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Abstract

We prove that, for every two n-node non-star trees of
diameter at most four, there exists an n-node planar
graph containing them as edge-disjoint subgraphs.

1 Introduction

The packing problem is to find an n-node graph G con-
taining given n-node graphs G1, . . . , Gk as edge-disjoint
subgraphs. Such a problem has been studied within a
wide range of variants (see, e.g., [1, 3, 2]). A special
attention has been devoted to packing of trees. Hedet-
niemi [6] showed that any two n-node non-star trees can
be packed in Kn. A star is a tree with one node of de-
gree n−1 and n−1 leaves. Maheo et al. [7] characterize
which triples of trees can be packed in Kn.

Let G1, . . . , Gk be n-node planar graphs. A planar
packing of G1, . . . , Gk is an n-node planar graph con-
taining all the Gi’s as edge-disjoint subgraphs. In [5]
Garćıa et al. exhibited the following:

Conjecture 1 [5] Any two trees different from a star
admit a planar packing.

The hypothesis that each tree is different from a star
is necessary, since any mapping between the nodes of a
star and the nodes of any tree leads to common edges.
In the following, unless otherwise specified, we assume
all considered trees to be different from a star.

Garćıa et al. proved the conjecture if the trees are
isomorphic or if one of the trees is a path. In [8], Oda
and Ota proved that the conjecture holds if one of the
trees is a caterpillar, i.e., a tree which becomes a path
when all its leaves are deleted, or if one of the trees
is a diameter-four spider tree, where a spider tree has
at most one node of degree greater than two and the
diameter of a tree T is the maximum number of edges
in a simple path in T . In [4], an algorithm is presented
for constructing a planar packing of any tree and any
spider tree. In this paper we show the following:

Theorem 1 There exists a planar packing of every two
non-star trees of diameter at most four.

Small-diameter trees have a simple topology. How-
ever, as noticed in [8], they are an appealing case to

study, as they are star-like trees, hence they are among
the trees more likely to provide a counter-example to
Conjecture 1, if any such a counter-example exists.

2 Proof of Theorem 1

Let |R| denote the number of nodes in a tree R and let
r(R) denote the root of a rooted tree R, where a rooted
tree is a tree with one distinguished node, called root.
Let T and S be two n-node trees of diameter at most
four. Root them at nodes r(T ) and r(S), respectively,
so that their height, i.e. the maximum number of edges
in any path from the root to a leaf, is at most two.
Suppose, w.l.o.g., that the subtree T ∗ of T with the
greatest number of nodes has at least as many nodes as
the subtree of S with the greatest number of nodes.

In the following, whenever we say that we embed S in
the plane, we assume to embed it downward, i.e., with
every node below its parent. This allows us to speak
of a left-to-right order of the children of each non-leaf
node of S. Once fixed the embedding of S, we refer
to a total left-to-right order of the nodes of S so that
r(S) is the first node, the root of the leftmost subtree of
r(S) is the second node, its children come in left-to-right
order after their parent, the root of the second leftmost
subtree of r(S) is the next node, its children come in
left-to-right order after their parent, and so on.

Overall Strategy. A planar packing of T and S is
constructed by progressively embedding S in the plane
and by embedding T over S, i.e., by mapping the nodes
of T to embedded nodes of S and by then routing the
edges of T . At any step of the construction, denote by
E the partially constructed planar packing of T and S.
At any step of the construction, a node of S is free if
it is embedded in the plane and no node of T has yet
been mapped to it. The algorithm distinguishes two
cases. In Case 1, it is possible to embed T ∗ over some
embedded subtrees of S, in such a way that a node of
T ∗ is mapped to r(S) and there is a free node in one
of the embedded subtrees of S. Node r(T ) is possibly
mapped to such a free node. In Case 2, it is not possible
to compute such an embedding of T ∗ over some subtrees
of r(S). However, such a condition implies very strict
constraints on the topology of S.

