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ABSTRACT

A common method to create beat annotations for music
recordings is to let a human annotator tap along with them.
However, this method is problematic due to the limited hu-
man ability to temporally align taps with audio cues for
beats accurately. In order to create accurate beat annota-
tions, it is therefore typically necessary to manually correct
the recorded taps in a subsequent step, which is a cumber-
some task. In this work we aim to automate this correction
step by “snapping” the taps to close-by audio cues—a strat-
egy that is often used by beat tracking algorithms to refine
their beat estimates. The main contributions of this paper
can be summarized as follows. First, we formalize the au-
tomated correction procedure mathematically. Second, we
introduce a novel visualization method that serves as a tool
to analyze the results of the correction procedure for po-
tential errors. Third, we present a new dataset consisting
of beat annotations for 101 music recordings. Fourth, we
use this dataset to perform a listening experiment as well as
a quantitative study to show the effectiveness of our snap-
ping procedure.

1. INTRODUCTION

Identifying the time positions of beats in music record-
ings has been a core task in the Music Information Re-
trieval (MIR) community for a long time. Irrespectively
of whether the goal is to evaluate beat tracking algorithms
or to train new data-driven models for beat detection, it
is necessary to have accurate annotations that describe the
temporal locations of beats in music recordings. The beat
positions of a music recording are often loosely defined as
the time instances where a human would tap along when
listening to it [6]. A straightforward approach to create
beat annotations is therefore to record these taps—for ex-
ample by using a specialized audio player software like
Sonic Visualizer [5], which allows annotators to tap on a
key of the keyboard. This method was used, for exam-
ple, in [20, 21, 25, 26]. However, this procedure is prob-
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Figure 1. (a) Excerpt of the spectrogram for item 006
from our dataset, (b) taps by the annotator, (c) beat posi-
tions as estimated by [4], (d) automatically corrected taps.

lematic due to the limited ability of humans to accurately
align their taps with acoustic cues that are associated with
beats such as instrument onsets, percussive sound events,
or chord changes [29, 30]. Perception literature indicates
that, depending on the complexity of a recording, the onset
times of two tones must differ by less than 40 millisec-
onds such that they may be perceived as being temporally
aligned [19]. This means that when sonifying human-made
taps with a click track, a click and an audio cue for a beat
have to both fall into an interval of at most 40 milliseconds
such that the click could be perceived as accurately repre-
senting the beat position. 1 This is often not the case as is
illustrated in Figure 1. In Figure 1a, we see a short spec-
trogram excerpt of the song “T’envoler” by Paul Daraiche
(item 006 in our dataset, see Table 1 for the YouTube link).
One can observe the vertical spectral structures originating
from the piano onsets in the song’s intro. The human-made
taps are visualized in Figure 1b. They roughly coincide
with the audio cues, but precede them by about 80 millisec-
onds most of the time. To obtain more accurate beat anno-
tations, several approaches have been used in the past. One
way is to manually correct the taps of a human annotator
in a subsequent step [20,21]. However, manual corrections
are cumbersome to perform since often every single tap has
to be corrected individually—usually in a drag&drop fash-
ion using tools like Sonic Visualizer. Another approach,
which has been used in [15, 24], is to compute an initial

1 Note that the 40 milliseconds constitute an upper bound. Depending
on the quality of the audio cue this threshold may be significantly lower.
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estimate of the beat positions using a beat tracking algo-
rithm. Beat trackers such as [3, 14] actively aim to “snap”
potential beat candidates to close-by audio cues in order to
create accurate results. In Figure 1c, we see the beat posi-
tions as estimated by madmom, a Python library featuring
a state-of-the-art beat tracker [3, 4]. The estimated beats
are well aligned with the audio cues visible in the spec-
trogram. However, we also see that only every other beat
has been captured. Correcting these kinds of errors made
by beat tracking algorithms can be just as cumbersome as
manually correcting the taps of a human annotator.

