[go: up one dir, main page]

login
A332252
a(n) is the imaginary part of f(n) defined by f(0) = 0 and f(n+1) = f(n) + i^A000120(n) (where i denotes the imaginary unit). Sequence A332251 gives real parts.
4
0, 0, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 1, 0, 0, 1, 1, 1, 0, 0, -1, -2, -2, -2, -3, -4, -4, -5, -5, -5, -4, -3, -3, -3, -4, -4, -5, -6, -6, -6, -7, -8, -8, -9, -9, -9, -8, -8, -9, -10, -10, -11, -11, -11, -10, -11, -11, -11, -10, -10, -9, -8, -8, -7, -7, -7
OFFSET
0,4
FORMULA
For any k >= 0:
- a(2^(4*k)) = 0,
- a(2^(4*k+1)) = (-4)^k,
- a(2^(4*k+2)) = 2*(-4)^k,
- a(2^(4*k+3)) = 2*(-4)^k).
PROG
(PARI) { z=0; for (n=0, 67, print1 (imag(z) ", "); z += I^hammingweight(n)) }
CROSSREFS
Cf. A000120, A332251 (real parts and additional comments).
Sequence in context: A059253 A108133 A341120 * A238268 A194883 A328404
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Feb 08 2020
STATUS
approved