[go: up one dir, main page]

login
A298035
Coordination sequence of Dual(3.12.12) tiling with respect to a trivalent node.
24
1, 3, 21, 39, 57, 75, 93, 111, 129, 147, 165, 183, 201, 219, 237, 255, 273, 291, 309, 327, 345, 363, 381, 399, 417, 435, 453, 471, 489, 507, 525, 543, 561, 579, 597, 615, 633, 651, 669, 687, 705, 723, 741, 759, 777, 795, 813, 831, 849, 867, 885, 903, 921, 939, 957, 975, 993, 1011, 1029, 1047, 1065
OFFSET
0,2
COMMENTS
This tiling is sometimes called the triakis triangular tiling.
LINKS
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019.
N. J. A. Sloane, Illustration of initial terms (shows one 120-degree sector of graph).
N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
FORMULA
Theorem: a(0)=1; thereafter a(n) = 18*n-15. [Proof: Use the "coloring book" method described in the Goodman-Strauss & Sloane article.]
From Colin Barker, Jan 22 2018: (Start)
G.f.: (1 + x + 16*x^2) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
MAPLE
f3:=proc(n) if n=0 then 1 else 18*n-15; fi; end;
[seq(f3(n), n=0..80)];
PROG
(PARI) Vec((1 + x + 16*x^2) / (1 - x)^2 + O(x^60)) \\ Colin Barker, Jan 22 2018
CROSSREFS
Cf. A019557 (12-valent node), A016790 (partial sums, provided its offset is changed).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Sequence in context: A191763 A227241 A076169 * A178082 A056387 A056377
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 22 2018
STATUS
approved