[go: up one dir, main page]

login
A332204
a(n) is the real part of f(n) defined by f(0) = 0, and f(n+1) = f(n) + g((1+i)^(A065359(n) mod 8)) (where g(z) = z/gcd(Re(z), Im(z)) and i denotes the imaginary unit).
3
0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 15, 16, 17, 17, 16, 17, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 31, 31, 32, 33, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 49, 50
OFFSET
0,3
COMMENTS
The representation of {f(n)} resembles a Koch curve (see illustrations in Links section).
The sequence A065359 mod 8 gives the direction at each step as follows:
3 _ 2 _ 1
\_ | _/
\_ | _/
\|/
4 ------.------ 0
_/|\_
_/ | \_
_/ | \_
5 6 7
We can also build {f(n)} with A096268 as follows:
- start at the origin looking to the right,
- for k=0, 1, ...:
- move forward to the next lattice point
(this point is at distance 1 or sqrt(2)),
- if A096268(k)=0
then turn 45 degrees to the left
otherwise turn 90 degrees to the right,
- this connects the first differences of A065359 and A096268.
FORMULA
a(2^k) = A217730(k) for any k >= 0.
a(4^k+m) + a(m) = A217730(2*k) for any k >= 0 and m = 0..4^k.
EXAMPLE
The first terms, alongside f(n) and A065359(n), are:
n a(n) f(n) A065359(n)
-- ---- ----- ----------
0 0 0 0
1 1 1 1
2 2 2+i -1
3 3 3 0
4 4 4 1
5 5 5+i 2
6 5 5+2*i 0
7 6 6+2*i 1
8 7 7+3*i -1
9 8 8+2*i 0
10 9 9+2*i -2
11 9 9+i -1
12 10 10 0
13 11 11 1
14 12 12+i -1
15 13 13 0
16 14 14 1
MATHEMATICA
A065359[0] = 0;
A065359[n_] := -Total[(-1)^PositionIndex[Reverse[IntegerDigits[n, 2]]][1]];
g[z_] := z/GCD[Re[z], Im[z]];
Module[{n = 0}, Re[NestList[# + g[(1+I)^A065359[n++]] &, 0, 100]]] (* Paolo Xausa, Aug 28 2024 *)
PROG
(PARI) \\ See Links section.
CROSSREFS
Cf. A065359, A096268, A217730, A332205 (imaginary part), A332206 (where f is real).
Sequence in context: A352241 A195181 A003005 * A245321 A006163 A331268
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Feb 07 2020
STATUS
approved