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Abstract

We say that a coherent configuration is of Chevalley type if its basis re-
lations correspond to orbitals of a geometric action (G, $2), where G is
a finite Chevalley group. If the action is transitive, the resulting config-
uration is an association scheme. In this paper, we seek to provide an
effective universal strategy for orbital recognition in coherent configura-
tions of Chevalley type. This must be preceded by a universal orbital
characterization strategy, which we also propose. There are a number of
ways to represent the objects in €2 to enable orbital recognition but, in-
variably, these strategies depend on the structure of the ambient group.
On the other hand, a universal strategy does exist, which involves a
canonical embedding of €2 in the flag geometry §(G) of G, however this
strategy alone does not facilitate fast orbital recognition. In this paper,
we further identify these embedded objects in §F(G) with certain distin-
guished elements in the upper Borel subalgebra £V of the Lie algebra
for GG. This reduces orbital recognition to an investigation of systems of
equations that arise from vanishing of the Lie product in £Y. In many
instances these systems of equations turn out to be linear.
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1 Introduction

Let G be a finite Chevalley group. The main objective of this paper is to formulate
a general procedure for orbital recognition in coherent configurations that arise from
geometric actions (G,€2). One of the desired features of such a recognition scheme
is that it be universal, that is, independent of the type of Chevalley group under
consideration. Another is that it be computationally effectual.

Any orbital recognition scheme must be preceded by a characterization of the
orbitals under investigation. Thus we require a universal orbital characterization
scheme as well. It should be apparent that the effectiveness of the recognition scheme
depends crucially on what choices are made in formulating the orbital characteriza-
tion strategy.

We start with a canonical embedding of the set €2 into the flag geometry §(G)
of G. From here we move progressively, from an initial orbital characterization in
terms of incidence chains in the Lie geometry, to one in terms of chains in the Weyl
geometry, and finally to a recognition scheme in terms of disinguished elements of the
upper Borel subalgebra £V of the Lie algebra £ of G. This recognition scheme enables
a transformation of incidences occurring in chains to an investigation of systems of
equations in the field over which G is defined.

The universal geometric action is given by (G, F(G)), where F(G) denotes the
set of objects (flags) in §(G). From here, one may define a geometric action to be
any action (G, <)) where  is a G-invariant subset of F(G).

Of fundamental importance is the fact that F(G) is in bijective correspondence
with (J,;(G: Py), where {P;}cs is the set of all (standard) parabolic subgroups of
G, and (G: Py) is the coset space of P; in G.

The set of orbitals of (G, F(G)) forms a coherent configuration in the sense of
D. Higman [14], as do the orbitals of any geometric action (G,£2). When (G, Q) is
transitive, the resulting configuration is an association scheme. We provide below
some important examples of geometric actions.

(1) (G, F(GQ)), which is the action discussed above. This case is intimately related
to the study of Tits buildings, see [19]. The action is intransitive.

(2) (G,7(G)), where ¥(G) = U,c;(G: B;). Here {P;}ier is the set of all maximal
parabolic subgroups of G. Objects in v(G) may be identified with minimal
flags in §(G). This action, which is commonly referred to as the Lie geometry
of (G, is intransitive.

(3) (G,(G: P;)), that is, the restriction of the action of (G,~(G)) to cosets of a
fixed maximal parabolic subgroup P; of G. This is a transitive action.

(4) (G,(G:B)), where B is a Borel subgroup of G. Here (G: B) may be identified
with the set of all maximal flags in F(G). The corresponding Hecke algebra
(double coset alegebra) is a specialization of the generic algebra introduced
by J. Tits (see [6]). This Hecke algebra is very important in the theory of
representations of Chevalley groups (see the survey [9]). This is a transitive
action.
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We can further extend the notion of a geometric action to the Weyl group of G,
as will be explained in Subsec. 6.4.

Note that only in cases (3) and (4) are the orbitals of the indicated geometric
action forming the basis relations of an association scheme. But even were our in-
terest confined solely to association schemes, we would still require the fuller picture
that the flag geometry provides. Indeed, much like the manner in which one ex-
tends a group to a group ring to gain additional structural information about the
group, we pursue a similar methodological approach here by extending a transitive
geometric action (G, Q) to the flag geometry §(G) to enhance our understanding of
the structural properties of association schemes of Chevalley type.

Since our ultimate goal is to provide fast orbital recognition in terms of systems
of equations, the notion of a metric association scheme is especially important to us.
This is because orbital recognition in metric schemes guarantees that the aforemen-
tioned systems be linear.

Restricting our attention to geometric actions of the kind (3) above, we obtain
metric association schemes only for certain values of i (see [6]). For example, when
G is a Chevalley group of classical type B,, C,, or D,, the resulting schemes are
metric only when 4 corresponds to an end-node of the Dynkin diagram for G. In
sharp contrast to this, any choice of ¢ results in a metric scheme for G a Chevalley
group of classical type A,,.

In fact, there are even instances in non-metric association schemes where partic-
ular orbitals yield linear systems. These are the so-called “short” orbitals, by which
we mean orbitals whose key data correspond to incidence chains of length at most
2, see Subsec. 8.2.

The balance of our paper is organized as follows.

Sections 2-6 are in a sense preliminary. While we believe it adequate for certain
readers to safely skip these sections, we encourage those who are less familiar with the
subject matter to give Sections 2—6 a fairly comprehensive reading. These sections
cover the following general topics: group actions (Section 2), coherent configurations
(Section 3), groups of Lie type (Section 4), Lie algebras (Section 5), and group
geometries (Section 6).

Section 7 deals with double coset algebras and their relation to orbitals. We
emphasize the critical role played by the isomorphism between the double coset
algebras of F(G) and F(W), where F(W) is the flag geometry of the Weyl group W
of G. This is a quite remarkable property that only occurs in groups of Lie type, and
it plays a major role in the sequel.

In Section 8, we begin the proper treatment of orbital characterization by intro-
ducing the concepts of an incidence chain and an orbital key. We later put forth
the notion of a Coxeter trace, which provides a means by which the role of incident
chains in the Lie geometry G may be articulated in terms of so-called trace chains
in the Weyl geometry Y. Two orbital recognition schemes are proposed, the first
based on incidence chains in the Lie geometry and the second based on the Coxeter
trace concept. Both proposed schemes rely on the orbital key construct.

In a strong sense, Section 9 is the cornerstone of the paper. It explains how
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geometric actions (G, ) may be embedded in the upper Borel subalgebra £V of
the Lie algebra £ of G. This embedding transforms incidence chains to systems
of equations that arise from vanishing of the Lie product in £Y. The role of the
underlying group, so intrinsically evident in the structure of its geometric actions,
is completely hidden from view at this stage. One need only follow simple rules of
computation in £V to derive equations that unearth the orbital structure of (G, Q).

In Section 10 we describe all invariant objects that comprise chains in the Weyl
geometries of type A, B, C,, and D,,. These objects are essential to the formulation
of optimal characterization and recognition strategies for Chevalley groups of classical
type. We further elaborate by means of an example, the specific steps involved in
obtaining an orbital characterization scheme for the group As(q).

Finally, in Section 11 we give explicit characterization and recognition schemes
for the classical Chevalley groups of type A,. A flowchart depicting the recognition
scheme is also provided.

2 Group actions

Let G be a group with identity element e, and let {2 be a nonempty set. A (left)
group action of G on € is a mapping ¢ : G x Q — Q which satisfies (i) ¢(gh,z) =
©(g,p(h,x)) and (ii) ¢(e,x) = z, for all x € Q2 and g,h € G. A right group action is
defined similarly.

From (i) and (ii) above, it follows that ¢(g, -) : 2 — €2 induces a permutation of
Q for every g € G. Let us write g-x in place of ¢(g,x). We also denote by G-z the
set {g-z | g € G}, and call it a G-orbit of Q. Clearly, the G-orbits form a partition
of €.

Given an action of G on €, the kernel of the action is defined by K = {g € G |
g-x =z, Vr € Q}. Clearly K is a normal subgroup of G, and the factor group G/K
embeds in the symmetric group Sym(2). If the action is faithful, i.e., if K = {e},
then we may identify G with a subgroup of Sym(f2). In this case we express the
identified subgroup as (G, §2) and refer to it as a (faithful) permutation group.

We call (G, Q) transitive if G-z = 2 for some (and hence every) z € 2. Oth-
erwise, we call (G, Q) intransitive. Analogously, we say that G acts transitively, or
intransitively, on €.

Finally, a transitive permutation group (G, ?) is said to be reqular if G, = {e}
for some (and hence all) x € Q. Here G, := {g € G | g-x = z} is referred to as the
stabilizer of z € ). In this case we also say that G acts regularly on ).

2.1 Coset actions

Let G be a group with subgroup H, and denote by (G : H) the set of left cosets
of H in G. Then (G, (G : H)) is a permutation group with respect to the action
g-(kH) := gkH, g,k € G. We call this a coset action. Note that (G,(G: H)) is a
transitive permutation group.

In fact, all transitive permutation groups arise in this manner. Indeed, if G acts
transitively on 2 then (G, () is isomorphic to (G, (G:G,)) as permutation groups,
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where (G, is the stabilizer of xz € Q.

Now let (G,€2) be an arbitrary permutation group with orbits €2y, ..., Q, and
consider the transitive constituents (G, €2;), 1 <i < s. Here we may identify €; with
the coset space (G:G;), where G is the stabilizer of an element of €;. In this manner
Q2 becomes identified with the union of cosets J;_, (G:G;), from which we conclude
that all group actions are coset actions, up to 1somorphlsm.

2.2 Actions that preserve incidence

According to definition, it is not essential that a set 2 on which a group acts have
any structure. However, structureless sets are of minimal interest to the investigator.
Most often, € carries a natural structure (such as the vertex set of a graph), while
at other times it is desirable to impart some extrinsic structure to €2 in order to fill
a specific investigative need. One way to accomplish this is to define an incidence
relation Z on (2, that is, a subset of Z C Q x . We customarily write xZy to
indicate that (x,y) € Z. We further say that “x is incident to y” (and conversely, if
the incidence relation Z is symmetric).

A special case of the above corresponds to the classical notion of an incidence
structure, which is a triple (P, £, Z) where P and £ are nonempty sets and Z C P x L.
Indeed, by setting {2 =P U L, one may view Z as a relation on 2. The same applies
to higher rank analogues of incidence structures, usually called geometries.

Given a geometry G = (£2,7), let us denote by (G,G) the set of permutations
g € (G,Q) that preserve incidence in G, i.e., (g-x)Z(g-y) iff x Zy. Note that (G, G)
is a subgroup of the full automorphism group of G, that is, (G,G) < (Sym(Q2),G).

Our main attention will be focused on the case in which G is a geometry of either
a finite Chevalley group or its corresponding Weyl group. This will be discussed later
on.

