OFFSET
1,1
COMMENTS
Old name was: Related to A165808; this sequence is that of rational integer coefficients of sqrt(-1) in the quotients f(x+k*f(x))/f(x) where f(x) = x^3 + 2x +11 and x = 2 +3i.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
From R. J. Mathar, Sep 30 2009: (Start)
G.f.: 3*x*(361 + 1264*x + 235*x^2)/(1-x)^4.
a(n) = 3*n*(310*n^2 + 63*n - 12). (End)
From G. C. Greubel, Apr 09 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: 3*x*(361 + 993*x + 310*x^2)*exp(x). (End)
MAPLE
seq(3*n*(310*n^2 + 63*n - 12), n=1..35); # G. C. Greubel, Sep 02 2019
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1083, 8124, 26703, 62400}, 50] (* G. C. Greubel, Apr 09 2016 *)
Table[3n(310n^2+63n-12), {n, 30}] (* Harvey P. Dale, Jun 15 2021 *)
PROG
(PARI) a(n)=3*n*(310*n^2+63*n-12) \\ Charles R Greathouse IV, Jul 07 2013
(Magma) [3*n*(310*n^2 + 63*n - 12): n in [1..35]]; // G. C. Greubel, Sep 02 2019
(Sage) [3*n*(310*n^2 + 63*n - 12) for n in (1..35)] # G. C. Greubel, Sep 02 2019
(GAP) List([1..35], n-> 3*n*(310*n^2 + 63*n - 12)); # G. C. Greubel, Sep 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
A.K. Devaraj, Sep 29 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 30 2009
STATUS
approved