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Wireless Localization with Vertex Guards is NP-hard
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Abstract

We consider a special class of art gallery problems in-
spired by wireless localization. Given a simple polygon
P , place and orient guards each of which broadcasts a
unique key within a fixed angular range. In contrast
to the classical art gallery setting, broadcasts are not
blocked by the boundary of P . At any point in the
plane one must be able to tell whether or not one is
located inside P only by looking at the set of keys re-
ceived. In other words, the interior of the polygon must
be described by a monotone Boolean formula composed
from the keys. We prove NP-hardness of several vari-
ants of the problem, in particular, for the vertex guard
setting where guards must be located on vertices of P .

1 Introduction

We consider a new class of art gallery problems, in-
troduced by Eppstein et al. [4]. They modify the con-
cept of visibility by not considering edges of the poly-
gon/gallery as opaque. This changes the problem dras-
tically because it breaks up a certain locality where the
polygon shape dictates possible placements of guards.
An ingredient of hardness proofs for the classical setting
is a small pocket of the polygon that can be guarded
from a nearby point only because the polygon edges
shield it away from the rest of the world. This argu-
ment breaks down if the edges do not block visibility.

The motivation for this model stems from commu-
nication in wireless networks where the signals are not
blocked by walls, either. For illustration, suppose you
run a café (modeled, say, as a simple polygon region
P ) and you want to provide wireless Internet access to
your customers. But you do not want the whole neigh-
borhood to use your infrastructure. Instead, Internet
access should be limited to those people who are located
within the café. To achieve this, you can install a cer-
tain number of devices, let us call them guards, each of
which broadcasts a unique (secret) key in an arbitrary
but fixed angular range. The goal is to place guards and
adjust their angles in such a way that everybody who
is inside the café can prove this fact just by naming the
keys received and nobody who is outside the café can
provide such a proof. Formally this means that P can
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be described by a monotone Boolean formula over the
keys, that is, a formula using the operators And and
Or only, negation is not allowed.

a b

cd
P =

∩ (a ∪ b)
d ∩ c

Several different models for guard placement have
been studied. Most restricted is a natural guarding,
where every guard must be placed at a vertex of P and
both its rays must be aligned with one of the incident
edges. More general is a vertex guarding, where guards
must be placed at vertices of P but rays may be chosen
arbitrarily. Even less restricted is an internal guard-
ing, in which guards can be placed anywhere inside P
with no restriction on their rays. Finally, in a general
guarding guards can be placed and oriented arbitrarily.

There are some results [4, 3, 2] concerning the mini-
mum number of guards needed for a polygon on n ver-
tices, but a tight bound (n−2) is known for the natural
setting only. On the negative side, we have shown re-
cently [1] that deciding whether a collection of polygons
(or a polygon with holes) can be guarded with k natural
guards is NP-complete. In this paper, we prove that this
problem is hard even for a single polygon, using a com-
pletely different reduction. Another benefit of the new
reduction is that we can extend it to more general types
of guards, such as vertex guards and internal guards.

2 Notation and Definitions

A guard g is a closed subset of the plane, whose bound-
ary ∂g is described by a vertex vg and two rays ema-
nating from vg. The ray that has the interior of the
guard to its right is called the left ray `g, the other one
is called the right ray rg. The angle of a guard is the
interior angle formed by its bounding rays. A guarding
G of a simple polygon P is a set of guards such that
there is a formula composed of this set and the opera-
tors union and intersection that defines P . A guard that
is placed at a vertex of P is a vertex guard. A vertex
guard is natural if it covers exactly the interior angle of
its vertex. A guard placed anywhere on the line given
by an edge of P and broadcasting within an angle of
π to the inner side of the edge is called a natural edge
guard. A natural guarding is a guarding consisting of
natural vertex and natural edge guards only.
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A guard g covers an edge e of P (completely) if e ⊆ ∂g
and their orientations (inner sides) match. A guard that
covers exactly k edges is a k-guard. A guard g covers
an edge e of P partly if their orientations match and
e ∩ ∂g is a proper sub-segment of e that is not just a
single point. If there are no collinear edges, a guard can
cover at most two edges; then a natural vertex guard is
a 2-guard and a natural edge guard is a 1-guard. The
line through an edge e of P is denoted by e. The notion
of guardings extends to polygonal halfplanes, that is,
regions bounded by a simple bi-infinite polygonal chain
(a polygonal chain that starts and ends with a ray).