3 Coherent configurations

We begin with the concept of a color graph T'. Let €2 be a nonempty set, and let
R = {Ry, Ry, ... Ry} be a partition of Q x Q. We define I' to be the directed graph
with vertex set (2 and arc set U?:o R;. Thus I' is a complete directed graph with a
single loop at each vertex. To complete the picture, we regard the cells R; as distinct
color classes, that is, we define the color set C' := {0, 1,...,d}, and we color the arcs
of I" so that arc (z,y) receives color 7 if and only if (z,y) € R;.

A coherent configuration is a color graph I' = I'(Q2, R) for which the following
hold:

Axiom 1. There is a subset H of C for which Ag := {(z,z) | z € Q} is the union of
color classes Ry, h € H.

Axiom 2. For each i € C there exists j € C such that R;' = R;, where R;' = {(y,z) |
(x,y) € R;}.

Axiom 3. For any i, j,k € C and (x,y) € Ry, the number c - of elements z € () for
which (z,2) € R; and (z,y) € R, is a constant depending only on i, j, k. Hence it is
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independent of the choice of (z,y) € Rg.

In the above, we refer to each R; € R as a basis relation, to Aq as the diagonal
relation, to R! as the transpose relation of R;, and to cﬁ ; as the structure constants
of the configuration (€2, R). The subset H in Axiom 1 provides a partition of {2 into
its subsets €, such that Ry, = {(z,z) | = € Qi}, h € H. We refer to the subsets €,

as fibers of (2, R).

3.1 The homogeneous case

A coherent configuration is said to be homogeneous provided it satsfies one additional
requirement. We formulate this as a strengthening of Axiom 1 to the following;:

Axiom 1*. The set A = {(z,z) | z € Q} is a single color class, conventionally denoted

by R().

Thus any color graph that satisfies Axioms 1%, 2 and 3 is said to be a homogeneous
coherent configuration. Equivalently, a homogeneous configuration is a configuration
with just one fiber. Another terminology for homogeneous coherent configuration is
association scheme.

We stress that throughout our paper, association schemes are not assumed to be
symmetric (as they are defined in [3]) or commutative (as defined in [10]). Rather,
our definition follows closely that of Zieschang, see [25].

Association schemes first arose in the late 1930s as a purely statistical device in the
theory of experimental design. The concept, however, would not attract the attention
of mathematicians until the late 1950s, when R. C. Bose and D. M. Mesner recast
the theory in purely algebraic terms, see [3]. Nevertheless, one could legitimately
point to the 1973 thesis [10] of P. Delsarte as the birth of modern association scheme
theory.

3.2 Schurian configurations

Let (G, ) be a permutation group, and consider the induced action of G on £ x €2
defined by ¢-(z,y) = (¢9-x,9 - y), where ¢ € G and z,y € Q. This defines a
permutation group (G, Q x ). Following established convention, we refer to the
orbits of (G, Q x Q) as orbitals of (G,€).

If we take R to be the set of orbitals of (G, (), then it is easy to check that (2, R)
is a coherent configuration. Such a configuration is said to be schurian (in honor of
L. Schur). The reader may verify that (£2, R) is an association scheme precisely when
the permutation group (G,€?) is transitive. In such case, we call (2, R) a schurian
association scheme.

We mention that all coherent configurations and association schemes considered
in this paper are schurian.

3.3 Metric schemes

Let I' be an undirected graph with vertex set €2, and let dp : Q x 2 — N denote the
distance metric on I'. We define the distance-i graph I'; of I' as follows:
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(i) the vertex set of I'; is €2,
(ii) vertices z,y € Q are adjacent in I'; precisely when dr(z,y) = i.
Assume now that (2, R) is a symmetric association scheme, by which we mean
R! = R; for all 1 <4 < d. In this case, the color graph I' = I'(Q, R) (minus its
loops) is a simple undirected complete graph. Let us refer to any subgraph of I" as
monochromatic if all of its edges have the same color.
Now suppose there exists a subgraph I'; of I' for which the following hold:
(i) I'y has diameter d,
(i) I'; is monochromatic for every 1 <i <d,
(ili) I'; and T'; are differently colored whenever i # j.

Then we call I'' a distance-regular graph.

In such case, we refer to (2, R) as a metric association scheme due to the fact
that its basis relations respect the graph metric dpr. Metric association schemes
have important application to coding theory, graph theory, and the theory of block
designs, e.g., see [1, 6] .

3.4 Fusion schemes and subschemes

There are two basic procedures by which one can manufacture new association
schemes from a given one. We start with the scheme (2, R), where R = {Rq, Ry,
..., Rq}.

Suppose there exists another association scheme defined over the same set (2, let
us say, (2,S8) where § = {5, S1,...,S.}. We call (©2,8) a fusion scheme of (2, R)
provided each basis relation in S is a union (or merging) of suitable basis relations
from R. However, we caution the reader that a random merging of basis relations
rarely results in a fusion scheme.

The second procedure begins by choosing a nonempty subset €)' of ). Each
relation R; € R is then reduced to R, = R; N (2’ x ). Now define R' = {R] | R, #
0,0<i<d} If (,R')is an association scheme, we call it a subscheme of (2, R).

These two procedures often lead to very interesting association schemes. For
example, the schemes of Hemmeter and those of Ustimenko can both be realized as
fusion schemes, while the Hermitean forms schemes, the g-analogue of the Hamming
schemes, and the schemes of Egawa can all be realized as subschemes of appropriate
association schemes (see [6] for details).

Finally, we mention that these procedures may be applied more generally to
coherent configurations. In fact, an interesting area of investigation involves the
construction of association schemes as fusion schemes of non-homogeneous coherent
configurations, e.g., see [17].

REMARK. Our definition of subscheme follows Delsarte [10]. However, we alert
the reader that some authors apply the term “subscheme” to what we are calling a
fusion scheme. The source of this ambiguous terminology stems from the fact that
the adjacency algebra of a fusion scheme (£2,S) is a subalgebra of the adjacency
algebra of (2, R). In fact, the term “fusion scheme” was coined by the author AW
in [23] with the express intent of eliminating this ambiguity. A similar attempt was
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made by Brouwer, Cohen and Neumaier, who in their classic text [6] adopt the term
“merging”.

4 Groups of Lie type

Complex Lie groups play a ubiquitous role in differential geometry and physics, where
they arise as groups of automorphisms of complex Lie algebras, as well as closed
compact manifolds. However, in this paper we shall only be interested in the finite
analogues of these groups. These make up the great majority of the finite simple
groups, and have widespread application to various areas of discrete mathematics
[2, 11, 16, 18].

The theory of finite groups of Lie type was clarified by the theory of algebraic
groups and the seminal work of C. Chevalley [8] on Lie algebras, by which means
the Chevalley group concept was isolated. Namely, Chevalley constructed an inte-
gral basis for the universal enveloping algebra of every complex simple Lie algebra,
nowadays referred to as the Chevalley basis in his honor. The Chevalley basis allows
one to define the corresponding algebraic groups over Z, which in turn enables their
range of definition to be extended to any finite field. This is precisely how finite
groups of Lie type are constructed.

In fact, somewhat surprisingly, there exists a small number of families of finite
groups of Lie type which are not strict analogues of complex Lie groups. Their
construction depends on the existence of field automorphisms that interchange roots
of different Euclidean length, hence they place very rigid restrictions on the fields
over which they are defined.

Finite groups of Lie type (and, more generally, simple algebraic groups over ar-
bitrary fields) act on simplicial complexes called spherical buildings. This is all
encapsulated in the theory of buildings and BN-pairs due to J. Tits [19], but we shall
not need this level of explanation here. The crucial point for us is that this action
may be articulated in the manner of Subsec. 2.1.

4.1 Chevalley groups

Finite groups of Lie type can be categorized in various ways, but for our purposes
a broad dichotomy works best. Thus a finite group of Lie type is either “twisted”
or “untwisted” [7]. In another terminology, untwisted groups of Lie type are called
Chevalley groups.

The Chevalley groups are further divided into nine classes according to type:
A, Bn, C,, D, (classical Chevalley types) and Fgs, E7, Es, Fy, G5 (exceptional
Chevalley types). In each case, the subscript indicates the rank of the group, which
coincides with the number of nodes in the corresponding Dynkin diagram (see Fig.
1). Each such group is defined over a finite field, and this is indicated notationally.
For example, if G is a Chevalley group of classical type A,, defined over GF(q), then
we express G as A,(q).

We mention that the reader is most likely already familiar with the groups A, (q),
B.(q), Cn(q), Dn(q) by different names. Roughly speaking, they are the linear group
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(A,), two types of orthogonal group (B,, and D,,), and the symplectic group (C,).

Finally, we stress that there is some ambiguity built into the notion of a finite
group of Chevalley type which stems from the case of algebraic groups defined over
fields of characteristic zero. As an example, the notation A,(q) may refer to the
simple group PSL(n + 1,q) but it may also refer to one of the non-simple relatives
of this group, for example PGL(n + 1,¢). In all instances in which a distinction is
either necessary or desirable, we will provide additional clarification.

4.2 Internal structure

Let G = G,(q) be a finite group of Lie type of rank n defined over the field GF(q),
where ¢ = p®. We refer to p as the characteristic of G.

Let now U be a fixed Sylow p-subgroup of G, and denote by B the normalizer
Ng(U) of U in G. We refer to the group U as a unipotent subgroup (or unipotent
radical) of G, and to B as a Borel subgroup of G.

As G has rank n, there are precisely 2" — 1 proper subgroups of G that contain a
fixed Borel subgroup B (including B itself). We refer to these as standard parabolic
subgroups of GG. Of these parabolics exactly n are maximal in G. We refer to these
as mazimal (standard) parabolic subgroups of G, and denote them by Py, Py, ..., P,.

In fact, the complete picture is quite more attractive. Every parabolic subgroup
is the intersection of maximal parabolics, so that the residual group lattice of GG
(based at B) is isomorphic to the inverted lattice of all subsets of I := {1,2,...,n}.
For example, to any subset J C I there corresponds the standard parabolic subgroup
Py = (;es Pi- In particular, the entire set I corresponds to B while the empty set
corresponds (vacuously) to G. We do not consider G to be a parabolic subgroup.

4.3 The Weyl group

Every group of Lie type contains a section W, called its Weyl group. Indeed, a Borel
subgroup B of G = G,,(q) is a split extension (semidirect product) of a unipotent
subgroup U by a subgroup 7T called a maximal torus. The great relevance of T resides
in the fact that Ng(7T')/T is isomorphic to W.

In fact, in this context one actually has T' = (), c;y wBw™". Note that W is not
a subgroup of GG, so to correctly interpret this expression one needs to identify each
w € W with one of its pre-images in Ng(T'). Nonetheless, this abuse of notation is
standard and we shall use it throughout.

