[go: up one dir, main page]

login
A296928
Primes p such that Legendre(-13,p) = 0 or 1.
4
7, 11, 13, 17, 19, 29, 31, 47, 53, 59, 61, 67, 71, 83, 101, 113, 151, 157, 163, 167, 173, 181, 223, 227, 233, 239, 257, 269, 271, 277, 307, 313, 331, 337, 359, 373, 379, 383, 389, 431, 433, 463, 479, 487, 499, 521, 569, 587, 601, 619, 631
OFFSET
1,1
COMMENTS
Primes == 1, 7, 9, 11, 13, 15, 17, 19, 25, 29, 31, 47, or 49 (mod 52). - Robert Israel, Dec 27 2017
LINKS
MAPLE
Load the Maple program HH given in A296920. Then run HH(-13, 200); This produces A296926, A296927, A296928, A105885.
select(isprime, [seq(seq(52*i+j, j=[1, 7, 9, 11, 13, 15, 17, 19, 25, 29, 31, 47, 49]), i=0..50)]); # Robert Israel, Dec 27 2017
CROSSREFS
Sequence in context: A271000 A293658 A168079 * A358743 A243768 A141636
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 26 2017
STATUS
approved