Observation 1 [4] For any guarding G of P and for
any two points p ∈ P and q /∈ P there is a guard g ∈ G
which distinguishes p and q, that is, p ∈ g and q /∈ g.

Observation 2 [2] In any guarding G of a polygon P ,
every edge of P must be covered by at least one guard
or it must be covered partly by at least two guards.

3 Natural Wireless Localization is Hard

Theorem 1 Given a simple polygons P and an integer
k, it is an NP-complete problem to decide whether there
exists a natural guarding for P using k guards.

Given a simple polygon P and a set G of guards, we
can decide in polynomial time if G is a guarding of P .
(Consider the line arrangement induced by the edges
of P and the rays of all guards in G. Check for every
pair (C,D) of cells of this arrangement with C ⊂ P and
D ∩ int(P ) = ∅ whether there is a guard g ∈ G that
distinguishes them.) Therefore the problem is in NP.

To show NP-hardness we reduce from Monotone-
SAT [5]. Let F be a monotone CNF formula with
clauses C1, . . . , Cm over variables x1, . . . , xn, and de-
note deg(xi) := |{Cj : xi ∈ Cj or xi ∈ Cj}|. A clause
is positive (negative) if all its literals are positive (neg-
ative).

The basic picture of the reduction is the following. We
define different gadgets, which are bi-infinite polygonal
chains. In the end we connect these gadgets to form a
simple polygon. The variable gadget for a variable xi

is a merlon-like chain of length 4 deg(xi) + 3, which can
be guarded optimally in essentially two ways, thus en-
coding the truth value of xi. For every clause Cj there
is a clause gadget of length 4. Any clause gadget can
be guarded with 2 guards only if it is intersected by an-
other guard ray. Depending on how a variable gadget is
guarded, there are such guard rays, either to the posi-
tive or to the negative clauses the variable appears in.
Finally, we put everything together to a simple polygon
(Figure 3) using two intermediate chains.

Clause gadget. For every Cj we define a clause gadget
Rj , which is a chain with 4 edges (Figure 1). Depending
on whether Cj is positive or negative, Rj is of the first
form or a vertical reflection of it. Such a chain cannot
be guarded with two natural vertex guards. But it can
be guarded with two guards if there is a ray of a third
guard g intersecting it in the right way: Rj = v1 ∪ (v3 ∩
g) or Rj = (v1 ∩ g) ∪ v3, respectively. Note that the
“right” orientation of these additional rays is opposite
for positive and negative clause gadgets.

v1

v3
lg

rgv1
v3

Figure 1: A positive and a negative clause gadget. The
two crosses can only be distinguished with help of an-
other correctly oriented ray crossing the gadget.

Variable gadget. For every variable xi define a vari-
able gadget Qi (Figure 2), as a chain with edges
(e1, . . . , eki

), where ki = 4deg(xi)+3. There is a “spike”
for every clause xi appears in, first the positive clauses
then the negative ones. If the clause is positive or neg-
ative, then the line through ek, k ≡ 3 mod 4 or k ≡ 5
mod 4, respectively, intersects the clause gadget. Note
that the orientation of these rays matches the needs of
the corresponding clause gadgets. (This is where we use
that clauses are monotone.)
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Figure 2: A positive and a negative guarding of Qi.
Qi = e1 ∪ (v2 ∩ (v4 ∪ v6) ∩ (v8 ∪ v10) ∩ (v12 ∪ v14)), or
Qi = v1 ∪ (v3 ∩ v5) ∪ . . . ∪ (v11 ∩ v13) ∪ e15.

Connecting the gadgets. We define gadgets I1 and I2

which are simply used to connect everything (Figure 3).
P (F ) = I1 ∩ ((R1 ∪ . . . ∪ Rm) ∪ (I2 ∩ Q1 ∩ . . . ∩ Qm)).
P (F ) has 4m + 10 +

∑n
i=1(4 deg(xi) + 3) edges in total.

