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Abstract

A string is strongly square-free if it contains no Abelian squares; that is,
adjacent substrings which are permutations of each other. We construct
all 117 strongly square-free finite strings on an alphabet of three letters.

1 Introduction

An ordered sequence X= z1z;-- -, of elements chosen from a fixed finite set, A,
of distinct elements is called a string of length |x| = n over the alphabet A. The
empty string is denoted by A. The ordered sequence z;x;yy -+~ x; is a substring of
xif 1 <1 < j < n. In the interests of notational convenience and without loss
of generality, we choose 4 = {0,...n — 1} for fixed n > 1.as the alphabet. Every
element of the alphabet is also a string. For each o € A we define a function |x]|, to
be the number of times that o appears in the string x. We freely concatenate strings
and write the concatenation of strings x and y as simply xy. If a string x=uv is the
concatenation of two strings u and v then w is said to be a prefiz of x and v is said
to be a suffiz. If v# A then u is said to be a proper prefiz of x. Similiarly, if us A
then v is said to be a proper suffiz of x. If Sy, S; are sets of strings and x is a fixed
string then we use the notation

Sox5; = {uxv |u € So,v € 5i1}.

A string which consists of the concatenation of two equal substrings is called a
square. A string without any substrings which are squares is said to be square-free.

For example, over the alphabet {0,1}, 010010 is a square which contains another
square 00 and it is a substring of 10100101. The strings 010 and 101 are square-
free and, moreover, they cannot be extended by concatenation on either the right or
the left without creating a square. Thue [14] observed that every two-sided infinite
square-free string x over {0, 1,2} is a product of strings from the set:

01 012 0121 02 021 O0212.
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It has been shown by Ross and Winkleman [12] that over any alphabet of at least
three elements, the set of strings containing “squares” is not context-free,

An Abelian square is the concatenation of a string with a permutation of itself.
Over the alphabet {0,1}, 010100 is an Abelian square which contains the squares
0101, 1010, and 00. Since every square is an Abelian square, 010100 contains 4
Abelian squares. More formally:

Definition 1 An Abelian square is a non-empty string of the form
BB” = by by - bor)

where o is a permutation of {1,...,k} . A siring is said to be strongly square-free
if 1t contains no Abelian squares.

Over the alphabet A = {0,1,2}, the string 012201 is an Abelian square but
0102010 does not contain Abelian squares and cannot be extended over the alphabet
A = {0,1,2} without introducing Abelian squares. Clearly every strongly square-
free string is square-free. Main [10] has shown that, for every alphabet with at least
16 elements, the set of strings which contain Abelian squares is not context-free. In
a different direction, Entringer, Jackson, and Schatz [7] proved that every infinite
binary string has arbitrarily long Abelian squares. Dekking [2] has shown that there
exist infinite binary strings in which no four adjacent substrings appear which are
permutations of one another; i.e., no two Abelian squares are adjacent.

Apparently Erdds {8] first raised the question of the minimum alphabet size over
which there exist infinite strings without Abelian squares. This was a variant of
the corresponding problem for squares raised and solved by Thue [13] in 1906. In
1970 Pleasants [11] showed that there existed an infinite strongly square-free string
on an alphabet of 5 elements. This result was recently sharpened by Kerinen [9]
who showed the same was true for an alphabet of 4 elements, with a computer-aided
proof. Tt was shown in [5] that every coordinate sequence of a binary Gray code of
order n with one integer in the sequence deleted is a strongly square-free string of
length 2™ — 1. The purpose of this paper is to prove there are 117 distinct strongly
square-free strings on {0,1,2} and explicitly construct them. Accepting the result
by Keranen [9], the case of just three letters is seen to be important because it is the
last case for which all strongly square-free strings are finite.

It is folklore that any strongly square-free string over {0, 1,2} has length < 7 [1].
This can be established, say, by diligently constructing the tree of possible strongly
square-strings starting with 0 and observing that starting with 1 or 2 would yield
the same tree.

Clearly, 0,1, and 2 are strongly square-free and 01 10 02 20 12 21 are the
only strings of length 2 that are strongly square-free over {0, 1,2}. It is easy to write
down the strongly square-free strings of length 3 as the next step, but we refrain
here because they will be listed as elements of larger sets. The strongly square-free
strings of each length 1,...,7 over {0,1, 2} are listed together as an appendix.

260



2 Central Strongly Square-Free Strings

In this section we discuss a class of strongly square-free strings which are obtained
recursively from strongly square-free strings over smaller alphabets.

Definition 2 A string is said to be central if it contains a € A such that |x|, = 1.
A set of strings S is said to be central if there exists a € A such that |x|, = 1 for all
xX€ S,

It is easy to see that the only strongly square-free strings on the binary alphabet
{0,1} are
Sor ={0 1 01 10 010 101}.

