[go: up one dir, main page]

login
A308607
Number of (not necessarily maximal) cliques in the wheel graph on n vertices.
0
16, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234, 238
OFFSET
4,1
COMMENTS
Also the number of independent vertex sets in the complement of the n-wheel graph. - Eric W. Weisstein, Oct 11 2023
LINKS
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Wheel Complement Graph
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
a(n) = 4*n-2 for n > 4.
From Colin Barker, Nov 07 2020: (Start)
G.f.: 2*x^4*(8 - 7*x + x^2) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>6.
(End)
MATHEMATICA
CoefficientList[Series[2 (8 - 7 x + x^2)/(1 - x)^2, {x, 0, 60}], x] (* Wesley Ivan Hurt, Nov 07 2020 *)
CROSSREFS
Sequence in context: A095953 A084800 A065426 * A097746 A081258 A317423
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 10 2019
EXTENSIONS
Edited by Robert Israel, Jun 12 2019
STATUS
approved