Methodologically, one constructs W from its associated root system ®, that is,
a set of vectors in Euclidean space that is subject to very strong structural require-
ments, see [4]. As G has rank n, ® spans an n-dimensional vector space. Subject
to how the roots of ® are ordered, one can identify a special basis II C ® which
we call a fundamental basis of ®. Let us write I = {ry,r5,...,7,}. Then to each
r; € Il there exists an element w; € W which acts as a reflection in the hyperplane
orthogonal to ;. The Weyl group W is generated by these fundamental reflections,
ie., W= (w; | 1 <i<n). Observe that W is a subgroup of the full isometry group
of ®.
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The Weyl group W may be viewed as a skeletal version of the group G, in the
sense that it encapsulates with surprising economy much of the structural information
about GG. Indeed, W also contains 2" — 1 special proper subgroups, also called
parabolics, of which n are maximal. We describe these 2" — 1 Weyl parabolics as
follows: For J C I, set W; = (w; | ¢ € [—J), where by I —.J we mean the complement
of Jin I. When J = {i}, we obtain the maximal parabolic subgroups Wy;; which we
simplify notationally to W;. (Note that some authors exclude W; = 1 from the list
of parabolic subgroups of W but we shall not.) This gives a bijective correspondence
between the parabolics of W and those of G, specifically P; = BW;B. This is
reminiscent of the Bruhat decomposition G = BWB = |J, o BwB, which is a
defining property of BN-pairs.

As is the case with geometric actions of G, one can also realize geometric actions
of W in the manner of Subsec. 2.1. This is of essential importance to us, as the Weyl
group is a crucial ingredient in achieving our main objective in this paper.

4.4 Dynkin diagrams

The fundamental importance of Dynkin diagrams is that they are used to classify
semisimple Lie algebras over algebraically closed fields. The classification proceeds
by first determining all possible root systems, which are codified by their Dynkin
diagrams. Once a fixed choice of field is made, each diagram uniquely determines
a number of algebraic objects, including a Lie algebra, a simple Lie group (and its
associated algebraic groups), a Weyl group, etc. The nodes of the diagram have
many interpretations, e.g., the fundamental roots of the root system, generators of
the Weyl group via fundamental reflections, maximal (or minimal) parabolics of the
Weyl group, maximal parabolics of the Lie group, and so on. The edges, which
may be multiple and directed, determine the angle between fundamental roots, as
well as the orders in the Weyl group of products of pairs of fundamental relections.
Indeed, the Dynkin diagram is one of the most compact modes of description in all
of mathematics.

In the interest of completeness, we provide in Fig. 1 the Dynkin diagrams for
the nine families of Chevalley groups. We remark that each group of Lie type also
has a corresponding Coxeter diagram, which is obtained from its Dynkin diagram by
simply removing arrows (orientation of edges). There is a well developed theory of
Coxeter systems that generalizes the theory of root systems, e.g., see [15]. Observe
that B, and (), have the same Coxeter diagram.

Example 1. In order to facilitate a better understanding of the concepts introduced
in this section, we illustrate the case of the group G = A,(q) = PGL(n + 1,q) in
detail. This is the group of projective general linear transformations of dimension
n + 1 over the field GF(q). For convenience, we interpret G as a matrix group.

Recall that a unipotent subgroup U is a Sylow-p subgroup of GG, where p is the
characteristic of G. A most convenient choice for U here is the group of upper
triangular matrices with ones along the diagonal. The Borel subgroup B = Ng(U)
in this case is simply the group of upper triangular matrices.
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Figure 1: Dynkin diagrams of the Chevalley groups

Recall that B is a split extension of U by a maximal torus 7". Here T is the group
of diagonal matrices. Its normalizer Ng(T') consists of all monomial matrices, that
is, matrices with exactly one nonzero entry in each row and column.

Finally, recall that the Weyl group W arises as the factor group Ng(7T)/T. Here
W consists of all monomial matrices whose nonzero entries are all equal to one. This
is the group of (n+ 1) X (n+ 1) permutation matrices, which is evidently isomorphic
to the symmetric group S,1 on n + 1 letters. Thus the Weyl group of type A, is
nothing more than a symmetric group. O

5 Lie algebras

Lie algebras are inextricably linked to Lie groups. As previously mentioned, one may
interpret a Lie group as a differentiable manifold, in which case its Lie algebra is
canonically defined as the tangent space to the manifold at the identity. Conversely,
any semisimple algebraic group defined over an algebraically closed field of prime
characteristic is uniquely determined by its Lie algebra. We, however, shall only
be interested in the algebraic structure of Lie algebras over finite fields, and their
combinatorial and geomteric properties.

Abstractly, a Lie algebra £ is a vector space over some field F, endowed with an
operation [-, -] : £ x £ — £ called the Lie product (or Lie bracket, or commutator
operation). The Lie product is bilinear and skew-symmetric, and satisfies the Jacobi
identity:

o, [+ 16, .l + [, [0, 8] = 0, a,Byeg.

As such, £ is a non-associative algebra.
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5.1 Internal structure

Let G = G,(q) be a finite simple group of Lie type, and let £ = £(G) be its
corresponding Lie algebra, both defined over GF(q). Let ® be the root system
corresponding to the Dynkin diagram of G, and let II be a fundamental basis for ®.
Note that |II| = n because n is the rank of G.

First £ contains a unique maximal self-normalizing subalgebra ), called the Car-
tan subalgebra of £. The Cartan subalgebra is generated by the dual basis II* of II,
and hence $) is an n-dimensional vector subspace of £.

In addition, £ contains two other very relevant vector subspaces, denoted £1 and
£, commonly referred to as the positive root space and negative root space of £,
respectively.

The above terms reflect a deep theoretical connection between roots and their
corresponding root vectors. If r € ® is a root, we denote its corrsponding root vector
by e,. Now write ® = &+ JP~, where & and &~ denote the sets of positive and
negative roots of ®, respectively. In fact, we have &~ = —®d*. Then

£h = @r€¢+<er), and £ = @—r@*@_r) :

Crucially, the one-dimensional root spaces (e,), r € ®, are $)-invariant.
We now have all the ingredients to describe the Cartan decomposition of £.

Namely, B e+
L£=HDL £

From this decomposition one can visibly detect two additional subalgebras of £:
V=P et and Ll=nHDe .

We refer to £V and £ as the upper and lower Borel subalgebras of £, respectively.
The upper Borel algebra will be of special significance to us later on.

Example 2. Our main intention here is to make the abstract notions introduced
above a bit more tangible to the reader. We do not pretend to give detailed expla-
nations of all features of the example.

Let us consider the Lie algebra £ of the simple group A,(q) of Lie type, that is, the
projective special linear group PSL(3, q) with corresponding Weyl group isomorphic
to the symmetric group Ss.

First, the root system of type Ay is given by ® = & J®~, where

©+ — {r177ﬂ2ar1 + TQ} aIld @7 — {_Tla —Ty, —T1 — ,',.2}.

A fundamental basis for @ is given by IT = {ry, 75 }. We denote its dual basis by
IT* = {rf,r3}. Thus the Cartan subalgebra $) is spanned by the dual roots rj,r;.
Convenient matrix representations for these dual roots are as follows:

1 0 0 0 0
=0 -1 o], wm=[0 1 o],
0 0 0 0 0
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Hence $) consists of all 3 x 3 diagonal trace zero matrices over GF'(q). Similarly, we
give matrix representations of the root vectors:

01 0 00 0 00 1
e, = | 0 0], e,=[0 0 1), em=[0 0 0],
00 0 00 0 00 0
00 0 00 0 00 0
e.=(10 0], en=[00 0], ern=[0 0 0
00 0 01 0 1 0 0

We thereby conclude that £ consists of all 3 x 3 trace zero matrices over GF(q).
This Lie algebra is traditionally designated as sl3(q).

Subject to the afforded matrix representation, the Lie product in £ is easily
described as [A, B] = AB — BA, where juxtaposition indicates the usual matrix
product. O

6 Group geometries

6.1 Coset geometries

Let G be a group with subgroups H; and Hs, and denote by P = (G : H;) and
L = (G: Hy) the corresponding coset spaces. Now define an incidence relation Z as
follows: For @ € P and 8 € L, define aZ 8 precisely when aN g # (). Then (P, L,T)
is an incidence structure, commonly referred to as a rank-2 coset geometry.

Rank-n coset geometries can be similarly constructed from rank n analogues of
incidence structures. In this case one is working simultaneously with n coset spaces of
the ambient group, but the incidence relation is the same, i.e., nonempty intersection
of cosets.

Rank-2 coset geometries arise naturally from rank 2 groups of Lie type, where the
roles of the subgroups H; and H, are played by the two standard maximal parabolics.
Here the resulting incidence structures turn out to be the remarkable “generalized
polygons”, see [19]. Indeed, restricting our attention to the Chevalley case one
obtains in this manner the generalized 3-gon (when G = As(q)), the generalized
4-gon (when G = Bs(q) or Cs(q)) and the generalized 6-gon (when G = G2(q)).

We mention in passing that the geometry of 2F} is the generalized 8-gon, however
%[, is a twisted group of Lie type, hence not a Chevalley group.

Lastly, we remark that the generalized 3-gon constructed from the group As(q) =
PGL(3, q) is none other than the classical projective plane PG(2, q) of order q. (Note,
however, that the full collineation group of PG(2, q) is PI'L(3, q).) It is a nice exercise
for the reader to identify the two standard maximal parabolic subgroups in this case
by revisiting Example 1 with n = 2. These parabolics turn out to be the respective
stabilizers of a canonically chosen point P and line [ for which {P, [} is a point-line
incident pair in the projective plane.
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6.2 Flag geometries

Let G be a rank-n geometry, that is, a geometry with objects of n distinct types. Let
us designate the type of an object a by t(«). For convenience, we denote the set of
all types by I ={1,2,...,n}.

To G we may associate a second geometry, denoted F(G), called the flag geometry
of G. We call the objects of §(G) flags, by which we mean sets of pairwise incident
objects in the initial geometry G. Let F = F(G) denote the set of flags in §(G). We
define incidence in §(G) as follows: For Fy, Fy € F, we have F} incident to F; precisely
when Fy UF, € F. We define the flag-type of F to be the set t(F) = {t(a) | « € F},
and we call a flag mazimal if t(F) = 1.

Let now G be a rank-n coset geometry of a group G = G,(q) of Lie type, in which
the objects of G are cosets of the n maximal standard parabolic subgroups P; of G.
Here we may regard I as the set of nodes of the Dynkin diagram of G.

There is a very fruitful identification one can make in passing from G to F(G).
Namely, we identify a specified flag F' of type J with the coset gP;, where P; =
ﬂjeJ P; and gP; € F for all j € J. In this manner we see that flags themselves
correspond to cosets of standard parabolic subgroups, just as their component objects
do. This further allows us to identify flag-types with corresponding subsets of nodes
of the Dynkin diagram.

From the above, it is immediate that G acts transitively on the set of flags of each
fixed type. For this reason we refer to §(G) as a flag-transitive geometry. Further
note that this identification establishes that flag geometries themselves are coset
geometries, although of a much higher rank.

6.3 Subgeometries

Let G be a rank-n geometry, and let K C I be a specified set of object types of size
k = |K|. Then one obtains a k-rank subgeometry G of G by restricting the set of
objects of G to those of type i, for all i € K. Incidence in Gk is simply the restriction
of incidence in G to objects of said type.

It is straightforward to see that the natural embedding Gx — G yields a cor-
responding embedding of flag geometries F(Gx) — F(G), where the flag-types in
§(Gk) consist of all nonempty subsets of K. In this sense we may regard §(Gr) as
a sub-flag geometry of F(G). (In the literature, the term residual geometry is some-
times used.) Still, there are subgeometries of §(Gx) that are not sub-flag geometries
yet are important in their own right.

For example, the rank-n geometry G from which §(G) was initially constructed
can be realized as such a subgeometry. Indeed, given any object « in G, we may
identify it with the minimal flag {a} in §(G). Moreover, o and § are incident in G
iff {o, 5} is a flag in F(G), that is, iff {a} and {8} are incident in F(G). Therefore,
as required of any subgeometry, the incidence relation on G is the restriction of the
incidence relation on §(G).
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6.4 Geometric actions

Let us now recount the four standard geometries that arise naturally from a group G
of Lie type. Recall that these geometries are denoted G, §(G), W, and F(W). The
first two will be referred to as Lie geometries, and the last two as Weyl geometries.
Further, we call the action of G on any of these geometries a geometric action.

At this stage, we refine some of our existing notation to more vividly reflect the
set of objects in a geometric action (G, §2). Henceforth:

(a) (G, @) will be denoted (G,~(G)), where v(G) := U ,(G: P),

(b) (G,§(G)) will be (G, F(G)), where F(G) == U,;c;(G: Py),

(c) (W, W) will be denoted (W, v(W)), where v(W) := ;_,(W:W,),

(d) (W, §(W)) will be denoted (W, F(W)), where F(W) := | ;c (W :W)).

In fact, all mentioned geometries live inside the flag geometry §(G). Indeed, we
have already observed that the Lie geometry G may be embedded in its flag geometry
§(G). Clearly, the same procedure may be applied to obtain an embedding of W in
3OV).

To complete the picture, we claim that F(W) is a sub-flag geometry of §(G).
Observe that this is tantamount to showing that (W) may be identified with a
subset of v(G). Recall that the Lie geometry G is constructed subject to a fixed
choice of Borel subgroup B of GG. Let T be a maximal torus in B. Then the set
v(W) may be identified with the set y(G)r of T-invariant objects of v(G), see [4].
Thus the picture is complete.

Example 3. Let us return to the classical projective plane PG(2,q) constructed
from the group G = As(q) = PGL(3,q) of Example 1 with n = 2. Here G is a
rank-2 coset geometry, hence there are precisely three flag-types in §(G), namely
{1}, {2} and {1,2}. Flags of type {1} and {2} correspond, respectvely, to cosets of
the maximal parabolics P, and P, of G. Those of type {1,2} correspond to cosets
of B=P,NPinG.

We may further use a familiar model of PG(2,q) to identify flags. Namely, we
associate type {1} flags with one-dimensional subspaces V; of GF(Q)3, type {2}
flags with two-dimensional subspaces V3, and type {1,2} flags with chains of the
form V; < V5.

If we now pass to the Weyl geometry §(W), the generalized 3-gon reduces to an
ordinary 3-gon, that is, a triangle. This makes perfect sense if we recall that the
Weyl group of Ay(q) is W = S5. Indeed Sj is isomorphic to the dihedral group of
order 6 which acts naturally on the triangle. O

More generally, one can consider the flag geometry §(G) where G is the rank-n
geometry of the group G = A,(q) = PGL(n + 1,q). In this case G is the classical
projective geometry PG(n,q), and just as in Example 3 we may identify flags as
chains V; < V5 < --- <V, (r < n) of embedded subspaces of GF(q)"™! of increasing
dimension. The flag-type here may be taken to be the set {ny, ns,...,n,} of dimen-
sions n; = dim(V;). Note that when n = 2, these flag-types coincide with the ones
given above.
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7 Orbitals and the double coset algebra

7.1 Double coset algebra

Let G be a group, and let H and K be subgroups of G. For each g € G we define
HgK :={hgk | h € H k € K}, and refer to it as an (H, K)-double coset of G. We
denote the set of all (H, K)-double cosets of G by H/G\K. It is easy to see that
H/G\K forms a partition of G, and that each HgK is simultaneousy a union of left
cosets of K in G and a union of right cosets of H in G.

Now consider all (H, K')-double cosets as H and K vary over a prescribed set of
subgroups X = {Ly, Lo, ... L.} of G. We denote the totality of double cosets varying
over these subgroups by ¥/G\X.

We may define a vector space structure on /G\X by linear extension, that is,
its elements are formal linear combinations of L;gL;, 1 < 4,j < r. In this manner,
{L;gL;}1<i j<r forms a natural basis for X/G\X.

Now fix H, K, L € ¥ and g1, 9, € G. Decompose Hg; K and Kg,L as respective
unions of right cosets of H and left cosets of L as mentioned above:

HgK =|JHa;,  and  KgL=|Jb,L.

J

For each g € G, denote ¢, = |{(4, ) | a;b; € Hg}|. We may then define a multiplica-
tion on ¥/G\X according to the rule:

Hp K - KgoL = ch(HgL) )

geT

where the summation ranges over a transversal 7 of left cosets of H in G. This gives
¥ /G\X the structure of an algebra. We call it a double coset algebra.

7.2 Relation to orbitals

Double coset algebras are especially important to us for two reasons. First, if the
subgroups that comprise ¥ are interpreted as stabilizers of orbit representatives of a
group action (G, ), then each double coset H;gH; corresponds to a unique orbital
O of (G,Q), via
O = {(zH;,yH;) | Hix"'yH; = H;gH;} .

Second, if GG ia a group of Lie type and W is its Weyl group, then the two double
coset algebras that correspond to the geometric actions (G, F(G)) and (W, F(W))
are isomorphic, see [7].

This second property, which is a feature unique to groups of Lie type, establishes
a natural bijection between the orbitals of (G, F(G)) and those of (W, F(W)). In-
deed, due to the Bruhat decomposition G = BW B, coupled with the fact that B
is contained in every standard parabolic subgroup P;, we may express the double
coset Py gPj, as PjwP;, for some w € W. This establishes a canonical bijection
of orbitals in the frames of double cosets, namely PjwPj, <> W;wW,,. A major
consequence of this is that the orbital structure of (G, F(G)) does not depend on the
field over which the group G is defined.
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7.3 Modes of representation

Communicating with machine requires that the chosen language be numerical. From
our discussion above, we observe that one possible way to represent an orbital O
consisting of ordered pairs of flags (Fy, Fy) is by a triple (Ji, J2, M), where J; is
the flag-type of Fi, J; is the flag-type of Fy, and M is the |J;| X |Jo| matrix whose
(J1,j2) entry is P; gP;, for suitable g € G, where (ji, j2) ranges over J; x J. But
since (G, F(G)) and (W, F(W)) have isomorphic double coset algebras, we may also
represent each Pj gP;, by W; wWj, for suitable w € W. As already mentioned, this
latter representation is preferred since the action (W, F(W)) is field-independent.

However, one is not confined to the use of double cosets for the entries of ma-
trix M in our triple. Indeed, there are more convenient parameters that uniquely
characterize the orbitals of (G,~v(G)) (see, for example, [13]). We illustrate this
directly.

Example 4. Let us again consider the Chevalley group G = A,,(¢). Recall from Ex-
ample 3, and the discussion immediately thereafter, that a flag F' may be identified
with a chain V} < V5, < --- < V, of embedded subspaces of increasing dimen-
sion. Recall further, that the flag-type ¢(F) may be identified with the sequence
{dim(V}), dim(V3), ..., dim(V})}.

Now, let Fy, F» € F(G) have respective chains

X1<X2<"'<XT and Y1<Y2<"'<Y:g.

For each 1 <i < rand 1 < j < s, the orbital O of (G,v(G)) containing (X;,Y;)
can be characterized by the value a;; = dim(X; NY;). Consequently, we may now
characterize the orbital O of (G, F(G)) that contains (Fy, F») by the triple (Ji, Ja, A),
where J; = {dim(X;) |1 < i <r}, Jo = {dim(Y;) | 1 < j < s}, and Aisther x s
matrix whose (7, ) entry is a;;.
In fact, alternate characterizations exist for the orbitals of (G, F(G)) when G =
A, (q). For example, in place of matrix A = (a;;) one can instead consider matrix
B = (b;), where b;; is the dimension of the affine variety (X; — X;_1) N (Y; — Y,_1).
The advantage here is that this description allows one to determine precisely which
matrices B can actually arise. Indeed, a necessary and sufficient condition is that
D by =dim(X;) and Y by =dim(Y;) VI<i<r VI<j<s.
j=1 i=1
Observe that in the case of maximal flags, both A and B correspond to permutation
matrices.
As a final illustration, one can also characterize orbitals of (G, F(G)) in terms of
orbitals of (W, F(W)). This amounts to replacing vector spaces with subsets of an
(n + 1)-element set. 0

8 Characterization and recognition via incidence chains

We have just seen how the objects in v(G), where G = A,,(q), may be represented as
chains of embedded subspaces. This general mode of representation can be extended
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to other classical Chevalley groups by passing to, for example, totally isotropic sub-
spaces. Still, it is difficult to apply this sort of model to the exceptional Chevalley
groups. What we seek is a more universal approach, that is, one that will not vary
with the choice of Chevalley group G. The following concept provides a promising
pathway.

8.1 Incidence chains

Let G = G,(q) be a group of Lie type. We call an ordered sequence x = (z¢, 1, . . .,
x) of objects z; € v(G) an incidence chain (or simply chain) from « to  provided:
xog=a, s =, and x; Zx; 1 for all 0 <i < s—1. We refer to s = [(x) as the length
of the chain, and to t(x) = (t(x¢), t(z1),...,t(zs)) as its type.

The notion of a chain applies equally well to objects from the Weyl geometry (just
replace y(G) with (W) in the above definition). However, this is already implied
from the identification of v(W) with the set v(G)r of T-invariant objects of v(G),
see Subsec. 6.4.

A chain x from « to 8 will be called a key chain provided the following hold:

(i) x contains no proper subchain from « to f (i.e., x is irreducible),

(ii) x is the unique chain from « to f of type t(x),

(iii) x is of minimum length among all chains satisfying (i) and (ii).
We denote by KC(a, 3) the set of key chains from « to 5. Note that KC(«, 5) may
be empty for certain a, 5 € v(G).

