[go: up one dir, main page]

login
A170746
Expansion of g.f.: (1+x)/(1-26*x).
50
1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352, 45286002241714599985152, 1177436058284579599613952
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*27^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 27*26^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (27*exp(26*x) - 1)/26. - G. C. Greubel, Sep 25 2019
MAPLE
k:=27; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-26x), {x, 0, 20}], x] (* or *) Join[ {1}, NestList[26#&, 27, 20]] (* Harvey P. Dale, Jun 16 2016 *)
PROG
(Python) for i in range(31):print(i, 27*26**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017
(PARI) vector(26, n, k=27; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 25 2019
(Magma) k:=27; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 25 2019
(Sage) k=27; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 25 2019
(GAP) k:=27;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 25 2019
CROSSREFS
Sequence in context: A170612 A170660 A170708 * A218729 A171332 A097781
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved