[go: up one dir, main page]

login
A226613
a(n) is the conjectured number of primitive cycles of positive integers under iteration by the Collatz-like 3x+k function, where n=floor(k/3)+1.
10
1, 5, 1, 2, 9, 2, 1, 3, 2, 4, 1, 2, 3, 1, 1, 7, 1, 1, 3, 7, 2, 1, 1, 7, 3, 1, 4, 3, 1, 1, 3, 3, 2, 7, 2, 1, 1, 1, 2, 5, 2, 4, 2, 3, 2, 5, 1, 3, 3, 2, 2, 1, 1, 4, 2, 3, 2, 2, 7, 1, 3, 1, 2, 3, 4, 1, 2, 2, 1, 4, 1, 3, 2, 1, 2, 1, 8, 19, 3, 4, 2, 2, 6, 2, 3, 3, 7, 3
OFFSET
1,2
COMMENTS
A cycle is called primitive if its elements are not a common multiple of the elements of another cycle.
The 3x+k function T_k is defined by T_k(x) = x/2 if x is even, (3x+k)/2 if x is odd, where k is odd.
For primitive cycles, GCD(k,6)=1.
LINKS
E. G. Belaga and M. Mignotte, Cyclic Structure of Dynamical Systems Associated with 3x+d Extensions of Collatz Problem, Preprint math. 2000/17, Univ. Louis Pasteur, Strasbourg (2000). [Table 1 on page 19 gives a(1) to a(500).]
FORMULA
a(n) = A226612(n+1) - A226612(n).
CROSSREFS
a(n) is the number of terms in the n-th row of A226607 to A226611.
Sequence in context: A021199 A073324 A021665 * A274989 A328199 A289690
KEYWORD
nonn
AUTHOR
Geoffrey H. Morley, Jun 13 2013
STATUS
approved