Lemma 1 Let x be a chain that satisfies condition (ii) above. Then the double-point
stabilizer G, g fizes X.

Proof. Let y = g-x, where g € G, . As g stabilizes a and 3, it follows that y is also
a chain from a to 5. But t(y) = t(x), since object type is G-invariant. Thus y = x
follows from (ii). O

It turns out (see [4]) that each orbital of (G,~(G)) contains exactly one repre-
sentative coming from (W) x (W) of the form (P;, wP;), where w is a word of
minimum length in PwP;. (Here, words in W are expressed as products of funda-
mental reflections.) In this instance we call (P, wP;) a standard pair.

Lemma 2 Let (o, ) be a standard pair, and let x € KC(o, ). Suppose x =
(o, x1,...,25-1,0). Then x; € y(W) foralli=1,2,...,s— 1.

Proof. From Lemma 1, each z; is invariant under the action of the double-point
stabilizer G 3. But here Gpp3 = Piﬂijw_l for some i,j, and some w € W.
As T C wBw™! for all w € W, it immediately follows that T is a subgroup of
P,NwPjw~!. Thus each z; is T-invariant, i.e., x; € y(W). O
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8.2 Key data and the orbital key

Recall that KC(«a, ) may be empty for certain «, 5 € v(G). Clearly, this property
is satisfied for all pairs in the orbital O to which (a, #) belongs. In such case, we
refer to («, ) as a residual pair, and to O as a residual orbital.

Conversely, all non-residual orbitals consist only of non-residual pairs. For («, /3)
a non-residual standard pair, we denote by Data(c, ) the set of all types ¢(x) of
chains x € KC(«, ). Since Data(a, 3) is uniquely determined by the orbital O that
contains (a, 3), we may express it simply as Data(Q). We call Data(O) the key data
for O.

The next lemma is critical to the fulfillment of our objective. Its proof is highly
technical so will not be presented here. However in what follows we give a fairly
rigorous account of the steps involved.

As a consequence of Lemma 2 and the existence of a standard pair, each key
data set Data(Q) may be completely characterized in terms of key chains in (W).
By Lemma 1 the objects comprised in these chains must be invariant under the
appropriate double-point stabilizers. Objects in v(1¥) may be deduced from [19], at
which point both the orbitals of (W, ~v(W)) and the relevant double-point stabilizers
may be computed (see [5] for the exceptional group case). These stabilizers suffice
to determine a natural basis for the corresponding Boolean algebra, from which all
invariant chains in (W) may be determined. The key chains are easily identified
among these invariant chains, leaving verification of the lemma to a straightforward
comparison of the resulting key data sets.

In Section 10, we provide a proof of Lemma 3 for the special case of a Chevalley
group of classical type A, (see Lemma 7). As well, we construct a natural basis for
the Boolean algebra corresponding to each Chevalley group of classical type B,,, C,
or D, leaving to the interested reader the task of determining (invariant) key chains
in the corresponding Weyl geometry.

Lemma 3 (i) Let v;(G) denote the set of objects in v(G) of type i. Then for each i

and j, there exists at most one residual orbital O of (G,~v(Q)) that is contained in

24(G) % 4(G).

(i) Data(O;) (| Data(Oz) = 0 whenever Oy and Oy are distinct orbitals of (G, v(G)).
O

By Lemma 3 (i), each set 7;,(G) x 7,(G) contains a unique residual orbital or
none at all. In the latter case, let us choose an orbital O C 7;(G) x 7;(G) for which
Data(Q) contains a chain type t of maximum length I(t). We call O a pseudo-residual
orbital.

The role of the pseudo-residual orbital is to bring conformity to the procedure of
orbital recognition. Our rationale in choosing an orbital with key chain of maximum
length is simply because, computationally speaking, such a chain is the most logical
one to avoid.

Unless otherwise indicated, we shall no longer make a distinction between residual
and pseudo-residual orbitals, using the term p-residual for both. Thus every set
7i(G) x v,(G) contains exactly one p-residual orbital.
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We are now in a position to define the (i, j)-orbital key Key,;;(G). For each
orbital O C v;(G) x 7;(G) that is not p-residual, we choose a single representative
t € Data(O). We define Key,;(G) to be the set of all such representatives.

8.3 An orbital recognition scheme

For each i and j, the orbital key Key,;(G) completely characterizes the orbitals in
7i(G) x vj(G). Note here that the p-residual orbital is characterized by default, as
it is the only orbital in v;(G) x 7;(G) not represented in the orbital key. Thus the
union | J,; Key;;(G) provides a complete characterization of all orbitals in (G, v(G)).

The following theorem provides a fast orbital recognition scheme for the geometric
action (G,v(Q)).

Theorem 4 Given distinct objects n, & € v(Q), identify i and j for which (n,§) €
7i(G) x v;(G). If there ezists a chain x € KC(n, ) whose type t(x) coincides with
the type t € Data(O) C Key,;(G), then (n,§) € O. Otherwise, (n,§) is contained in
the p-residual orbital in v;(G) x v;(G).

Proof. This is an immediate consequence of Lemma 3. 0

The characterization scheme in terms of orbital keys, and the recognition scheme
in Theorem 4, are both universal, however our task is still not complete. Indeed, we
have yet to provide a characterization of orbitals in the manner proposed, that is, one
that enables fast orbital recognition in terms of systems of equations. To accomplish
this, we will need to first transform our present characterization to the language of
Coxeter traces. Following this, we will need to establish how v(G), subject to the
benefits of this transformation, may be embedded in the upper Borel subalgebra £Y
of the Lie algebra for G. We are now prepared to address the first of these two tasks.
The second task will be carried out in Sectiion 9.

8.4 The Coxeter trace

Consider the action of the Borel subgroup B on v(G). We call the orbits of (B, v(G))
Schubert cells. Schubert cells provide a very useful partition of y(G). Indeed, it is
well known that each Schubert cell C' contains a unique T-invariant object a € y(W),
see [4]. Thus we may write C' = C,, for this particular cell. Further, for every a € C,
we write a = Cox(a) and refer to it as the Cozeter trace of a. Evidently, the Coxeter
trace of each object in y(G) is an object in (W).

Lemma 5 Let a and b be incident objects in v(G). Then « and [ are incident
objects in v(W), where a = Cox(a) and = Cox(b).

Proof. Let a = gP; and b = ¢'P;. Since a and b are incident in v(G), we have
gP;Ng' P; # 0, in which case we may assume g = ¢’. This implies that the restriction
7’ of the incidence relation on y(G) to the set C, U Cp is nonempty. By transitivity
of the unipotent subgroup U on the edges of 7', we see that a and [ are incident in
v(G), whence a N 3 # 0. As o and 8 are objects in the Weyl geometry ~(W), we
conclude that they are incident in y(W) as well. O
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As a consequence of Lemma 5, we see that given any incidence chain x =
(zg,x1,...,xs) in the Lie geometry, we obtain a corresponding incidence chain
Cox(x) = (Cox(xg), Cox(z1),...,Cox(xs)) in the Weyl geometry. Let us refer to
Cox(x) as the trace chain of x.

Note that it may well be the case that Cox(x;) = Cox(z;42) even though x; # x;,2.
Let us call a chain y in the Weyl geometry thin if y is the trace chain of a unique
chain x in the Lie geometry. Otherwise, we call y thick. Observe that the trace chain
of a key chain is always thin.

8.5 Orbital recognition scheme #2

Recall that for 1 < 4,5 < n, the (4, j)-orbital key Key,;(G) is comprised of repre-
sentative types t € Data(QO) taken over all orbitals O in v;(G) x 7;(G) that are not
p-residual. Further recall that all chains in Data(Q) may be completely character-
ized by trace chains in v(WW). We are now prepared to exhibit an orbital recognition
scheme based purely on these trace chains.

Starting with an ordered pair (a, b) of distinct objects a,b € v(G), we follow the
ordered sequence of steps indicated below:

1. Identify i and j such that (a,b) € 7;(G) x v;(G).

2. For each t € Key,;(G) create a list L£(t) of all chains of type t that start at
a = Cox(a) and end at 8 = Cox(b).

3. If L(t) contains a thick trace chain, proceed to the next representative in
Key,;(G). Otherwise, check L(t) for the existence of a thin trace chain.

4. If L(t) contains a thin trace chain then (a,b) € O, where t is the representative
in Key;;(G) chosen from Data(O). Otherwise, (a,b) is contained in the p-
residual orbital in v;(G) x v,(G).

We shall soon see that steps 3 and 4 may be framed in the context of systems of
equations.

9 Embedding geometric actions in the Lie algebra

Let G = G,(q) be a group of Lie type with corresponding Lie algebra £. Recall that
our aim is to embed (@) in the upper Borel subalgebra £V of £. From our previous
discussions, this embedding will allow all geometric actions to be formulated inside
of £Y.

We provide below a fairly complete picture of the embedding procedure, however
the reader who wishes to acquire a deeper understanding should consult the arti-
cles [13, 20, 21, 22]. (See, also, [24] where this is accomplished using an alternate
notation.)



V. USTIMENKO AND A. WOLDAR / AUSTRALAS. J. COMBIN. 67 (2) (2017), 166-202 187

9.1 The embedding procedure

Let G be a group of Lie type with fixed unipotent subgroup U, Borel subgroup
B = N¢(U), Weyl group W, and Lie algebra £. Recall that the Schubert cells C,,,
where a € v(W), are the orbits of the permutation group (B,~(G)).

It turns out that for each a € (W), there is a unique subgroup U, of U that
acts regularly on C,, see [7]. This allows us to identify ~(G) with the set {(«a,a) |
a € (W), a € U,}. In light of this, our task of embedding v(G) in £V is reduced
to two essential parts: embedding (W) in £V, and similarly embedding U,, in £V
for each o € v(W).

Regarding the first part, it is in fact the case that (W) actually embeds in the
Cartan subalgebra 5 C £Y. We give here only a brief account of the details, referring
the interested reader to [12].

Consider the root lattice L, that is, the discrete lattice generated by the roots
in a fundamental basis II. It is well known that L resides in the vector space $*,
that is, the dual space of the Cartan subalgebra . Thus the dual root lattice L* is
contained in H** = . The Weyl group W acts on L* via the contragredient action
w-z* = (w!-x)*. With respect to this action, each orbit of (W, L*) corresponds
to the cosets of a unique parabolic subgroup of W. Conversely, since the dual basis
IT* resides in L*, the coset spaces (W :W;) correspond to the orbits W - r¥, where
r; € II. The embedding (W) < $) is thereby demonstrated.

As for the second part, it turns out that each U, actually embeds in the positive
root space £+ C £Y. To see this we first introduce a special family of subgroups of
the unipotent group U.

