[go: up one dir, main page]

login
A299261
Partial sums of A299255.
51
1, 8, 31, 81, 168, 303, 497, 760, 1103, 1537, 2072, 2719, 3489, 4392, 5439, 6641, 8008, 9551, 11281, 13208, 15343, 17697, 20280, 23103, 26177, 29512, 33119, 37009, 41192, 45679, 50481, 55608, 61071, 66881, 73048, 79583, 86497, 93800, 101503, 109617
OFFSET
0,2
COMMENTS
Euler transform of length 3 sequence [8, -5, 1]. - Michael Somos, Oct 03 2018
FORMULA
From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + x)^5 / ((1 - x)^4*(1 + x + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6) for n>5.
(End)
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Oct 03 2018
MATHEMATICA
a[ n_] := (8 (2 n + 1) (n^2 + n + 1) - Mod[n - 1, 3, -1]) / 9; (* Michael Somos, Oct 03 2018 *)
PROG
(PARI) Vec((1 + x)^5 / ((1 - x)^4*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018
(PARI) {a(n) = (8 * (2*n + 1) * (n^2 + n + 1) + (n%3==0) - (n%3==2)) / 9}; /* Michael Somos, Oct 03 2018 */
CROSSREFS
Cf. A299255.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A212579 A115004 A303522 * A005338 A006322 A319906
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 07 2018
STATUS
approved