[go: up one dir, main page]

login
A299265
Partial sums of A299259.
51
1, 6, 19, 45, 90, 159, 257, 390, 563, 781, 1050, 1375, 1761, 2214, 2739, 3341, 4026, 4799, 5665, 6630, 7699, 8877, 10170, 11583, 13121, 14790, 16595, 18541, 20634, 22879, 25281, 27846, 30579, 33485, 36570, 39839, 43297, 46950, 50803, 54861, 59130
OFFSET
0,2
COMMENTS
Euler transform of length 4 sequence [6, -2, 1, -1]. - Michael Somos, Oct 03 2018
FORMULA
From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + x)^3*(1 + x^2) / ((1 - x)^4*(1 + x + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6) for n>5.
(End)
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Oct 03 2018
MATHEMATICA
CoefficientList[Series[(1+x)^3*(1+x^2)/((1-x)^4*(1+x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
a[ n_] := (8 n^3 + 12 n^2 + 24 n + 9 + Mod[n, 3]) / 9; (* Michael Somos, Oct 03 2018 *)
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {1, 6, 19, 45, 90, 159}, 50] (* Harvey P. Dale, Dec 11 2018 *)
PROG
(PARI) Vec((1 + x)^3*(1 + x^2) / ((1 - x)^4*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018
(PARI) {a(n) = (8*n^3 + 12*n^2 + 24*n + 9 + (n%3)) / 9}; /* Michael Somos, Oct 03 2018 */
(Magma) I:=[19, 45, 90, 159, 257, 390]; [1, 6] cat [n le 6 select I[n] else 3*Self(n-1) - 3*Self(n-2) +2*Self(n-3) - 3*Self(n-4) + 3*Self(n-5) - Self(n-6): n in [1..30]];
CROSSREFS
Cf. A299259.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A272707 A266938 A362602 * A005712 A299278 A298741
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 07 2018
STATUS
approved