In this paper, we propose a new way of creating beat
annotations. Our idea is to mostly automate the manual
correction of human-made taps by using the concept of
snapping beat candidates to audio cues. The intuition is
that the taps made by an annotator constitute good beat
candidates that are located in close proximity to the ac-
tual beat positions. Therefore, snapping them to nearby
audio cues should accurately correct the vast majority of
taps. This is visualized in Figure 1d, where the automati-
cally corrected taps are aligned with the audio cues in the
spectrogram. In this paper, we explore this simple idea in a
systematic fashion. First, in Section 2, we model the auto-
matic correction procedure mathematically. Then, in Sec-
tion 3, we propose a novel visualization that can serve as
a tool to reveal rhythmically challenging sections in music
recordings as well as potential errors made by the snap-
ping procedure. Section 4 is dedicated to experiments. In
Section 4.1, we apply our proposed annotation strategy to
create a dataset of beat annotations for 101 music record-
ings from YouTube. In Section 4.2, we then discuss the
results of a listening experiment that shows that human lis-
teners perceive the corrected taps as more accurate than the
original taps. In Sections 4.3, we finally conduct a small
study that investigates the effect of using either the origi-
nal or the corrected taps as ground truth for the quantita-
tive evaluation of different beat tracking algorithms. For
the purpose of reproducibility, we made our Python im-
plementations (snapping procedure and visualizations) as
well as the dataset of beat annotations along with YouTube
identifiers publicly available at [13].

2. PROPOSED PROCEDURE

In this section, we formalize our procedure for the auto-
matic correction of human-made taps. We start by explain-
ing the core ideas in Section 2.1 and discuss choices of
specific processing steps in Section 2.2.

2.1 Basic Principle

The goal of our proposed procedure is to correct the
human-made taps by snapping them to nearby audio cues
in the music recording. Our fundamental assumption is
that each of the taps indicates the rough position of a beat
such that the “real” beat position can be found in close tem-
poral proximity. Given the music recording x : Z → R
(Figure 2a), we first derive an activation curve a : Z → R
(Figure 2b) that is sampled at a sampling rate of fs ∈ R+
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Figure 2. Proposed tap correction procedure. (a) Music
recording x with taps t. (b) Activation curve a. (c) De-
viation function Dt with envelope reflecting the inter-tap-
intervals, tap positions indicated by red line, and deviation
sequence d indicated by light-red dots. (d) Deviation func-
tion Dt̃ with corrected taps t̃ indicated by red line. (e) Ac-
tivation curve a with corrected taps t̃ indicated in red.

(we use fs=100 Hertz as suggested in [4,12,17]). An acti-
vation curve a can be seen as a function whose values a(n)
reflect how likely it is that there is a beat present in the mu-
sic recording x at time n/fs. We discuss different choices
for activation curves in Section 2.2. Along with x and a,
we are also given the sequence of taps t = [t0, . . . , tM−1]
with tm ∈ Z. Each tap tm indicates that the human annota-
tor tapped at time tm/fs. In our example in Figure 2b one
can see that the taps are not well aligned with the peaks in
the activation curve a.

With the activation curve and the taps, we now compute
the deviation function Dt : Z× [0 : M−1]→ R by

Dt(n,m) := wm(n) a(tm + n)

for n ∈ Z,m ∈ [0 : M−1]. Here, wm : Z → R is a Hann
window centered around zero, whose length is defined by
the inter-tap-interval

∆tm := tm+1 − tm

form ∈ [0 : M−2] and we define ∆tM−1:=∆tM−2 (such
that ∆tm is defined for all taps). The reason for using a
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window function is to effectively implement our assump-
tion that the taps are located in close temporal proximity to
the actual beat positions. The more temporal distance be-
tween a tap and a high activation value, the less likely it is
that the activation value reflects the actual beat the tap was
meant to represent. In the visualization of Dt seen in Fig-
ure 2c, the length of wm is indicated with two additional
black lines in each column of Dt. This “envelope” of Dt
serves as a visual representation of the individual inter-tap-
intervals. In our example, the envelope does not exhibit
any significant variation across the shown taps which in-
dicates that the annotator tapped with an almost constant
tempo. However, when looking at the individual activa-
tion maxima in each column ofDt—which can be found at
deviations between 70 and 110 milliseconds—it becomes
obvious that the inaccuracy of the human-made taps is not
just a constant offset but varies over time.

In the next step we compute the deviation sequence
d = [d0, . . . , dM−1], dm ∈ Z, that indicates the individual
corrections we will apply to each tap tm (Figure 2c). There
are several options of how to derive d from Dt which we
discuss in Section 2.2. From t and d we finally compute
the automatically corrected taps t̃ = [t̃0, . . . , t̃M−1] by

t̃m := tm + dm .