For each root r € @, consider the one-parameter subgroup of U defined by
X, = {x.(t) | t € GF(q)}, where z,.(t) = exp (tad(e,)). Here e, is the root vec-
tor corresponding to the root r, and ad: £ — End(£) is the adjoint map from £
into its endomorphism group, see [7].

We call X, a root subgroup of GG. Note that for every root r € ®, we have
x.(t1)x,(ty) = x.(t; + t3). Thus each root subgroup is isomorphic to the additive
group of the field GF(q) over which G is defined.

The set of positive roots @1 may be naturally ordered with respect to a Hasse
diagram, e.g., see [15]. Let us assume this ordering to be ®t* = {r{,ry,...,rn}.
Then we may factorize U as a product of positive root subgroups:

U= HXW (t) = XT'I (t1>X1"2 (tQ) o 'XTN (tN) :

This product is moreover a “standard factorization”, meaning that each element
u € U has a unique representation of the form

u =Ty (t1)xr,(ta) - -2y (tn), ti € GF(q), 1<i<N.

Thus we see that each v € U is uniquely determined by the ordered N-tuple
(t1,te,...,ty) € GF(¢)N. But this N-tuple may be envisioned as a vector in the
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positive root space £7, namely ¢, = Ziil tier,. The identification of v with ¢, em-
beds the entire unipotent subgroup U in £*. In particular, the subgroups U, are so
embedded for every a € v(W).

In fact, there is a very nice and useful description of precisely how the subgroups
U, embed. For any vector sum t = Zi]\iltierﬂ we define the support of t to be
Supp(t) = {e,, | t; # 0}. Now for each o € v(W), we define the set n~(a) := {e,,
a(r;) < 0}. (Here we are using the fact that since v embeds in §, it acts as a linear
functional on ®*.) Then elements of the embedded subgroup U, in £ are precisely
those t, for which Supp(t,) C n~(«).

By uniting these two parts we arrive at the desired embedding of v(G) in £V =
$H @ LT, Note that since we may now interpret the ordered pair («, a) as an element
of 5@ £+, we may alternatively express it in the form a +a € £Y. We shall adopt
this convention moving forward.

9.2 Type in the embedded geometry

For each dual root r} in IT* we consider the Weyl orbit W-r}. To each object o € W-r}
we assign the type t(a) = i. It is straightforward to see that the type function so
defined is consistent with the one defined for the pre-embedded Weyl geometry.

Similarly, for each a € W r} we consider the Borel orbit B-« (i.e., the Schubert
cell C,). To each v+ a € B - o, we assign the type t(a + a) = i. Note that objects
in B -« where o € W-r} correspond to the type ¢ objects of the pre-embedded Lie
geometry. Lastly observe that ¢(« + a) = t(«). This reflects the fact that « is the
Coxeter trace of a + a, see Subsec. 8.4.

Example 5. Let G = Ay(q) =2 PGL(3,q). Here v(G) = (G: P,) U(G: P,). In terms
of the embedded geometry v(G) — £V, the coset space (G': P;) is represented by the
union of Borel orbits | J, B-a, where o ranges over the Weyl orbit W r}. i =1,2.
As we have already seen, we can express the elements in the Borel orbit B-« in the
form o + a, where o € $ and a € £7.

In Table 1 we give an explicit description of all elements o + a. Note that we
indicate the coefficients in each expression by A (suitably indexed). These coefficients
assume values in the field GF(q).

type ‘ a ‘ a ‘ |B - af
1 Ty 0 1
1 T+ TS Ari €y q
1 =15 | ArgCry + AritraCritr 7
2 r5 0 1
2 ry—n; Arg €y q
2 =17 | Arery + A4 €2r 141y 7

Table 1: Objects in the embedded geometry of type A2(q)
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Recall that the Lie geometries of type As(q) are generalized 3-gons, i.e., classical
projective planes of order q. Note that there are exactly ¢ + ¢ + 1 objects of each
type. One may associate type 1 objects with projective points, and type 2 objects
with projective lines.

Example 6. Here we consider the group G = Bs(q). As G has rank 2 we again
have two types of objects in our geometry: v(G) = (G: P) U (G: P,), where P;, P,
are the maximal parabolic subgroups of G. As in Example 5, we provide a detailed
description of all elements o + a in the embedded Lie geometry, see Table 2.

type a a |B -«
1 Ty 0 1
1 | —rf+2r; Ary €1y q
1 Ty —2r; Ars€ry + Aryrs €yt ¢
1 _TT )‘h €r, + )‘T1+1"2€1"1+T2 + )‘21"1+1"2€21"1+1"2 q3
2 r5 0 1
2 ry—n5 Ay €y q
2 TS Ari€ry + A2ry1r2€2r 47 ¢
2 _r>2k )‘7’2 €y + )‘7’1+T2€T1+7’2 + )‘27“1-1—7“2627“14—7“2 q3

Table 2: Objects in the embedded geometry of type Ba(q)

In this case v(G) is a generalized 4-gon. Note that there are ¢*>+ ¢*+¢+1 objects
of each type. We may associate the type 1 objects with points of the 4-gon, and type
2 objects with lines.

9.3 Incidence in the embedded geometries

Now that we understand that every object in v(G) may be identified with an element
a+a € £Y we need to address the issue of incidence. Clearly we require that o+ a
and 3 + b be incident in £V if and only if they represent an incident pair of objects
in v(G).

We first observe that since o and [ are elements in §), they act on the root system
® by linear extension of the action of the standard dual basis IT* on II: 7 (r;) = d;5,
Vr;,r; € II. This allows us to define incidence in the embedded Weyl geometry as
follows.

Weyl incidence: a Ty B provided a(r)3(r) > 0 for all r € &F.

Let now a + a and 8 + b be two objects of the embedded Lie geometry. Then,
as is well known, the Lie product ¢ = [a + a, 8 + b] resides in £1. Let us define ¢ to
be the projection of ¢ onto the subspace of £% spanned by Supp(a) ) Supp(b). We
may now formulate incidence in the Lie geometry as follows.

Lie incidence: (a+ a)Zg (8 + b) provided a Zyy3 and ¢ = 0.
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We colloquially refer to the requirement ¢ = 0 as “vanishing of the Lie product”. It
is precisely here where the proposed systems of equations arise.

Theorem 6 Incidence, as defined above for the embedded geometries, coincides with
incidence in the (pre-embedded) geometries.

Proof. A full verification may be found in [20]. O

Example 7. We revisit Example 5 for the purpose of examining incidence in the
embedded Lie geometry of type As.

We first provide an incidence matrix for the embedded Weyl geometry, see Table
3. Note that the rows are indexed by objects of type 1 and the columns by objects
of type 2.

Ty Ti—Ty T
Ty 1 1 0
—ri+ry |1 0 1
-1} 0 1 1

Table 3: Incidence matriz for the embedded Weyl geometry of type Ag

As an example, let us demonstrate how one comes to the determination that
i Ty (r1 — r3). Here the set of positive roots is given by &+ = {ry, ro, ri +r2}. We
easily compute
ri(r) =1, ri(re) =0, ri(ri+mr) =1

(= r3)r) = L, (0} —r3)(re) = =1, (} —r3)(r +72) = 1

Thus by inspection, 75 (r) (r; — r3)(r) > 0 for all » € &t whence r} and i — 1} are
incident in y(W). As an example of contrary nature, note that r} is not incident to
—r since r{(ry)(—=r})(r;) = —1.

Regarding incidence in the embedded Lie geometry, we again provide the inci-
dence matrix (Table 4), as well as one detailed example.

T; r>1k B T; + VYra€ry _TT + Yr1€ry + Vri+r2€ri+rs
Ty 1 1 0
—ri + 15+ A€y 1 0 dab
=75 + Ary€ry + ArigraCrigry | 0 Ocd Ocf

Table 4: Incidence matriz for the embedded Lie geometry of type As.

In Table 4, each of 04, 0cq and d.s is the kronecker delta function, where a = 2X,,,
b=3%m; =2\, d=3y; and € = Ay iryy [ = Vrygry + Ay Yo
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It is fairly straightforward to verify that there are ¢? + ¢+ 1 objects of each type,
and that each object of type 1 is incident to exactly g + 1 objects of type 2, and
conversely. This is to be expected, since the Lie geometry is the projective plane

PG(2,q).
Finally, we illustrate how one determines the entry .y in Table 4. So let us
consider arbitrary elements oo + a = —r3 + A\, e, + Ay 1oy 40, and B+ b = —1] +

Vri€ri Tt Vri4raCritre where /\7“2’ )‘7’1+T27 Yris Vritrs € GF(Q)

From Table 3 we see that (—r3) Zyy (—r7), so we proceed to the condition involving
vanishing of the Lie product. Using bilinearity and skew-symmetry, together with
the facts that [, 9] = [/, €ry4ro] = [€ryy €r1trs] = [€r1 4195 €ry4rp] = 0, We may reduce
the computation of [a+ a, 3 + b] to

—Vr1 [T;’ 61"1] — VYritre [T;’ 61"1+1"2] + )‘1"2 [TT’ 61"2] - )‘Tz V1 [61"1 ) eTz] + Yri+re [TT’ 61"1+T2] .

The surviving Lie products may be calculated from the matrix representation pro-
vided in Example 2, namely

[T’;, 67’1] = —Cpy, [Tja 67“1-1—7“2] = €ri+ra, [TT’ 67’2] = —Cry, [67’1’ 67’2] = Critry -

Thus ¢ = [a +a,0+ b] = Vri€r1 — Arp€r, + (/\7“1+7’2 = Vritre — /\7“277“1)67’14-7’2 whence
T = (Nytre — Vridra — Mo Yry )Erir- Setting ¢ = 0 we obtain the incidence relation
Aritro = Vritrs + AryYr, Which coincides with the information conveyed by entry o,y
in Table 4. O

We customarily express this last incidence relation in Example 7 as

Aridrs = Vridrs = AryVr

to emphasize the fact that each element of the form —r] + v, € + Vi 4ra€rytry 1S
incident to a unique element of the form —ry + A\.,e., + A\ 4r0€r 40, ONCE a choice
for the value of \,, € GF(q) is confirmed. In fact, this property is satisfied for any
incident pair of objects in any Lie gometry. When one extends this methodology
from incident pairs to incidence chains, this is when systems of equations of this
general type emerge.

10 Invariant chains in classical Chevalley groups

In Section 8 we saw that each orbital O of a coherent configuration of Chevalley
type could be characterized by t = t(x) € Data(O), where x € KC(a, 8) with («, 8)
a standard pair in O. Thus given any pair (1,£) € v(G) x v;(G), to determine
the orbital to which (n,&) belongs it suffices to compare the types t(y) of chains
y connecting 7 to § with those from a specified list, i.e., the orbital key Key,;(G).
Moreover, we came to realize that these lists could be formulated purely in terms of
the Weyl geometry, that is, T-invariant chains where 7" is a maximal torus in the fixed
Borel subgroup. We referred to these as trace chains. Finally, as a consequence of
Lemmas 1 and 2, we noted that the objects in each considered chain are additionally
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invariant under the action of the appropriate double-point stabilizer in the Weyl
group W.