Note that each of these strings is central. In the same way, we get complete sets
of strongly central square-free strings:

Sez={0 2 02 20 020 202}

on {0,2} and
S1z={1 2 12 21 121 212}

on {1,2}.
Lemma 1 will show the sets

5120812 So021502 5012501

are strongly square-free strings. All the strings in these sets have length at least 3
and each set contains 36 strings. However, there are strings that appear in more
than one of the sets. In Lemma 2, we determine the intersections of these sets.
Further, all central strings with length > 3 over the alphabet {0,1,2} are in one of
these sets. The following lemma yields a general technique for constructing central
strongly square-free strings on arbitrary alphabets.

Lemma 1 Ifw and o' are strongly square-free strings over an alphabet A and a € A
does not appear in w or w' then waw' is strongly square-free.

Proof. Suppose waw’ contains an Abelian square BBY, where o can be any permu-
tation of B. Then, BB” cannot be a substring of w or ' since they are strongly
square-free. Therefore, either ¢ occurs in B or ¢ occurs in B. But since B is a
permutation of B, a must appear in both B and BY, contradicting the assumption
that o appears only once in wew'. O

Note that if e € {0,1,...,n — 1} does not appear in w or w' then both w and '
are necessarily strings over an alphabet of at most n — 1 elements.

Lemma 2

5120812 M Spp180; = {2012 2102 20212 21202}
5120512 N 5612501 {1201 1021 12101 10121}
S021502 N 8012501 {0210 0120 02010 01020}.

i
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Proof. The strings in these intersections are all strongly square-free by Lemma.
1. Letx € 5120312 N 5021302. Then

x = ulv = ylz (1)

for some strings u,ve Sy and y,2€ So,. From (1), either u=y, or u is a prefix of y,
or v is a prefix of u. But if u=y then 0 = 1, which is impossible.

If u is a proper prefix of y then u also is in Sop because it is easy to see that Sy,
is closed under the taking of prefixes. But Si53 N Sz = {2}. Therefore, u= 2 and so
y can only be one of 20 or 202. If y= 20 then (1) becomes x= 20v= 201z which
implies that v= lz. In the same way, if y= 202 then (1) becomes x= 20v= 2021z
which implies that v= 21z. In either case, z is a proper suffix of v. Since S, is
closed under the taking of suffixes we conclude that ze Sy, N Soy = {2}. Therefore,
z= 2 and so v can only be one of 12 or 212. It follows that

5120512 n 5031502 = {2012 20212}

in this case.
If y is a proper prefix of u then a similiar argument shows that in this case

5120512 M So02180, = {2102 21202}
We conclude that
5120512 N So2180; = {2012 2102 20212 21202}.
In the same way we establish that
5120512 N 501250, = {1201 1021 12101 10121}

and
5021502 n 5012501 = {0210 0120 02010 01020}

This completes the proof. O
Note that necessarily

5120512 n S()g].S(]z N 5012301 = A

Hence the union of these three sets contains exactly 96 distinct strings.

3 Non-Central Strongly Square-Free Strings

If x is any non-central strongly square-free string then |x|, > 2for all a € A. Further,
for any non-central strongly square-free string x, |x| > 2|A]. In particular, if x is a
non-central strongly square-free string over {0, 1,2} then x| > 6.

Lemma 3 There are 6 non-central strongly square-free strings of length 6 over
{0,1,2}.
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Proof. If |x| = 6 and x is non-central then x is a permutation of 001122 because
every letter of {0,1,2} must appear at least twice. Let x= z;- -~ z6. Suppose z; = 0.
Then, zo # 0 and there is exactly one other occurrence of 0 in x. Either x has the
form 0t0 or the form 0t,0t, for nonempty substrings t,t;,t;. But if x = 0t0 then
te Sip has length 4 and necessarily contains Abelian squares and so x must as well.
Therefore, x= 0t,0t, where t;,t, € Siz. Further, [t;| + [tz] = 4 and since both t;
and t, are square-free, |61}, |t2] < 3.

If [t1] = 1 let |t3] = a € {1,2}. Then x= 0a0t, is strongly square-free. It follows
that t; = bab € Sy, where b # a. We conclude that x= 010212 and x= 020121 are
the only non-central strongly square-free strings in this case.

If [t1] = 2 then [t5] = 2. But if t; = ab € 51, then t; = ab or ba € 51,. In either
case X 1s an Abelian square.

If [t1] == 3 then |ta| = 1 and t; = aba or bab € S1,. We see that x is either an
Abelian square, or is central contrary to hypothesis.

We conclude that x= 010212 and x= 020121 are the only non-central strongly
square-free strings beginning with 0.

Making the same arguments for x beginning with 1 we further obtain

101202 121020.
And if x begins with 2, the only possibilities are

202101 212010.

Therefore, there are only 6 strongly square-free strings of length 6 over {0,1,2}.
m]

Lemma 4 There are 6 non-central strongly square-free sirings of length T over

{0,1,2}.

