[go: up one dir, main page]

login
A177870
Decimal expansion of 3*Pi/4.
4
2, 3, 5, 6, 1, 9, 4, 4, 9, 0, 1, 9, 2, 3, 4, 4, 9, 2, 8, 8, 4, 6, 9, 8, 2, 5, 3, 7, 4, 5, 9, 6, 2, 7, 1, 6, 3, 1, 4, 7, 8, 7, 7, 0, 4, 9, 5, 3, 1, 3, 2, 9, 3, 6, 5, 7, 3, 1, 2, 0, 8, 4, 4, 4, 2, 3, 0, 8, 6, 2, 3, 0, 4, 7, 1, 4, 6, 5, 6, 7, 4, 8, 9, 7, 1, 0, 2, 6, 1, 1, 9, 0, 0, 6, 5, 8, 7, 8, 0, 0, 9, 8, 6, 6, 1, 1
OFFSET
1,1
COMMENTS
As radians, this is equal to 135 degrees (on an analog clock, the span of 22 minutes and 30 seconds). - Alonso del Arte, Feb 03 2013
Ratio of the area of an arbelos to the area of its associated parbelos. - Jonathan Sondow, Nov 28 2013
(3*Pi/4)*a^2 is the area between a cissoid of Diocles and its asymptote when polar equation of cissoid is r = a*sin^2(t)/cos(t) and Cartesian equation is x * (x^2+y^2) = a * y^2 or y = +-x * sqrt(x/(a-x)). See the curve at the Mathcurve link and formula. - Bernard Schott, Jul 14 2020
The smallest nonnegative solution to sin(x) = -cos(x). - Wolfe Padawer, Apr 12 2023
REFERENCES
Jonathan Borwein & Peter Borwein, A Dictionary of Real Numbers. Pacific Grove, California: Wadsworth & Brooks/Cole Advanced Books & Software (1990) p. 168
LINKS
Robert Ferréol, Cissoid of Diocles, Mathcurve.
Jonathan Sondow, The parbelos, a parabolic analog of the arbelos, arXiv:1210.2279 [math.HO], 2012-2013: Amer. Math. Monthly 120 (2013) 929-935.
FORMULA
Equals (3/4)*A000796 = 3*A003881 = 6*A019675 = A122952/4.
Equals 1 + (3/5) + (3*4)/(5*7) + (3*4*5)/(5*7*9) + ... = hypergeom([3,1],[5/2],1/2). - Peter Bala, Oct 30 2019
Equals 2 * Integral_{x=0..1} x * sqrt(x/(1-x)) dx (cissoid). - Bernard Schott, Jul 14 2020
Equals Sum_{k>=1} arctan(2/k^2). - Amiram Eldar, Aug 10 2020
EXAMPLE
2.35619449019234492884698253745962716314787704953132936573120...
MAPLE
evalf(3*Pi/4) ;
MATHEMATICA
RealDigits[N[3(Pi/4), 110]][[1]]
PROG
(PARI) 3*Pi/4 \\ Charles R Greathouse IV, Sep 30 2022
CROSSREFS
Reciprocal of A232715.
Sequence in context: A157260 A336017 A291486 * A094872 A361443 A201744
KEYWORD
nonn,cons,easy
AUTHOR
R. J. Mathar, Dec 13 2010
STATUS
approved