Now we describe in detail the two main cases of the
algorithm. In Case 1, there exists a subtree S0 of
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S such that |S0| = 1, or (ii) there exists a sequence
S = (S1, · · · , Sk) of subtrees of r(S) such that |S1| > 1,∑k

i=1 |Si| > |T ∗|, and
∑k−1

i=1 |Si| < |T ∗|. If neither (i)
nor (ii) holds, then we are in Case 2.

r(T*)

r(S)
r(S1) r(S2)r(Sk )

r(T*)

r(S)
r(S1) r(S2)r(Sk )

(a) (b)

Figure 1: Embedding T ∗ over a sequence S =
(S1, · · · , Sk) of subtrees of r(S) such that: (a) |S1| > 1,∑k−1

i=1 |Si| < |T ∗|, and
∑k

i=1 |Si| > |T ∗|; (b) |S1| > 1,∑k−1
i=1 |Si| = |T ∗|, and |Sk| = 1. Black circles corre-

spond to nodes of T ∗ mapped to nodes of S. White
circles are free nodes of S. In these examples k = 3.

Case 1. See Fig. 1. Suppose that (i) holds. Then,
there exists a subtree S0 of r(S) such that |S0| = 1.
Let S be a sequence of subtrees of r(S) to be deter-
mined. Embed any subtree |S1| of S such that |S1| > 1
as the leftmost subtree of r(S). Such a subtree exists,
as S is different from a star. Place r(T ∗) at the right-
most child of r(S1). Place children of r(T ∗) at the other
children of r(S1), if any, and place a child of r(T ∗) at
r(S). The number of children of r(T ∗) is sufficient to
cover all such nodes of S, since T ∗ has at least as many
nodes as any subtree of r(S). We embed some subtrees
of r(S) different from S0 as the rightmost subtrees of
r(S), starting from the rightmost subtree S2, then em-
bedding S3 to the left of S2, then embedding S4 to the
left of S3, and so on. We choose such subtrees in any
way. We stop at a subtree Sx such that

∑x
j=1 |Sj | ≥ |T ∗|

and
∑x−1

j=1 |Sj | < |T ∗|. For j = 2, · · · , x, when Sj is em-
bedded to the left of Sj−1 (or as the rightmost subtree
of r(S) if j = 2), children of r(T ∗) are mapped first to
r(Sj), and then to all the children of r(Sj), in right-
to-left order. Since

∑x−1
j=1 |Sj | < |T ∗|, each node in Sj ,

with j = 2, · · · , x− 1, has a node of T ∗ mapped to it; if
x ≥ 2, a node of T ∗ is mapped to r(Sx) and, possibly, to
some children of r(Sx). If there is a child of r(Sx) with
no node of T ∗ mapped to it (

∑x
j=1 |Sj | > |T ∗|), then

define S = (S1, · · · , Sx). Otherwise (
∑x

j=1 |Sj | = |T ∗|),
nodes of T ∗ have been mapped to all nodes of Sx; em-
bed S0 to the left of Sx and define S = (S1, · · · , Sx, S0).
Route the edges of T ∗ in clockwise direction around the
partially constructed embedding of S.

If (ii) holds, then we already assume to have a se-
quence S = (S1, · · · , Sk) of subtrees of r(S) such that
|S1| > 1,

∑k
i=1 |Si| > |T ∗|, and

∑k−1
i=1 |Si| < |T ∗|. An

embedding of T ∗ and of the subtrees in S can be con-
structed as above.

Let S = (S1, · · · , Sk) be the sequence of embedded

subtrees of r(S). Complete the embedding of S by in-
serting the subtrees of r(S) not in S in any order to the
right of S1 and to the left of Sk. Denote by S∗1 , · · · , S∗l
such subtrees in left-to-right order.

Order the subtrees of T different from T ∗ in any way
T1, · · · , Tm. Embed T1 with r(T1) on r(S1), and with the
x children of r(T1) mapped to the first x free nodes of S
in left-to-right order (see Fig. 2). The edges connecting
r(T1) with its children are routed in counter-clockwise
direction around S.

r(S)

r(T1)

S1
*

*S2
Sk

Figure 2: Embedding T1 over S.

Now embed subtrees T2, · · · , Tm one at a time, while
maintaining the following invariants. Suppose that
T2, · · · , Tj−1 have been embedded and Tj , · · · , Tm still
have to be embedded.