Proof. If x is any strongly square-free non-central string with |x| = 7 then x has
one entry which appears exactly three times, since every entry must appear at least
twice. Assume that ©; = 0. Either 0 appears twice or three times in x. First suppose
0 appears three times. Then there are two cases: either x has the form x = 0t,0t,0
or x= 0t;0t,0t; where the strongly square-free substrings tq,ts,t3 are in Si,. If
x==0t,0t,0, then |t;] + [tz] = 4 while [t1],[t2] < 3. If [t3] = 1 so t; = a € S} then,
as in the case of Lemma 3, we argue that x= 0c0bab0 which has an Abelian square
suffix. If |t;] = 2 then t; = ab € 13 and x= 0ab0ba0 which contains Abelian squares.
The same is true in the last case: If [t1] = 3 then |t;] = 1 and all possibilities contain
Abelian squares.

If x = 0t10t50ts then [ty] + [ta] + |ts| = 4 while 1 < [t4], [ta], [ts] < 3. The
only possibility is that exactly one of the substrings has length 2 and the others
length 1. First suppose that [t;] = 2,|ta| = 1, [t3] = 1. It follows that x= 0ab0a0b
or x= 0ab0b0a. But both of these contain Abelian squares. The second case is only
somewhat different. If |t;] = 1, |t2| = 2,|ts| = 1, then t; = ab implies t; = b since
otherwise x would have a square prefix 0ala. Thus, either x= 0b0ab0a or x= 060ab0b.
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But in the first case, x contains the square b0e as suffix and in the second case x
would be central, contrary to hypothesis. The last case [t;] = 1, [t3] =1, |ts] = 2 is
like the first since all possible strings contain Abelian squares.

Now suppose that 0 appears only twice in x. Then x= 0t0 or x = 0t,0¢,. The
first case is impossible since ¢ would belong to S;; while |£| = 5. If x = 0£,0¢, then
[ti] + [t2] = 5 while 0 < |t4],|ts] < 3. Consequently, there are only two cases to
consider.

If [t1] = 3 then t; = aba and t; = ab or ba for a # b € {1,2}. Thus, x= Oabalab
or x= OabaOba. In the later case x would have an Abelian square prefix. In the
former case, we have only the two strings:

0121012 0212021

If [t1] = 2 then |t = 3 and it is easy to check that all possbilities contain Abelian
squares.

We conclude that 0121012 and 0212021 are the only non-central strings starting
with 0 of length 7 that are strongly square-free.

In the same way, if x begins with 1 we obtain strongly square-free strings 1020102
and 1202120. If x begins with 2 we further obtain strongly square-free strings 2010201
and 2101210. O

Theorem 1 There are 117 distinct strongly square-free strings on any alphabet of
three letters.

Proof. Each of the 3 sets,
5120512 So2lS02 501250

contain 36 strongly square-free strings of length &, 3 < k < 7 and intersect pair-wise
in 4 strings. Since there are no strings in the intersection of all 3 sets, it follows that
there are 96 distinct strings in the union of these sets. There do not exist non-central
strings of length k< 6 and Lemmas 3 and 4 yield 12 non-central strings of lengths 6
and 7. Finally, since the alphabet provides 3 strongly square-free strings and there
are 6 of length 2 we conclude that there are exactly 117 strongly square-free strings
on three letters. O

4 Generalizations

The case of just three letters is special because, as already remarked, it is the last
case in which all strongly square-free strings are finite. Lemma 1 shows that there
will exist finite strongly square-free strings over any finite alphabet. If empty strings
are taken into account, then Lemma 1 shows that there are finite strongly square-free
strings of every length n > 1 and gives a recursive way to construct many of them. In
particular, it shows that there are at least 13,689 central strongly square-free finite
strings over an alphabet of four letters. Obviously, central strings of all orders can
be constructed, but the analysis for non-central strongly square-free strings is not
yet clear.
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Strongly Square-Free Finite Strings on {0, 1,2}

0 1 2
01 10 02 20 12 21

010 101 020 202 121 212
012 102 210 021 201 120

1012 0102 0201
1021 0120 0210
2021 2102 1201
2012 2120 1210
1202 0212 0121
2101 2010 1020

10121 01020 02010
10212 01202 02101
20121 21020 12010
20212 21202 12101
12021 02120 01210
12012 02102 01201
21021 20120 10201
21012 20102 10210
12102 02012. 01020
21201 20210 10120

120121 120212 210121 210212
121021 121012 212012 212021
021020 021202 201020 201202
020120 020102 202102 202120
012010 012101 102010 102101
010210 010201 101201 101210
010212 020121 101202 121020
202101 212010

1210121 1210212 2120121 2120212
0201020 0201202 2021020 2021202
0102010 0102101 1012010 1012101
0121012 0212021 1020102 1202120
2010201 2101210
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