Based on t̃ we now can also compute the deviation func-
tionDt̃ (Figure 2d). Note that in this visualization, all high
activation values are now centered around a deviation of
zero. Furthermore, the envelope of Dt̃ does not differ sig-
nificantly from the envelope of Dt which indicates that the
inter-tap-intervals in t̃ are similar to those in the original
tap sequence t. This can be verified when plotting t̃ on
top of the activation curve a where the taps now accurately
align with the peaks (Figure 2e).

2.2 Technical Realization

In traditional music signal processing, a common choice
for activation curves are novelty curves, see for exam-
ple [2, 7, 27]. These functions are designed to reflect sud-
den temporal changes in a music recording’s spectrogram,
which are typically caused by percussive sound events such
as instrument onsets. As beats often go along with these
kinds of sound events it is reasonable to use a novelty curve
as activation curve in our tap correction procedure. We de-
note this activation curve by anov and the resulting devia-
tion function for taps t by Dnov

t .
Another option is using activation curves based on data-

driven models. Recently, models that were trained to trans-
form spectrogram representations of music recordings into
activation curves have significantly improved the quality of
state-of-the-art beat tracking algorithms [16]. For example
in [4], a deep neural network (DNN) using a bidirectional
long-short-term memory architecture is trained on a large
collection of beat-annotated music recordings for that task.
It was shown in [4] that the peaks in activation curves de-
rived using this model align well with beats in the underly-
ing music recordings. Using it in our procedure is therefore
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Figure 3. Excerpts of different deviation functions and
deviation sequences for item 011. (a) Dnov

t with dmax

derived from it. (b) DDNN
t with dmax derived from it.

(c) Dnov
t with dcon derived from it. (d) DDNN

t with dcon

derived from it.

reasonable as well (we use the implementation freely avail-
able in [3]). We denote the resulting activation curves by
aDNN and the deviation function by DDNN

t , respectively.
We also have several choices concerning the derivation

of the deviation sequence d from Dt. A straight-forward
way is to simply pick the deviation that yields the highest
activation value in each column of Dt as

dmax
m := argmax

n
Dt(n,m) .

While this method considers every tap individually, it is
also possible to incorporate some contextual information
into the derivation by defining

dcon:= argmax
[d0,...,dM−1]

Dt(d0, 0)
M−1∏
m=1

Dt(dm,m) T (dm−1, dm),

with T : Z× Z being a transition function defined by

T (i, j) := e−λ|i−j|

with i, j ∈ Z. The sequence dcon can be derived using dy-
namic programming. The idea, inspired by [14, 22], is that
subsequent human taps are unlikely to drastically vary in
their deviation from the actual beat. To reflect this, the use
of the transition function T makes it unlikely to have large
deviation jumps from one tap to the next (we use λ=0.1
in our experiments). Furthermore, this method also allows
us to correct non-event beats [18], meaning taps for which
no cue in the music recording exists. In this case, the acti-
vation curve shows no salient values around the tap and T
favors a constant deviation until there are clear cues in the
activation curve again.

Figure 3 shows the two types of deviation functions
Dnov
t and DDNN

t in combination with the two methods for
deriving the deviation sequences dmax and dcon. We use
item 011 in our dataset as an example (see Table 1). It
is a rather old recording featuring singing voice, acoustic
guitar, mouth-organ, and piano. Comparing Dnov

t in Fig-
ure 3a/c to DDNN

t as seen in Figure 3b/d, we can observe
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item YouTubeID artist song title
006 I3gHugP6bPE Paul Daraiche T’envoler
009 hRFLv29K__o La Sonora Dinamita Escandalo
011 M7u5SdjDSQQ The Lovin’ Spoonful Daydream
025 8jsFGdeWNPo Nicky Jam Juegos Prohibidos
040 1zrxnqejwCk Los Tigres Del Norte Mañanitas Tapatias
046 ebZZpVFUQDY Green Valley Relaja
048 B_e7QbWc5mI Orthodox Celts Rocky Road To Dublin

Table 1. List of dataset items used throughout this pa-
per. The YouTube videos can be found by using the URL
www.youtube.com/watch?v=[YouTubeID].