Invariant A: There exists a free node nr of Sk such
that leaves of T have been mapped to all the neighbors
of nr and to all nodes to the right of nr.

Invariant B: Nodes r(T ∗), r(T1), · · · , r(Tj−1) and all
free nodes of S are on the outer face of E . Further, none
of r(T ∗), r(T1), · · · , r(Tj−1) is to the right of a free node
of S.

Invariant C: If the leftmost free node nf of S is a
node r(S∗i ) then all nodes in S∗i , · · · , S∗l are free.

The invariants hold after T ∗ and T1 have been em-
bedded. In particular, the choice of S = (S1, · · · , Sk)
and the embedding of T ∗ were done in such a way that
Invariant A is satisfied.

Before embedding Tj , three cases are possible.
Case 1.1: The leftmost free node nf of S is a node

of Sk. By Invariant A, nodes of T have been mapped
to all nodes in Sk−1, · · · , S2. Then, the only free nodes
are children of r(Sk) and, by Invariant B, they are on
the outer face of E . Embed each of Tj , · · · , Tm into con-
secutive free children of r(Sk), with the root of each
subtree to the left of its children. Place r(T ) at the
last free child nr of r(Sk) and draw edges connecting
it to r(T ∗), r(T1), · · · , r(Tm). Such edges can be routed
without crossings since, by Invariant B, all such nodes
are on the outer face of E . Moreover, no common edge
is inserted since, by Invariant A, a leaf of T has been
mapped to the only neighbor of nr.

Case 1.2: The leftmost free node nf of S is a node
r(S∗i ). By Invariant C, all nodes in S∗i , · · · , S∗l are free.
Let f be the number of free nodes in Sk.

If |Tj | ≤ |S∗i+1| + · · · + |S∗l | + f (see Fig. 3.a), em-
bed Tj with r(Tj) on r(S∗i ), and with the x children of
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Figure 3: Embedding Tj when the leftmost free node of
S is a node r(S∗i ) and when: (a) |Tj | ≤ |S∗i+1| + · · · +
|S∗l |+ f ; (b) |Tj | > |S∗i+1|+ · · ·+ |S∗l |+ f .

r(Tj) mapped to the first x free nodes in left-to-right or-
der starting from r(S∗i+1). Counter-clockwise route the
edges from r(Tj) to its children around S from the last
occurrence of r(Tj) on the border of E . It is easy to see
that no crossing is introduced, that no common edge is
inserted, and that Invariants A–C are maintained. In
particular, since |Tj | ≤ |S∗i+1| + · · · + |S∗l | + f , there is
still a free node in Sk as required by Invariant A.

If |Tj | > |S∗i+1|+· · ·+|S∗l |+f (see Fig. 3.b), map r(Tj)
to the righmost free node in Sk, map its children to all
free nodes in Sk, to all free nodes in S∗i+1, · · · , S∗l , to
r(S∗i ), and, if there are still children of r(Tj) to embed,
to the righmost children of r(S∗i ). The only free nodes
remaining are children of r(S∗i ). Hence, Tj+1, · · · , Tm

can be embedded into consecutive free children of r(S∗i ),
with the root of each subtree to the left of its children.
Place r(T ) at the last free child of r(S∗i ) and draw edges
connecting it to r(T ∗), r(T1), · · · , r(Tm). Such edges can
be routed without crossings since, by Invariant B, all
such nodes are on the outer face of E . Further, a leaf of
T has been mapped to r(S∗i ), hence no common edge is
inserted.

Case 1.3: The leftmost free node nf of S is a child
of a node r(S∗i ). Place r(Tj) at nf . Map the x chil-
dren of r(Tj) to the next x free nodes to the right of
nf . Route the edges from nf in counter-clockwise di-
rection around S. It is easy to see that no crossing
is introduced, that no common edge is inserted, and
that Invariants A–C are maintained. In particular, the
edges from r(Tj) to its children leave on the outer face
all nodes r(T ∗), r(T1), · · · , r(Tj−1), which, by Invariant
B, are to the left of nf .