Lemma 2 If F is satisfiable, P (F ) can be guarded with
2m + 5 +

∑n
i=1(2 deg(xi) + 2) guards.

Proof. Consider a satisfying assignment. Depending
on the truth value of xi we guard Qi either positively or
negatively with 2(deg xi + 1) guards (Figure 2). Con-
sider a clause gadget Rj for a positive clause Cj =
{xj1 , xj2 , xj3}. At least one of the variables xj1 , xj2 , xj3

is set to true. Thus there is a ray of a guard g from
the corresponding variable gadget passing through the
clause gadget with correct orientation. Therefore, Rj
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Figure 3: The polygon P (F ) for the formula F = C1 ∧
C2 ∧ C3 = x1 ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

can be guarded using two natural vertex guards and g
(Figure 1). Similarly, we can guard a negative clause
gadget. Five more guards are needed for I1 and I2. �

Lemma 3 If P (F ) can be guarded with 2m + 5 +∑n
i=1(2 deg(xi) + 2) natural guards, then F is satisfi-

able.

Proof. Let G be a guarding of P (F ) consisting of 2m+
5 +

∑n
i=1(2 deg(xi) + 2) guards. A guard belongs to a

variable gadget if it is an edge guard on one of its edges
or a natural vertex guard on one of its vertices or if it
is the natural vertex guard at the intersection with the
next chain to the left.

By Observation 2 every edge of the variable gadget
has to be covered somehow. Except for the last edge
only guards that belong to the gadget can do so. Since a
guard can cover at most two edges, at least 2 deg(xi)+1
guards belong to the gadget. There is only one way to
guard every edge except the last one with that many
guards, namely using a natural vertex guard on every
other vertex of the chain starting with the first vertex
(Figure 4). But in this case there is no vertex guard on
the last vertex and no edge guard on the last edge, hence
there is no guard that can distinguish a point p near to
the second edge of the next chain inside P (F ) and a
point q near to the last edge of this chain outside P (F ).
(There may be rays of guards that cross pq, but they
cannot have the right orientation.) Therefore, there can
be no such guarding and at least 2 deg(xi) + 2 guards
belong to the gadget.

p

q
sv1 Qi

v3

v5

. . .

Figure 4: If only 2 deg(xi)+1 guards belong to Qi they
have to be exactly the ones shown here. But then, nei-
ther these guards nor guards belonging to other gadgets
can distinguish p and q.

Intuitively, there is some freedom in how to guard a
vertex gadget with 2 deg(xi)+2 guards because we have
“half a guard” in excess. We can start with natural ver-
tex guards on every other vertex and put a natural edge
guard on the last edge (Figure 2 right) or we can start
with an edge guard right away and then continue with
natural vertex guards on every other vertex (Figure 2
left). Or we can do a combination of both, starting the
first way and at some place put a natural vertex guard
and continue in the second way. All possible guardings
have one thing in common. Looking from left to right,
we can change exactly once, from the first pattern to
the second. As soon as we are in the second pattern,
we cannot change (back) to the first without “paying”
an additional guard. If there is a change to the second
pattern within the positive spikes (such that at least one
positive ray is emitted towards the corresponding clause
gadget), the gadget is guarded positively ; otherwise, the
gadget is guarded negatively.

A guard belonging to a variable gadget can only cover
edges of the variable gadgets. (An exception is the left-
most edge of P (F ), which might be covered by a natu-
ral vertex guard belonging to Q1. But by considering a
pair of points as shown in Figure 4, but now on the left-
most spike, we can argue that there must be a second
guard covering this leftmost edge.) Thus the remain-
ing 4m + 10 edges have to be covered by the remaining
2m+5 guards. There is only one possible way to achieve
this: put a natural vertex guard on every other vertex.