that Dnov
t is noisier while the structures seen in DDNN

t are
smoother and more salient. This becomes obvious when
comparing the two dmax in Figure 3a and b. While the
dmax based on Dnov

t jumps back and forth between devia-
tions of about −0.2 and +0.2 seconds, dmax for DDNN

t is
more stable, showing only a few jumps between tap indices
115 and 135. The strength of using contextual information
in the computation of the deviation sequence is visible in
Figure 3c, where we see dcon based onDnov

t . Here, similar
as in Figure 3b, most deviation values cluster around −0.2
seconds, except for a short passage of deviation 0 around
tap index 135. This is caused by a single very strong acti-
vation value which does not coincide with a beat position
in the recording. In the deviation function DDNN

t this spu-
rious activation is not present and the deviation sequence
dcon in Figure 3d does not show prominent jumps. When
listening to the sonified automatically corrected taps based
on this deviation sequence, one can hear that they are in
fact very accurate. Overall, we made similar observations
for the vast majority of songs in our dataset. For this rea-
son, we chose the combination of DDNN

t with dcon in our
subsequent experiments and also refer to them by just Dt
and d for the sake of simplicity.

3. ANALYSIS OF AUTOMATED CORRECTIONS

Although the method introduced in the previous section
is capable of automatically correcting the vast majority of
taps, there is still potential for error. To find these errors ef-
ficiently, visualizing the deviation functionsDt andDt̃ can
give helpful insights into the automatic correction process,
point to problematic sections in music recordings, and re-
veal anomalies in the human-made taps. In Figure 4, we
show several examples.

Figure 4a depicts the deviation functions of the original
and automatically corrected taps for item 009. This latin
american song features strong and steady rhythmic pulses,
which is reflected in the activation values visible in Dt. In
each column of Dt, there is basically only one high activa-
tion value. The deviation sequence d nicely captures this
train of high activations, which leads to a very clean devia-
tion function Dt̃. Note that the inter-tap-intervals in Dt̃ are
more regular than inDt, which can be seen by the envelope
of Dt̃ being less noisy than the one of Dt. Based on this
visualization, it is rather safe to assume that the corrected
taps are accurate with virtually no errors. One thing note-
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Figure 4. Deviation functions Dt (left) and Dt̃ (right)
for excerpts of different items from our proposed dataset.
(a) Item 009 (2:25 to 3:23), (b) item 025 (2:12 to 3:22),
(c) item 048 (3:30 to 4:18), (d) item 046 (2:21 to 3:49),
(d) item 040 (0:37 to 1:13).

worthy about this example is that d has a fairly constant
offset of about −90 milliseconds, meaning that almost all
original taps were about 90 milliseconds behind the beat.
This was caused by technical problems in the process of
recording the taps of the human annotator, which caused
delays between the physical taps and the registered times.

In Figure 4b, we see the deviation functions for item
025. This hip hop song again has a very clear and promi-
nent beat, which is reflected in the activations in Dt. How-
ever, around the 200th beat, the song has a short part with-
out any percussions. This manifests in Dt as a blurry sec-
tion, which is caused by low and diffuse activation values.
Since this indicates that there are fewer audio cues that
the procedure can utilize to correct the original taps, such
sections should be manually inspected after the automatic
correction step. In this particular example the inspection
showed that no manual corrections were necessary.

As a third example, we see the deviation functions for
item 048 in Figure 4c. In the last part of this Irish folk
song the bass drum plays a swing-like rhythm. This pattern
causes the activation structures as seen in Dt with strong
activations around deviation zero and weaker ones at about
±200 milliseconds for every other tap. In the computation
of the deviation sequence d, this lead to an error at tap in-
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dex 510, where the tap was incorrectly snapped to one of
the activations caused by the rhythmic ornaments. This
single tap, misplaced by the correction procedure, can be
easily detected in our visualization, since it caused a dis-
tinct structure in the envelope of Dt̃, where it manifested
in a “lightning” pattern.

A similar error can be seen in Figure 4d, which shows
the deviation functions of an excerpt from item 046. This
acoustic song featuring vocals, guitar, and keyboard is
pretty challenging for beat tracking due to the lack of
strong audio cues for beats, as can be seen by the rather
noisy activations in Dt. As in the previous example,
the used rhythmic pattern, this time played by the guitar,
causes strong activations at non-beat positions. In the com-
putation of the deviation sequence d, these lead to a section
of about 30 taps that were incorrectly snapped to these off-
beat guitar accents rather than the actual beats. This can
be seen by d being shifted to a deviation of about −0.2
seconds from tap index 210 to 240. The visualization of
d allowed us to easily locate and understand this problem-
atic passage, which could then be corrected manually in a
post-processing step.