When the last subtree of r(T ) has been embedded, if
the above described algorithm has not already mapped
r(T ) to a node of S, then map r(T ) to the only remain-
ing free node nr of S. By Invariant A, nr belongs to Sk.
Route edges from r(T ) to all its children. Such edges
do not cause crossings, since, by Invariant B, all roots
of subtrees of r(T ) are on the outer face of E . Further,
by Invariant A, a leaf of T has been mapped to the only
neighbor of nr, hence no common edge is inserted.

Case 2. In Case 2 no subtree of r(S) has only one
node and there exists no sequence S = (S1, · · · , Sk) of
subtrees of r(S) such that

∑k
i=1 |Si| > |T ∗| and such

that
∑k−1

i=1 |Si| < |T ∗|. We observe the following:

Lemma 2 Let U = {u1, · · · , uk} be a multiset of pos-
itive integers and let x be a positive integer. Suppose
that

∑k
i=1 ui > x. Then, there exists an ordering O of

U such that no initial subsequence of O sums up to x if
and only if there exists no integer c such that ui = x/c
holds for all i = 1, · · · , k.

Proof. Suppose that all integers ui are such that ui =
x/c, for some integer c. Consider any ordering O of U .
The first c elements of O sum up to c(x/c) = x.

Suppose that there exists no integer c such that ui =
x/c holds for all i = 1, · · · , k. Then, either all integers
ui are equal to an integer y, that is not a divisor of x,
or there exists at least two distinct integers in U . In
the first case, the first m elements of any ordering O
of U sum up to my 6= x, for each 1 ≤ m ≤ k. In
the second case, we show how to construct an ordering
O of U such that no initial subsequence of O sums up
to x. We insert integers into O in several steps. At the
beginning of the j-th step, the following invariants hold:
(1) the set Uj ⊆ U of integers that have not yet been
inserted into O contains at least two distinct integers;
(2) the sum sj of the elements that have been inserted
in O is less than x. Notice that such invariants hold at
the beginning of the first step, i.e., when no element has
yet been inserted in O. The j-th step inserts elements
at the end of O as in the following cases:

Case A: If an integer u∗ exists in Uj such that
sj + u∗ > x, then let it be the next element of O. In-
sert the integers in Uj \ {u∗} in whichever order after
u∗, completing a sequence O which satisfies the require-
ments of the lemma.

Case B : If Case A does not apply, and if there exists
an integer u∗ in Uj such that sj +u∗ < x and such that
Uj \ {u∗} contains at least two distinct integers, then
let u∗ be the next element of O. At the (j + 1)-th step,
Uj+1 = Uj \ {u∗} and sj+1 = sj + u∗ satisfy invariants
(1) and (2) by hypothesis.

Case C : If Cases A and B do not apply, consider two
distinct integers u∗1 and u∗2 in Uj . Both of them are less
than or equal to x− sj , otherwise Case A would apply;
since u∗1 and u∗2 are distinct, one of them, say u∗1, is
less than x − sj . Hence, Uj contains no element with
the same value of u∗1 and no element with value different
from u∗1 and u∗2, otherwise Case B would apply. Thus, all
elements of Uj \{u∗1, u∗2}, if any, are equal to u∗2. If there
is no element in Uj \{u∗1, u∗2}, then, by the hypotheses of
the lemma, sj + u∗1 + u∗2 > x, hence inserting u∗1 and u∗2
in this order in O yields O to satisfy the requirements
of the lemma. Otherwise, there are some elements with
the same value of u∗2 in Uj \ {u∗1, u∗2}. It follows that
u∗2 cannot be less than x− sj , otherwise Case B would
apply. Hence u∗2 = x− sj . Inserting u∗1 as next element
in O and u∗2 after u∗1 again leads to a sequence O that
satisfies the requirements of the lemma. ¤
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Suppose we are in Case 2. Consider the multiset U
with an integer ui such that |Si| = ui for each subtree
Si of S. Since no subtree S0 of r(S) exists such that
|S0| = 1, then ui > 1, for all ui ∈ U . By Lemma 2 with
x = |T ∗| (notice that

∑
i ui =

∑
i |Si| = n−1 > n−2 ≥

|T ∗|), an ordering O of U exists such that no initial
subsequence of O sums up to x if and only if no integer
c exists such that ui = x/c holds for all i = 1, · · · , k.
Hence, if we are in Case 2, there exists an integer c
such that |Si| = |T ∗|/c holds for all subtrees S1, · · · , Sk

of r(S). Downward embed the subtrees of r(S) in any
left-to-right order S1, · · · , Sk. Notice that k > 1 and
that |Si| > 1, otherwise S would be a star. With respect
to Case 1, we embed T ∗ in a different way. Namely, we
further distinguish two cases.