Thus, it behooves us to determine the relevant double-point stabilizers and their
corresponding sets of invariant objects in each considered case. In this section we
accomplish this for the Chevalley groups of classical type A,, B,, C,, D,. The
exceptional cases Gy and Fy are fairly straightforward due to their small rank, while
descriptions for the remaining exceptional cases, Fg, F;, Eg, may be obtained via
computer.

Such a description greatly simplifies the task of formulating orbital characteri-
zation and recognition schemes. In Section 11 we do exactly this for the classical
Chevalley group of type A, providing all relevant details.

10.1 The case A,, n > 1

Recall that the Weyl group W of type A, is isomorphic to the symmetric group S, 1.
Under this isomorphism we may identify the fundamental reflections w; € W with
the transpositions (i,7 + 1) in Sp41, 1 <@ < n. Recall that the maximal parabolic
subgroups of W are given by W, = (w, | j € I, j # i). Thus W; is isomorphic to the
subgroup S; X S,11_; of Spi1.

We may identify the geometry (W) with the set S = S(I) of proper nonempty
subsets of I = {1,2,...,n+1}. Under this identification, A € S has type t(A4) = |A],
and distinct objects A, B € S are incident if either A C B or B C A.

The orbital of (W,~(WW)) that contains (A, B) is uniquely determined by the
triple (|A|, |B|, |AN B|). Thus, for each 1 <4i,j < n the orbitals in v;(G) x v,(G)
take the form Oy, = {(A, B) | |A| =1, |B| = j, |AN B| = k}.

It is easy to see that double-point stabilizer W4 g of A, B € S is given by

Wy = Sym(X) x Sym(A — X) x Sym(B — X) x Sym(/ —Y),

where X = AN B and Y = AU B. The invariant objects of v(W) under the action
of W4 p are then the elements of the Boolean algebra with basis {X, A — X, B —
X, I —Y}. From this we obtain the following description of KC(A, B).

Lemma 7 Let A and B be distinct nonempty proper subsets of I. Then KC(A, B)
coincides with exactly one of the following:

(i) {
(it) {(A,X,B)} if A, B are nonincident, X #0,Y = 1.

} if A, B are incident.

(A,
(
(iti) {(A,Y,B)} if A, B are nonincident, X =0, Y # I.
(iv) {(A,X,B),(A,Y,B)} if A, B are nonincident, X #0, Y # I.

(v) 0 if A and B are nonincident, X =0, Y = 1.
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Proof. If A and B are incident then clearly (i) obtains. So assume otherwise. By
Lemma 1, all key chains in KC(A, B) must be fixed by the double-point stabilizer
W4, p. This implies that the only objects that can occur in such chains are precisely
the invariant objects described in terms of the basis for the corresponding Boolean
algebra. The result now follows from our previous description of all such objects. [J

Example 8. We once again return to PG(2, q), which is the geometry of the group
G = As(q) = PGL(3,q). We recall the two types of objects in y(G): points (type 1)
and lines (type 2). The larger flag geometry additionally includes point-line incident
pairs. We refer to point-line non-incident pairs as antiflags.

Let us frame our example in the context of the embedded Lie geometry. Thus,
objects of v(G) assume the form a+a € £Y, where £V is the upper Borel subalgebra
of £ = £(G). Recall that the Coxeter trace of o + a is given by Cox(a + a) = «, so
we may identify the sets A and B in Lemma 7 with o and . Let’s assume t(«) = 1
and t(5) = 2.

Here v(G) = 71(G) U~2(G). The geometric action (G, (G)) provides a coherent
configuration with eight orbitals. Two of these orbitals, A; and As, arise from fibers
and correspond to type 1 and type 2 objects. Since G is doubly-transitive on points
and lines of PG(2, q), another two orbitals take the form ©; = (11(G) x 71 (G)) — Ay
and Oy = (72(G) X 12(G)) — As. Since G is transitive on flags and antiflags, two of
the four remaining orbitals partition v, (G) X 72(G), viz.

F={(a+a,5+0b)|{a,G}is aflagin (W)},

A={(a+a,5+0b)|{a, B} is an antiflag in v(W)}.

That leaves as the two remaining orbitals the transposes F* and A* which partition
72(G) x n(G).
Observe that the mergings AjUA,, ©;U0,, FUF !, AUA! yield a symmetric rank
4 fusion scheme. These mergings are induced by a polarity of the projective plane.
We also note that the restriction of the geometric action (G,v(G)) to either v, (G)
or vo(G) results in a rank 2 association scheme (as a coherent sub-configuration).
Let us now better fit this example to the context of the present section. We start
by setting o = {1}, o/ = {2}, p = {1,2}, /' = {2,3}. This allows us to express the
standard pair in each orbital as follows:
(,a) € Ay, (6,0) € Ay, (a,df) €01, (B,0) € Oy,
(a,)e F, (a,p)e A, (B,a)e Ft, (f,a)ec Al
We next identify which specific case in Lemma 7 corresponds to each of these orbitals
(excluding those arising from fibers):

O ¢ (iil), O« (i), F+ (1), A+ (v), Fle (1), A< (v).
We may now provide an explicit list of key chains in terms of «, o/, 3, 3"
KC(a, o) = {(a, 8,0")}, KC(8,5) ={(B, </, )},
KC(a, 8) = {(a, 8)}, KC(a, ) =0,
KC(B, o) ={(B, )}, KC(B', ) = 0.
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In terms of the embedded Weyl geometry (cf. Table 3) this list becomes:
KC(O[,O/) = {(Ti T;, _TT + T;)}, KC(B,B,) = {(TS’ _TT + TS’ —TT)},

KC(O&, B) = {(TT’ TS)}’ KC(O[, 6/) = ®’

KC(8,a) = {(r3,r7)}, KC(B,a)=10.
The orbital keys are now formed as follows:

Key1(G) ={(1,2,1)}, Keyxn(G)=1{(2,1,2)},
Key,(G) = {(1,2)}, Keyy(G) ={(2, 1)}

Note that for every i, j there is exactly one p-residual orbital occurring in v;(G) X
%(G).

Given any pair of objects o+ a, 5+ b in the embedded Lie geometry, one can use
Table 4 to investigate KC(a+ a, 5+ b). Incidences in chains correspond to solutions
of linear equations of the kind witnessed in Example 7. If such a system of equations
has a unique solution, then the trace of the investigated chain is thin. From here all

that remains is a direct comparison of chain types using the orbital keys indicated
above. O

10.2 The case B,,, n > 2

Here the Weyl group may be interpreted as a group of affine transformations of an
n-dimensional vector space V,,(2) over the field GF(2). We explain this directly.

First observe that if we remove the rightmost node n from the Dynkin diagram
of type B,, we obtain the diagram of type A, ;. This implies that the maximal
parabolic subgroup W, of W is isomorphic to the Weyl group of type A, _1, that
is, the symmetric group S,. As such, we may identify the fundamental reflections
w; € W, i < n, with the involutions (i,7 + 1).

The parabolic W,, acts on V,(2) via permuation of coordinates of vectors. Now
define the mapping 7 : v +— v + (0,...,0,1). The W,-conjugates of 7 are the
mappings 7; : Vv — Vv + e;, where e; is the i-th standard unit vector in V,,(2). Thus
W, normalizes (71) X (79) X - - X (7;,) which gives W the structure of a wreath product,
viz. W = (w,) L W, = 5515, where we have identified the fundamental reflection
w, with 7. Here S,, acts on (1) X (12) X - -+ X (7,) by permuting direct factors.

This identification enables us to determine the structure of all maximal parabolic
subgroups W; of W for 1 <i <mn — 1. Namely, W; =2 S; x (Sg 1 5,_;).

The Weyl geometry of type B, may now be described as follows. We iden-
tify v(W) with the set S = {[A,¢] | A C I, A # 0, p: A = GF(2)} where
I ={1,2,...,n}. The type of [A,¢| is defined to be ¢([A,¢]) = |A]. The objects
[A, ], [B, ] € S are incident provided the following hold:

(i) ACBor BCA,
(ii) p(z) =¢(z) for allz € AN B.

The action of the Weyl group W on (W) is given as follows:
For (v;o) € S35, and [A, ¢] € S, we have (v;0)-[4, ¢] = [B,¢] where 0-A = B
and ¥ (z) = p(c7 ) + v|z (mod 2).
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The orbital of (W, ~y(W)) that contains ([A, ¢], [B,¢]) is uniquely determined by
the 4-tuple (|A], |B|, r, s), where r = |AN B| and s is the cardinality of the set
Ciapby) = {v € AN B | ¢(z) = ¢(z)}. Thus, for each 1 <4, j < n the orbitals in
7i(G) x v,(G) take the form

Ors = {([A, ¢}, [B.¥)) ||Al = 4,|B| = j, [AN Bl = 7, |Clapip)| = s}

Let us set X = AN B and C' = C4,,p,) in the above. It will be convenient to
assume that ¢ is constant on each of the sets C;, X — C, A — X, and similarly that
¥ is constant on C';, X — C, B — X. Indeed, such choices do not effect the orbital
O,s, and they allow a very nice description of the double-point stabilizer W4 4 (B,y]-
Namely, letting Y = AU B, we have that W4, B,y is equal to

Sym(C) x Sym(X — C) x Sym(A — X) x Sym(B — X) x (S2Sym(I —Y)).

Thus, the invariant objects of v(W') under W4 ) (8,4 are precisely those elements
[D,n] for which D is an element of the Boolean algebra with basis {C, X —C, A —
X, B — X} and 7 is constant on the members of this basis.

10.3 The case C,,, n > 2

This will be a very brief discussion, since B,, and (), have the same Coxeter diagram.
This means that the procedure for identifying invariant chains in the present case is
identical to the procedure just described for B,,.

This is not to suggest that the Lie geometries of B,(q) and C,(q) are isomorphic.
For n > 2, they are not. While there is no distinction between the orbital keys of
type B, and C,, the respective Lie algebras in which the geometries embed have
different rules of Lie multiplication.

10.4 The case D,,, n > 4

As in the case of B,, the Weyl group W of type D,, may also be considered as a
group of affine transformations on V,,(2), only here the transformations are of a more
sophisticated nature.

We first observe that the Dynkin diagram for D,, has two rightmost nodes, n — 1
and n. Removal of either node results in the diagram for A, 1, hence W contains
two copies of the symmetric group S,,. Let us denote these as S8 and S to
reflect the node that has been removed. Without loss of generality, we may identify
the fundamental reflections that generate 87(1") as w; = (i,i+1) for 1 <7 <n—1.