As a final example, Figure 4e shows the deviation func-
tions of an excerpt from item 040. This Polka-like song
has a 3/4 time signature, but the third beat in each bar is
consistently played late. 2 The human annotator tapped
through the song in a rather straight fashion, not explicitly
reflecting this rhythmic pattern. The automatic correction
procedure then aligned each tap with the closest instrument
onset, resulting in unevenly spaced corrected taps. This
is visible as regular spike pattern in the envelope of Dt̃.
Whether the corrected taps reflect the “true” beat positions
is dependent on whether one sees the delayed note onsets
as part of the rhythm or mere ornamentation. Either way,
this interesting example was easily revealed by our visual-
ization of the deviation functions.

4. EXPERIMENTS

In this section, we evaluate our proposed procedure. We
first introduce in Section 4.1 a dataset of beat annotations
which we created using our correction procedure. Then,
in Section 4.2, we discuss the results of a listening experi-
ment to show that the corrected taps are actually perceived
as being more accurate than the original taps. Finally, in
Section 4.3, we show how the choice of annotation used
as ground truth influences the evaluation of beat tracking
algorithms.

4.1 The Dataset

In order to show the usefulness of our proposed tap cor-
rection procedure in a real-world annotation scenario, we
applied it to create a new dataset of beat annotations. To
this end, we selected 101 different music recordings avail-
able on YouTube. 3 This collection, which consists of

2 This observed rhythmic pattern is rather unusual for the style of the
song but commonly found in Viennese Waltz.

3 The dataset is part of a Chordify project that assesses the quality of
automatically generated annotations in a large scale industry setting. The

(a) (b)

Figure 5. Percentage of the 41.011 original taps that were
shifted in the two consecutive automatic and manual cor-
rection steps. Note the different scales of the vertical axes.
(a) Creating t̃ from t, (b) creating t̃′ from t̃.

about 7.25 hours of music in total, comprises a variety
of different genres, recording conditions and instrumenta-
tions. Similar to [1, 23], we decided to use music record-
ings from YouTube to ensure reproducibility of our results.
For each of these recordings, a musically experienced an-
notator tapped along to create the tap sequences t using
Sonic Visualizer, adding up to 41.011 individual taps. The
sequences of automatically corrected taps t̃were then com-
puted for each recording using the method described in
Section 2. Each sequence t̃ was then manually inspected
by the first author using Sonic Visualizer. In this step, a
total of 331 incorrect taps were identified across 54 of the
101 sequences and corrected manually. We denote the re-
sulting fully corrected tap sequences by t̃′.

Figure 5 summarizes the distribution of shifts applied to
the individual taps in the two consecutive correction steps.
In Figure 5a we can see that about 25% of the original taps
were shifted by 40 milliseconds or more by the automatic
correction procedure. This means that in case these cor-
rections would have been done manually, about one in four
taps, would have been shifted—even when assuming that
smaller inaccuracies where taps were misaligned with au-
dio cues by less than 40 milliseconds would not have been
considered. To create the fully corrected taps on the other
hand, less than 1% of the 41.011 original taps were shifted
at all, see Figure 5b. The shifts applied in the manual cor-
rection step were equally distributed between very small
and larger shifts which can be seen by the rather constant
slope of the graph.

The dataset containing all three annotations t, t̃, and t̃′

for each recording as well as metadata and the respective
YouTube links is available at [13].

4.2 Listening Experiment

With the creation of the fully corrected taps t̃′, the
main question is whether the applied corrections actually
make the beat annotations perceptually more accurate—
and therefore better. To answer this, we conducted a lis-
tening experiment. For each of the 101 recordings in our
dataset, we created two new recordings by sonifying the
taps t as well as the fully corrected taps t̃′ as a click
track and superimposed each of them on the original mu-

selected recordings reflect a random sample of songs used on Chordify,
weighted by their popularity on the service.
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(a) (b)

Figure 6. Average beat F-measures on our dataset for
four different beat tracking algorithms when using differ-
ent ground truth annotations. (a) Original taps t, (b) fully
corrected taps t̃′.