(a) Refer to Fig. 4.a. If |Si| > 2, map r(T ∗) to the
leftmost child of r(S1). Map its children to r(S), to
r(Sk), to the children of r(Sk) in right-to-left order,
to r(Sk−1), to the children of r(Sk−1) in right-to-left
order, and so on while there are children of r(T ∗) to
embed. (c− 1)|Si| = |T ∗| − |Si| nodes of T ∗ cover sub-
trees Sk, Sk−1, · · · , Sk−c+2 (if c = 1, then no subtree of
r(S) is entirely covered by T ∗). Two nodes of T ∗ are
mapped to r(S) and the leftmost child of r(S1). Hence,
|Si| − 2 children of r(T ∗) are placed on subtree Sk−c+1.
Since |Si| ≥ 3, then r(Sk−c+1) is covered by a node of
T ∗ and the leftmost |Si| − (|Si| − 2) = 2 children of
r(Sk−c+1) are free. Embed a subtree T1 6= T ∗ of r(T )
as in Case 1.2 (notice that the leftmost free node of S is
r(S1)). Now, Invariants A–C of the algorithm described
for Case 1 hold (notice that the subtrees of r(S) have
different names with respect to those in Invariants A–
C) and an embedding of T on S can be completed by
repeatedly applying Cases 1.1, 1.2, and 1.3.

r(S)

S1 S2
Sk

r(T*)

r(T1)

Sk-1

r(S)

S1 S2 Sk

r(T*)

r(T1)

(a) (b)

Figure 4: Illustrations for Case 2(a) and Case 2(b).

(b) Refer to Fig. 4.b. If |Si| = 2, map r(T ∗) to
r(S1). Map the children of r(T ∗) to r(Sk), to the
child of r(Sk), to r(Sk−1), to the child of r(Sk−1),
and so on while there are children of r(T ∗) to em-
bed. Sk, Sk−1, · · · , Sk+2−(|T∗|/2) are covered by nodes
of T ∗ (if |T ∗| = 2, then no subtree of r(S) is entirely
covered by T ∗) and a node of T ∗ is also mapped to
r(Sk+1−(|T∗|/2)), while the child of r(Sk+1−(|T∗|/2)) is
free. If T ∗ is the only subtree of r(T ) with more than
one node, then map r(T ) to the child of r(Sk+1−(|T∗|/2))

and all its children different from r(T ∗) to the other free
nodes of S. Draw edges from r(T ) to its children. Since
all such children are on the outer face of E , the drawn
edges do not cause crossings. If there exist at least two
subtrees T ∗ and T1 of r(T ) with more than one node,
then map r(T1) to the child of r(S1) and map the chil-
dren of r(T1) to r(S) and to the leftmost |T1| − 2 free
nodes of S. Now, Invariants A–C of the algorithm de-
scribed for Case 1 hold (notice that the subtrees of r(S)
have different names with respect to those in Invariants
A–C) and an embedding of T on S can be completed
by repeatedly applying Cases 1.1, 1.2, and 1.3.

3 Conclusions

In this paper we described how to obtain a planar
packing of any two non-star trees of diameter at most
four. The algorithm we presented can be implemented
to run efficiently. Our algorithm uses a divide et im-
pera strategy, namely distinct subtrees of a tree T are
mapped to distinct forests of a tree S, intermixed with
some counting arguments. We believe worth of fur-
ther research efforts understanding whether the design
of similar (and more involved) recursive algorithms, that
maintain some strong topological invariants while being
guided by some counting arguments, can lead to prove
the planar-packing conjecture.
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