OFFSET
0,2
COMMENTS
Also, growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^6 = 1 >. See Magma program in A298805. - N. J. A. Sloane, Feb 06 2018
LINKS
Maurizio Paolini, Table of n, a(n) for n = 0..1021
Agnes Azzolino, Regular and Semi-Regular Tessellation Paper, 2011.
Agnes Azzolino, Illustration of 3.12.12 tiling [From previous link]
Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019. See section 10 The 3.12^2 tiling.
Rostislav Grigorchuk and Cosmas Kravaris, On the growth of the wallpaper groups, arXiv:2012.13661 [math.GR], 2020. See section 4.6 p. 23.
Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
Tom Karzes, Tiling Coordination Sequences
Maurizio Paolini, C program for A250122
Reticular Chemistry Structure Resource, hca
N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,-1).
FORMULA
From Joseph Myers, Nov 28 2014: (Start)
Empirically,
a(4n) = 10n - 2 except for a(0) = 1
a(4n+1) = 9n + 3
a(4n+2) = 8n + 6 except for a(2) = 4
a(4n+3) = 9n + 6. (End)
If these are correct, the sequence has g.f.
-(-1 - x - x^2 - 3*x^3 + x^4 - 5*x^5 + 3*x^6 - 4*x^7 + 2*x^8)/((x - 1)^2*(x^2 + 1)^2). - N. J. A. Sloane, Nov 28 2014
All the above conjectures are true. - N. J. A. Sloane, Dec 31 2015
E.g.f.: (9*x*cosh(x) - 4*(2*cos(x) + x^2 - 3) + 9*x*sinh(x) - (x - 3)*sin(x))/4. - Stefano Spezia, Jan 05 2023
MATHEMATICA
Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Darrah Chavey, Nov 23 2014
EXTENSIONS
a(8) onwards from Maurizio Paolini and Joseph Myers (independently), Nov 28 2014
STATUS
approved