[go: up one dir, main page]

login
A171441
Expansion of g.f. (1+x)^6/(1-x).
7
1, 7, 22, 42, 57, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
OFFSET
0,2
COMMENTS
a(n)=2^6=64 for n>=6. We observe that this sequence is the transform of A171440 by T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...).
Also continued fraction expansion of 1+(1233212607598+5*sqrt(41))/8688482797079. - Bruno Berselli, Sep 23 2011
LINKS
Richard Choulet, Une nouvelle formule de combinatoire?, Mathématique et Pédagogie, 157 (2006), p. 53-60. In French.
FORMULA
With m=7, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k).
EXAMPLE
a(4) = C(7,4-0) + C(7,4-2) + C(7,4-4) = 35+21+1 = 57.
MAPLE
m:=7:for n from 0 to 40 do a(n):=sum('binomial(m, n-2*k)', k=0..floor(n/2)): od : seq(a(n), n=0..40);
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Dec 09 2009
EXTENSIONS
Definition rewritten by Bruno Berselli, Sep 23 2011
STATUS
approved