequence W digit by digit. We want of course... etc. 
W = 1, 10, 11, 9, 2, 19, 20, 12, 29, 30, 22, 8, 3, 39, 13, 6, 7, 23, 49, 33, 5, 18, 15, 4, 17, 16, 40, 27, 25, 28, 26, 43, 50, 53, 32, 59, 69, 42, 63, 21, 60, 37, 14, 52, 62, 38, 24, 73, 79, 36, 46, 72, 70, 56, 48, 35, 80, 90, 45, 58, 55, 47, 68, 31, 65, 34, 100, 82, 44, 89, 83, 78, 88, 92, 41, 66, 75, 99, 76, 86, 110, 102, 51, 57, 85, 109, 98, 95, 112, 67, 96, 120, 54, 122, 105, 77, 130, 140, 115, 61, ...
Graph of W hereunder
___________________________________________________________
Keeping at every step the first digit of [a(n) * a(n+1)] reproduces the sequence X digit by digit. We want of course... etc. No zero is present in X.
X = 1, 11, 12, 9, 2, 13, 7, 3, 4, 8, 88, 35, 14, 6, 134, 61, 5, 111, 15, 27, 23, 44, 69, 58, 112, 16, 32, 33, 31, 34, 36, 139, 17, 42, 48, 63, 64, 65, 93, 97, 52, 154, 66, 18, 113, 89, 68, 45, 46, 67, 47, 71, 19, 21, 22, 137, 49, 24, 125, 72, 25, 28, 143, 141, 29, 276, 218, 138, 435, 92, 73, 74, 122, 26, 37, 191, 262, 77, 131, 39, 114, 53, 115, 87, 94, 116, 91, 38, 211, 43, 142, 57, 75, 76, 54, 117, 55, 128, 313, 224, ...
___________________________________________________________________________________
Keeping at every step the last digit of [a(n) * a(n+1)] reproduces the sequence Y digit by digit. We want of course... etc.  Only the digits 1, 3, 7 and 9 are present in Y.
Y = 1, 11, 31, 71, 3, 7, 91, 111, 13, 9, 131, 171, 191, 311, 331, 371, 33, 73, 17, 19, 39, 79, 93, 37, 113, 133, 77, 99, 119, 139, 97, 179, 199, 117, 391, 711, 173, 731, 137, 319, 339, 193, 177, 197, 379, 771, 317, 337, 377, 399, 397, 791, 911, 931, 313, 717, 719, 737, 971, 777, 797, 917, 333, 937, 977, 373, 991, 739, 1111, 997, 393, 779, 1131, 1171, 799, 1191, 1311, 1331, 1117, 919, 1371, 1391, 1137, 713, 1177, 733, 939, 1197, 1711, 773, 1317, 793, 1731, 1337, 979, 999, 1771, 913, 1791, 1119, ... 
(corrections, graphs and extensions by Giorgos Kalogeropoulos — many thanks!-)

(Dall-e creation)




Commentaires

Posts les plus consultés de ce blog

A square for three (chess)

Le tripalin se présente

Some strings au cinéma Galeries