[go: up one dir, main page]

login
A299254
Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3^4.6 2D tiling (cf. A250120).
51
1, 7, 21, 45, 79, 122, 175, 237, 309, 391, 482, 583, 693, 813, 943, 1082, 1231, 1389, 1557, 1735, 1922, 2119, 2325, 2541, 2767, 3002, 3247, 3501, 3765, 4039, 4322, 4615, 4917, 5229, 5551, 5882, 6223, 6573, 6933, 7303, 7682, 8071, 8469, 8877, 9295, 9722, 10159, 10605, 11061, 11527, 12002
OFFSET
0,2
REFERENCES
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #17.
LINKS
Reticular Chemistry Structure Resource (RCSR), The svj tiling (or net)
FORMULA
G.f.: (x^2+x+1)*(x^4+3*x^3+3*x+1)*(x+1) / ((x^4+x^3+x^2+x+1)*(1-x)^3). (This is the product of the g.f.'s for A250120 and A040000. - N. J. A. Sloane, Nov 10 2018)
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>7. - Colin Barker, Feb 07 2018
a(n) = 2*((sqrt(5) - 5)*(5 + 12*n^2) - (sqrt(5) - 1)*cos(2*n*Pi/5) + (sqrt(5) - 1)*cos(4*n*Pi/5))/(5*(sqrt(5) - 5)) for n > 0. - Stefano Spezia, Jun 06 2024
PROG
(PARI) Vec((1 + x)*(1 + x + x^2)*(1 + 3*x + 3*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 07 2018
CROSSREFS
Partial sums: A299260.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A077354 A246430 A256051 * A146411 A287431 A127736
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 06 2018
STATUS
approved