sic recording. Note that we chose to use the fully corrected
taps t̃′ rather than the automatically corrected taps t̃ be-
cause the difference between t̃ and t̃′ is very small and
we did not want the participants to focus on the few no-
ticeable mistakes made by the automatic correction proce-
dure. Three musically trained people took part in the ex-
periment, none of them being one of the authors. Each par-
ticipant was presented with the 101 pairs of recordings and
asked to pick the recording with the more accurate click
track from each pair. The order in which the two record-
ings of a pair were presented was random and the partici-
pants did not know whether the clicks they heard were the
original taps t or the fully corrected taps t̃′. They were
able to listen to each recording for as long and as often
as they liked before making their decision. Additionally,
they had the opportunity to give comments. The complete
set of answers and comments can be found at [13]. Look-
ing at all 303 given answers individually (three participants
times 101 pairs), 89% of the time the participants found the
fully corrected taps t̃′ to be more accurate than the origi-
nal taps t. For 72% of the 101 pairs, all three participants
even consistently perceived t̃′ to be more accurate than t.
Having a closer look at the participants’ answers and com-
ments, it turned out that in many instances where a partic-
ipant chose the original taps to be more accurate than the
fully corrected taps, the two click tracks were perceived
as being very similar (“Both are about the same quality,
IMO.”). Furthermore, some of the comments also indicate
that sometimes there was also a degree of personal prefer-
ence involved in the decision (“...[the click track] lags like
a proper gospel drummer.”). Overall, the results show that
the fully corrected taps t̃′ are commonly perceived as more
accurate than the original taps t.

4.3 Quantitative Study

As a final experiment, we were interested in the effects of
using either the original taps t or the fully corrected taps t̃′

as ground truth for a quantitative evaluation of beat track-
ing algorithms. We investigated four different algorithms:
The Queen Mary beat tracker (BT1) [10], the librosa beat
tracker (BT2) [14], the Aubio beat tracker (BT3) [8, 9],
and our own implementation of [4] (BT4). Note that the
madmom beat tracker [3,4], which would have an intrinsic
advantage since our tap correction procedure is built upon

the same activation curve, is not among them. For each of
the four beat tracking algorithms, we computed the beat F-
measure [11], a popular beat tracking evaluation measure,
for all recordings in our dataset. We did this two times,
once taking the original taps t as ground truth and once the
fully corrected taps t̃′, see Figure 6a and 6b, respectively.
An important parameter in the computation of the beat F-
measure is the tolerance, which determines the maximal
temporal distance between an estimated beat and a ground
truth beat such that the estimate can be considered correct.
In Figure 6, we see that for a very large tolerance (140
milliseconds and above) it basically makes no difference
whether we use t or t̃′ as ground truth. This makes sense
when recalling that most of the corrections applied were
smaller than 100 milliseconds (see Section 4.1). However,
this changes when considering a smaller, and hence more
realistic tolerance. The default tolerance as implemented
in mir_eval [28], the Python library we used for this evalu-
ation, is 70 milliseconds, indicated by dotted black lines in
Figure 6. At this tolerance, the computed beat F-measures
differ noticeably depending on the ground truth. For exam-
ple, BT4 achieves an average beat F-measure of 0.68 when
the original taps t are used as ground truth, but 0.77 when
the fully corrected taps t̃′ are used. The difference is even
more prominent when comparing BT1 and BT2. Here,
BT1 scores much better (0.65) than BT2 (0.58) when com-
paring the two algorithms based on the original taps. How-
ever, when using the fully corrected taps as ground truth,
the algorithms perform nearly identically (both 0.73). For
smaller tolerances, the differences between the individual
algorithms become even more salient. For example, at a
tolerance of 30 milliseconds and using the original taps as
ground truth, BT1 and BT2 differ in beat F-measure by
0.25 (scoring 0.45 and 0.20, respectively), while differing
by 0.59 (scoring 0.69 and 0.10, respectively) on the fully
corrected taps. This shows that it can make a substantial
difference for quantitative evaluations of beat tracking al-
gorithms whether the underlying ground truth annotations
are “only” human-made taps or corrected ones.

5. CONCLUSIONS

In this paper we proposed and formalized a simple pro-
cedure for correcting tapped beat annotations by automati-
cally “snapping” the tap positions to cues in the underlying
music recording. Furthermore, we proposed a visualiza-
tion that can help identifying errors made by the correction
procedure as well as rhythmically interesting passages in
music recordings. Finally, we created a new dataset for
which we showed that beat annotations corrected with our
procedure are perceived as being more accurate and that
using them for the quantitative evaluation of beat tracking
algorithms may significantly impact the evaluation results.
The last observation motivates us to apply our proposed
correction procedure to beat annotated datasets commonly
used in the MIR community. We believe that our proposed
visualization could help in identifying incorrectly anno-
tated recordings and therefore getting a more realistic view
on the performance of beat tracking algorithms.
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