Before describing the only remaining fundamental reflection w,, we observe that
S and S5 correspond to the maximal parabolic subgroups W,, and W,_; re-
spectively. Furthermore, removal of node ¢ from the diagram identifies the maximal
parabolic W; up to isomorphism as S; x W(D,,_;) for 1 <i <n—3, and S,,_o X Zy X Zs
for i = n — 2. Here, we denote by W(D,,_;) the Weyl group of type D,,_;, and em-
phasize that W (D3) = W (A;) = Sy.

We now describe the action of W on V,,(2) via affine transformations, and identify
the fundamental reflection w, € W in the process.
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For v;b € V,(2) and ¢ € S consider all transformations of the form Orp -
v — o-v + b, subject to the requirement that ¥,c;b(z) = 0 (mod 2). These
transformations all reside in W, in fact W may be generated by W,,_; and the single
transformation 0,y with 0 = (n—1,n) and b = e,_; +e,,. Let us identify this latter
transformation with w,. We now see that W is isomorphic to a split extension of
(v)1 by S, where (v)* is the hyperplane in V,,(2) orthogonal to v = (1,1,...,1).

Regarding the objects of the Weyl geometry of type D,,, there is a proper em-
bedding of v(W(D,,)) in v(W(B,)), namely

Y(W(D,)) = {[A,¢] € y(W(B,)) | |A] #n—1}.

For objects [A, o] € v(W(D,,)) with |A| < n — 2, the notions of type and incidence
agree exactly with those expressed in the case of B,.

However, the situation is quite different for objects [I, ] € v(W(D,,)), where
I ={1,2,...,n}. Such objects are of two possible types, depending on the nature
of ¢. Specifically, we have

_fn—1if 3 _,e(x) =1 (mod?2)
tl1, o]) = {n it S, ¢(x) =0 (mod 2)

Incidence is just as in the Weyl geometry of type B, provided at most one of
the objects under consideration has type ¢ > n — 1. Thus it remains to describe
incidence between pairs of objects [I,¢], [I,¢] € y(W(D,,)) where t([I,¢]) =n —1
and t([/,v]) = n. Here [I, ] is incident to [I,v] precisely when |C| = n — 1, where
C = C 4.1 is as defined in the B, case.

We now specify the orbitals in v;(G) x v;(G) for 1 < 4,j < n. These are most
easily described in terms of the orbitals O, in the Weyl geometry of type B,,. There
are seven cases that arise.

1. 1<4,j<n—-2) O, where |[A| =i and |B| = j.
2. (1<z’<n—2 j—n—l)

= {([A.¢,[B.¢]) € O, [|A] =i, ([B,¢]) =n — 1}
3. (1<z<n—2 j_n)
Ol ={([A, ¢l [B,¥]) € Oy | |A| = i, t([B,4]) =n}

4. (i=j=n-— 1)
O = {(IL.¢]. 1.9]) € Ous | (L, 0]) = t([1,4]) = n— 1}
5. (i=n—-1,7=n)
O = {(I1, ¢, [1.¢]) € O [ (1, ¢]) = n — 1, 1([I,¥]) = n}
6. (i=n,j=n—1)
O = {([1, ), 1, ¢]) € Ons | ([T, ¢]) = n, t(L,0]) =1 — 1}
7. (i=j=n)
0% = {(IL, 9], 1, ¥]) € O | 1L, ¢]) = t([,0]) = n}
The reader will observe that O,; = O, |J O/, and O, = U¢:1 o8,
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Moreover O = O = @ for n — s even, and O = O = 0 for n — s odd.

The double-point stabilizer W4 5,4 of [A, ¢] and [B, ] is given by
Wiael, By = Sym(C) x Sym(X — C) x Sym(A — X) x Sym(B — X) x H(Y)

where, as usual, we denote X = AN B and Y = AU B. In the above, H(Y) =
W(Dy—yy)) for |Y| <n—=3, HY) = Zy x Zy for |Y| =n —2, and H(Y) =1 for
Y] > n—1. As in the B, case, we assume ¢ and v are constant on the subsets
C, X —C, A— X, B— X on which they are defined.

A description of the invariant objects [D,n] € v(W) under Wi o) 8,y depends
on the cardinality of the set Y, as we now explain.

For |Y| # n—1, [D,n] is invariant precisely when D is an element of the Boolean
algebra with basis {C, X —C, A— X, B— X} and 7 is constant on all members of
this basis. The same description obtains when |Y| = n—1, except that in this case
we must include as invariant objects all [I,7] € v(W) for which 7 is constant on the
members of the basis.

11 Explicit characterization and recognition schemes for A,(q)

Let o +a and 3 + b be elements of the embedded Lie geometry of A,(q) in £Y. In
this section we provide a recognition scheme for determining the orbital to which
(a4 a, 5+ b) belongs. An accompanying flowchart is depicted in Fig. 2.

However, prior to orbital recognition we will need an efficient orbital charac-
terization scheme in place. Observe that there are two practical choices for the
representative of Data(Q) corresponding to case (iv) of Lemma 7. At first glance it
may seem that either choice violates the disjointness property of key data established
in Lemma 3 (ii). But upon closer examination we see this is not the case.

For example, if we choose our orbital representative in case (iv) to be t = (i,r, j)
where r = |AU B|, then necessarily i+ 7 < r. Thus, there is no conflict with case (iii)
which can only arise when i+ 7 = r. Similarly, if we choose our orbital representative
in (iv) to be t = (i, k, j) where k = |A N B|, then we must have i + j < n + 1. This
does not conflict with case (ii) which requires that i + j = n + 1.

Also note that v;(G) x v;(G) contains a residual orbital only when i+ j =n+1
(case (v) of Lemma 7). Thus for all 4, j that satisfy i + j < n + 1, we are free to
choose a pseudo-residual orbital.

Let us base our orbital characterization scheme on the following choices:

(a) t = (i, k,j), as described above, will be the orbital representative corresponding
to case (iv) of Lemma 7 for every i, j,

(b) the orbital corresponding to case (iii) of Lemma 7 will be the pseudo-residual
orbital for every ¢, 7 for which 1 + 7 < n + 1.

Such choices give us a clear computational advantage. Namely, all chain types of the
form (i, k, j) € Key;;(G) must satisfy & < min (4, ).
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ves Output
£a+a=5+b?]—> (a4 a,5+b)
is contained in Ay
no - J
Output
a+a, F+0
incidfnt e (@ +a,6+b)
in 7(G) ? is in the orbital of
: type (¢(),t(3))
no

Choose 7 in
TW) - X

3 unique ¢ in (o Sl;t%ui b)
t(n) < Yo |Gy nLhst ) yes is in the
no min(t(a), t(B)) ? (a+an+cB+0) orbital of type
is a chain in v(G
. 1 (t(a), t(n). 1))
X =XU{n} o
X =yW)? |
yes
Output
(a+a,0+0b)
is in the p-

residual orbital
Of 'Yt(a)(G) X
Yu3)(G)

Figure 2: Orbital recognition scheme for the Chevalley groups A, (q)



V. USTIMENKO AND A. WOLDAR /AUSTRALAS. J. COMBIN. 67 (2) (2017), 166-202 199

Theorem 8 Let G be a classical Chevalley group of type A, and let W be its corre-
sponding Weyl group. Let o+ a and B+ b be elements of the embedded Lie geometry
Y(G) — &Y with t(a) = i and t(B) = j. Then exactly one of the following occurs:

(1) o +a=p+b. Here (a4 a,B+ b) is contained in A,.

(2) a+a and B+ b are incident in the Lie geometry. Here (a+ a, 3+ b) is in the
unique orbital O for which t = (i, j) € Data(O) C Key,;(G).

(3) o+ a and B + b are non-incident in the Lie geometry, and there ezists an
element n in the embedded Weyl geometry v(W) < $ such that:

(3.1) t(n) < min (4, ),

(3.2) the system of linear equations in the variable ¢ arising from the Lie geo-
metric incidences (o + a) Zg (n+c¢) and (n+ ¢)Zg (B + b) has a unique
solution.

Here (a4 a, + b) is in the unique orbital O € ~;(G) x v;(G) for which

(4) a+a and B+ b are non-incident in the Lie geometry, and there does not exist
n € v(W) that fulfills 3. Here (o + a,5 + b) is in the p-residual orbital in

7i(G) x v;(G).

Proof. Clearly (1) and (2) are valid disjoint outcomes, so we may assume that o +a
and [+ b are distinct non-incident objects in v(G). We claim that all cases in which
a and ( are distinct and non-incident objects in (W) follow directly from Lemma
7. Indeed, if case (v) of Lemma 7 obtains then (a+ a, 8+ b) belongs to the residual
orbital in 7;(G) x 7;(G), and if case (iii) obtains then (a4 a, 8 + b) belongs to the
pseudo-residual orbital in v;(G) x v;(G). Note that these are disjoint cases, as they
require different values for the sum ¢ + j. Both cases result in outcome (4).

Likewise, cases (ii) and (iv) of Lemma 7 are disjoint in the manner just described, and
in each case we must eventually encounter an object n € (W) for which outcome (3)
obtains. This is unavoidable, due to the choices we made in formulating our orbital
characterization scheme (fulfillment of (3.1)), and the fact that there must exist a
chain in v(G) of suitable type whose trace chain is thin (fulfillment of (3.2)).

The remaining cases must be treated with care since Lemma 7 no longer applies
to them. These are the cases in which the Coxeter traces «, 8 are either equal or
incident, where we continue to assume that o+ a and §+ b are distinct non-incident
objects in v(G).

We claim that each case corresponds to one that we have previously treated. To
prove this we consider the standard pair (7, ) in the orbital O to which (a+a, 3+ b)
belongs. Note that this standard pair will vary with each considered case, because
when o =  we have O C v;(G) x 7;(G), whereas when «,  are incident we have
O C 7i(G) x vj(G) where i # j.
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We first observe that n must be non-incident to & since otherwise o + a would be
incident to S + b, a contradiction. Also 1 and £ must be distinct since otherwise O
embeds in the diagonal Ag, again a contradiction. As n and £ are distinct and non-
incident, and as the types of chains in KC(« + a, 3 + b) coincide precisely with the
types of chains in KC(n,£), we see that these two cases have already been treated.
Indeed, each such case aligns with either outcome (3) or outcome (4). O

REMARK. The authors have devised a similar orbital recognition scheme for the
remaining classical Chevalley groups (curiously, the same recognition scheme works
for B, C,, D, alike), but it is a bit too unwieldy to present here. They have
also worked out explicit orbital characterizations for the twisted groups of Lie type,
however the underlying theory involves an added layer of complication that would
cause the present paper to exceed reasonable length. This is why we have chosen
to restrict our attention to geometric actions of Chevalley groups. A treatment of
orbital characterization and recognition for the twisted groups of Lie type will appear
in a future article.
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