OFFSET
1,5
REFERENCES
Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]
LINKS
Álvar Ibeas, First 100 antidiagonals, flattened
Michael Baake, Solution of the coincidence problem in dimensions d≤4, arXiv:math/0605222 [math.MG], 2006. [Appx. A]
B. Gruber, Alternative formulas for the number of sublattices, Acta Cryst. A53 (1997) 807-808.
J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
Yi Ming Zou, Gaussian binomials and the number of sublattices, arXiv:math/0610684 [math.CO], 2006.
Yi Ming Zou, Gaussian binomials and the number of sublattices, Acta Cryst. A62 (2006) 409-410.
FORMULA
T(n,1) = 1; T(1,k) = 1; T(n, k) = Sum_{d|n} d*T(d, k-1).
From Álvar Ibeas, Oct 31 2015: (Start)
T(n,k) = Sum_{d|n} (n/d)^(k-1) * T(d, k-1).
T(Product(p^e), k) = Product(Gaussian_poly[e+k-1, e]_p).
(End)
EXAMPLE
Array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,...
1,4,13,40,121,364,1093,3280,9841,29524,88573,265720,797161,2391484,...
1,7,35,155,651,2667,10795,43435,174251,698027,2794155,11180715,...
1,6,31,156,781,3906,19531,97656,488281,2441406,12207031,61035156,...
...
MATHEMATICA
T[_, 1] = 1; T[1, _] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, (n/#)^(k-1) *T[#, k-1]&]; Table[T[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2015 *)
PROG
(PARI):
adu(M)=
{ /* Read by AntiDiagonals, Upwards */
local(N=matsize(M)[1]);
for (n=1, N, for(j=0, n-1, print1(M[n-j, j+1], ", ") ) );
}
T(n, k)=
{
if ( (n==1) || (k==1), return(1) );
return( sumdiv(n, d, d*T(d, k-1)) );
}
M=matrix(15, 15, n, k, T(n, k)) /* square array */
adu(M) /* sequence */
CROSSREFS
Transposed array: A128119.
KEYWORD
AUTHOR
N. J. A. Sloane, Nov 19 2009
STATUS
approved