[go: up one dir, main page]

login
A296923
Primes p such that Legendre(-5,p) = -1.
3
2, 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 113, 131, 137, 139, 151, 157, 173, 179, 191, 193, 197, 199, 211, 233, 239, 251, 257, 271, 277, 293, 311, 313, 317, 331, 337, 353, 359, 373, 379, 397, 419, 431, 433, 439, 457, 479, 491, 499, 557, 571, 577, 593, 599, 613
OFFSET
1,1
COMMENTS
Primes == 2, 11, 13, 17, or 19 (mod 20). - Robert Israel, Dec 27 2017
LINKS
MAPLE
Load the Maple program HH given in A296920. Then run HH(-5, 200);
select(isprime, {seq(seq(20*i+j, j=[2, 11, 13, 17, 19]), i=0..100)}); # Robert Israel, Dec 27 2017
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (kronecker(-5, p) == -1, print1(p, ", "))); \\ Michel Marcus, Dec 26 2017
CROSSREFS
Sequence in context: A166849 A119449 A243586 * A243588 A137977 A338976
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 25 2017
STATUS
approved