[go: up one dir, main page]

login
A349040
a(n) is the X-coordinate of the n-th point of the terdragon curve; sequence A349041 gives Y-coordinates.
5
0, 1, 0, 1, 0, 0, -1, 0, -1, 0, -1, -1, -2, -2, -1, -1, -2, -2, -3, -2, -3, -2, -3, -3, -4, -3, -4, -3, -4, -4, -5, -5, -4, -4, -5, -5, -6, -6, -5, -5, -4, -5, -4, -4, -3, -3, -4, -4, -5, -5, -4, -4, -5, -5, -6, -5, -6, -5, -6, -6, -7, -6, -7, -6, -7, -7, -8
OFFSET
0,13
COMMENTS
Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows (the Y-axis corresponds to the sixth primitive root of unity):
Y
/
/
0 ---- X
The terdragon curve can be represented using an L-system.
A062756, when interpreted as a sequence of directions A062756(n)*120 degrees, yields the same curve.
LINKS
Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves -- I and II, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. Reprinted in Donald E. Knuth, Selected Papers on Fun and Games, 2011, pages 571-614. See section 5 delta(n) for zeta = third root of unity.
Kevin Ryde, Iterations of the Terdragon Curve, see index "point".
Rémy Sigrist, Colored representation of the first 1 + 3^11 points of the terdragon curve (where the hue is function of the number of steps from the origin)
Wikipedia, Terdragon
EXAMPLE
The terdragon curve starts (on a hexagonal lattice) as follows:
+-----+
8\ 9
\
+-----+7
6\ /4\
\5/ \
+-----+
2\ 3
\
+-----+
0 1
- so a(0) = a(2) = a(4) = a(5) = a(7) = a(9) = 0,
a(1) = a(3) = 1,
a(6) = a(8) = -1.
PROG
(PARI) See Links section.
CROSSREFS
Cf. A080846 (turn), A062756 (segment direction), A349041.
Sequence in context: A153864 A345128 A112399 * A165123 A372428 A318439
KEYWORD
sign
AUTHOR
Rémy Sigrist, Nov 06 2021
STATUS
approved