[go: up one dir, main page]

login
A299280
Partial sums of A299279.
51
1, 9, 39, 107, 233, 413, 699, 1047, 1557, 2129, 2927, 3779, 4929, 6117, 7683, 9263, 11309, 13337, 15927, 18459, 21657, 24749, 28619, 32327, 36933, 41313, 46719, 51827, 58097, 63989, 71187, 77919, 86109, 93737, 102983, 111563, 121929, 131517, 143067, 153719, 166517
OFFSET
0,2
FORMULA
From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 27*x^2 + 44*x^3 + 39*x^4 - 3*x^6 + 4*x^7) / ((1 - x)^4*(1 + x)^3).
a(n) = (5*n^3 + 8*n^2 + 6*n - 6) / 2 for n>0 and even.
a(n) = (5*n^3 + 7*n^2 + 5*n + 1) / 2 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7. (End)
E.g.f.: (8 - (6 - 17*x - 23*x^2 - 5*x^3)*cosh(x) + (1 + 19*x + 22*x^2 + 5*x^3)*sinh(x))/2. - Stefano Spezia, Jun 06 2024
MATHEMATICA
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 9, 39, 107, 233, 413, 699, 1047}, 50] (* Harvey P. Dale, Jul 22 2021 *)
PROG
(PARI) Vec((1 + 8*x + 27*x^2 + 44*x^3 + 39*x^4 - 3*x^6 + 4*x^7) / ((1 - x)^4*(1 + x)^3) + O(x^60)) \\ Colin Barker, Feb 11 2018
CROSSREFS
Cf. A299279.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A158447 A281381 A226449 * A023163 A054121 A139594
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
STATUS
approved