[go: up one dir, main page]

login
A255910
Decimal expansion of 16/9.
1
1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
1,2
COMMENTS
Cutting the unit square [0,1] x [0,1] into two equal areas with a parabolic curve y = A*x^2 requires A to be 16/9. If you extend this to an arbitrary square [0,s] x [0,s], A = (16/9)*s.
Except for the first terms, identical to A186684, A021040 and A010727.
FORMULA
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: x + 7*x^2/(1 - x).
E.g.f.: 7*(exp(x) - 1) - 6*x.
a(n) = 7 - 6*0^(n-1).
a(n) = 7, n > 1. (End)
EXAMPLE
1.7777777777777777777777777777...
MATHEMATICA
RealDigits[16/9, 10, 100][[1]] (* Vincenzo Librandi, Mar 24 2015 *)
PROG
(PARI) x=16/9; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", "))
CROSSREFS
KEYWORD
nonn,cons,easy,less
AUTHOR
Derek Orr, Mar 10 2015
STATUS
approved