A clause gadget can be guarded with two natural ver-
tex guards iff there is another correctly oriented guard
ray crossing it as depicted in Figure 1. The only rays
that might do that are those emanating from guards
covering the corresponding edge in a variable gadget of
a variable that appears in the clause. At least one of
these rays must be present, which means that the corre-
sponding variable gadget must be guarded negatively or
positively for a negative or positive clause, respectively.
Therefore, we obtain a satisfying assignment as follows:
If the gadget of a variable is guarded positively, we set
the variable to true, if it is guarded negatively, we set it
to false. �

4 A more General Setting

If guards can be located anywhere in the plane, in par-
ticular, on the intersections of two lines of the line ar-
rangement outside the polygon, the usual arguments
break down. But the situation improves if we forbid
guards outside P . We call a guard whose vertex is in-
side P or on the boundary of P an internal guard.

The Internal Wireless Localization Problem Given a
simple polygon P and a integer k, is there a guarding
for P using k internal guards?
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Theorem 4 The Internal Wireless Localization Prob-
lem is NP-complete.

Membership in NP follows in the same way as for the
natural setting. To prove the NP-completeness we use a
similar reduction as in the natural setting, but we have
to change it a little bit. Intuitively, the problem is that
for every variable gadget Qi there is one guard that
covers one edge only and its other ray is not “used”.
Now that we allow general guards, this unused ray is
free to point to a clause gadget. In this way, clause
gadgets could be guarded with 2 natural vertex guards
even though none of its corresponding variable gadgets
is guarded in the right way. We overcome this problem
by introducing n additional special gadgets to bind these
free rays.

Special gadget. We define n special gadgets, which
are chains with 6 edges. A special gadget looks like a
positive clause gadget rotated by π/2 in clockwise direc-
tion and with small spike added at the top. We include
the special gadgets to the right. We define the variable
gadgets Q1, . . . , Qn and the clause gadgets R1, . . . , Rm

essentially as in the natural setting. In the variable gad-
gets we add one additional spike at the beginning, so Qi

now consists of 4 deg(xi) + 7 edges. See Figure 5.

Observation 3 The only 2-guards in a guarding of
P (F ) are natural vertex guards.

Lemma 5 If F is satisfiable, P (F ) can be guarded with
2m + 3n + 6 +

∑n
i=1(2 deg(xi) + 4) guards.

Proof. Depending on the truth values of xi in a satis-
fying assignment we guard Qi either positively or neg-
atively with 2 deg xi + 4 guards similar to the natural
setting (see Figure 2), but instead of just using natural
edge guards we now use the “free” ray to help guarding
one of the special gadgets, see Figure 5. Then, as in
the natural setting, we can guard all the other gadgets
using natural vertex guards only. �

Lemma 6 If P (F ) can be guarded with 2m + 3n + 6 +∑n
i=1(2 deg(xi) + 4) internal guards, then F is satisfi-

able.

For the proof of Lemma 6 we refer to the appendix.
The idea is the following. Assume we are given a guard-
ing of P (F ) using 2m + 3n + 6 +

∑n
i=1(2 deg(xi) + 4)

guards. Every guard has two rays. If we count all rays
of guards and the edges of P (F ) that have to be covered,
we find that there are n rays more than edges. In a first
step we look at the special gadgets and see that they
must use these n additional rays in some sense to be
guarded properly. Therefore we have some control over
the guarding. The majority of the rays is used to cover
edges and the additional rays are bound to the special

gadgets. Then we can proceed as in the natural setting
and show that a variable gadget Qi can essentially be
guarded in two ways. Either there are rays of guards
pointing to the positive clause gadgets of the positive
clauses xi appears in, or there are rays of guards point-
ing to the negative clause gadgets corresponding to xi.
Setting the truth values of the variables accordingly we
find a satisfying assignment.

Figure 5: An optimal guarding of P (F ) corresponding
to a satisfying assignment, the marked vertices are the
positions of natural vertex guards.

The Wireless Localization Problem for Vertex Guards
Given a simple polygons P and a integer k, is there a
guarding for P using k vertex guards?

Corollary 7 The wireless localization problem for ver-
tex guards is NP-complete.

Proof. The guarding given in Lemma 5 uses vertex
guards only. Lemma 6 trivially remains true if we con-
sider a guarding consisting of vertex guards only. �
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