OFFSET
1,2
COMMENTS
Karnofsky (2004, p. 5): "[...] if some circuit has resistance m/n then some other circuit likely has n/m. In fact, for 9 or fewer resistors, this symmetry is perfect. However, for 10 resistors the following values are achieved, but not their inverses: 95/106, 101/109, 98/103, 97/98, 103/101, 97/86, 110/91, 103/83, 130/101, 103/80, 115/89, 106/77, 109/77, 98/67, 101/67". That means, that T(m,n) = T(n,m), if T(m,n) <= 9.
This starts with the values of A113881, but the Karnofsky comment says that T(n,m) is not symmetric, whereas the count of tiles in A113881 is. - R. J. Mathar, Nov 06 2020
The first difference where T(m,n) = T(n,m), but differs from the corresponding entry of A113881 occurs for (n,m) = (154,167) and (n,m) = (167,154), both representable by networks with non-planar graphs of 11 resistors, whereas A113881 counts 12 tiles. See Pfoertner link for illustration of more differences. - Hugo Pfoertner, Nov 13 2020
REFERENCES
Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.
LINKS
Joel Karnofsky, Solution of problem from Technology Review's Puzzle Corner Oct 3, 2003, Feb 23 2004.
Hugo Pfoertner, Where A338573 differs from A113881, x,y <= 380.
EXAMPLE
T(1,2) = 2: at least 2 unit resistors in parallel are needed for resistance 1/2.
T(2,1) = 2: at least 2 unit resistors in series are needed for resistance 2 = 2/1.
T(11,13) = 6: the following "bridge" has resistance Bri(Par(1,1),1,1,1,1) = 11/13 (see A337516 for definitions):
.
(+)
/ \
---* \
/ / \
(1)(1) (1)
\ | |
\| |
*--(1)--*
\ /
(1) (1)
\ /
(-)
.
T(13,11) = 6: Bri(Ser(1,1),1,1,1,1) = 13/11.
T(95,106) = 10, but T(106,95) > 10: Karnofsky (2004, p. 5), see comment.
CROSSREFS
KEYWORD
AUTHOR
Rainer Rosenthal, Nov 05 2020
STATUS
approved